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A Mathematical Model and Genetic Algorithm based Approach  

for Parallel Two-Sided Assembly Line Balancing Problem 

Assembly lines are usually constructed as the last stage of the entire production 

system and efficiency of an assembly line is one of the most important factors 

which affect the performance of a complex production system. The main purpose 

of this paper is to mathematically formulate and to provide an insight for 

modelling the parallel two-sided assembly line balancing problem, where two or 

more two-sided assembly lines are constructed in parallel to each other. We also 

propose a new genetic algorithm based approach in alternatively to the existing 

only solution approach in the literature, which is a tabu search algorithm. To the 

best of our knowledge, this is the first formal presentation of the problem as well 

as the proposed algorithm is the first attempt to solve the problem with a genetic 

algorithm based approach in the literature. The proposed approach is illustrated 

with an example to explain the procedures of the algorithm. Test problems are 

solved and promising results are obtained. Statistical tests are designed to analyse 

the advantage of line parallelisation in two-sided assembly lines through obtained 

test results. The response of the overall system to the changes in the cycle times 

of the parallel lines is also analysed through test problems for the first time in the 

literature. 

Keywords: parallel two-sided assembly lines; assembly line balancing; 

production planning; genetic algorithm; meta-heuristics; artificial intelligence. 

1. Introduction 

Assembly lines have been utilised successfully to produce large-volume high-quality 

standardised homogeneous products, and have been of interest for both academia and 

industry for decades. An assembly line is a sequential organisation of workstations (or 

operators) linked by a conveyor belt or material handling system on which semi-

finished products are moved from one workstation to another (Ozdemir and Ayag 

2011). Parts are added on the moving semi-finished products in sequence until the final 

assembly is produced. A group of tasks is performed in each workstation by considering 
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capacity of the workstation and precedence relationships among tasks, where 

precedence relationships are usually caused by the technological requirements or 

organisational structures (Tonelli et al. 2013). Sum of processing times of all tasks 

assigned to a workstation constitutes its workload time and workload time of a 

workstation cannot exceed the designated cycle time. Assembly line balancing problem 

is to determine which task will be accomplished in which workstation by assigning 

tasks to an ordered sequence of workstations considering aforementioned constraints 

(i.e. capacity constraints, assignment constraints, precedence relationships constraints, 

etc.). Tasks cannot be split into two or more pieces and each task must be assigned to 

exactly one workstation (Kucukkoc et al. 2013). 

In accordance with the utilisation of operation sides, assembly lines can be classified 

as one-sided assembly lines and two-sided assembly lines. Tasks are performed on both 

left and right sides of the line in a two-sided assembly line system while only left or 

right side of the line is used in a one-sided assembly line system. Two-sided assembly 

lines are usually utilised to produce high-volume large-sized products, such as trucks 

and buses (Kucukkoc and Zhang 2014b). Some heuristic approaches were proposed by 

Lee et al. (2001), Hu et al. (2008), Ozcan and Toklu (2010) and Yegul et al. (2010); and 

some exact solution approaches were developed by Wu et al. (2008) and Hu et al. 

(2010) since the two-sided assembly line balancing problem was first introduced by 

Bartholdi (1993). Meta-heuristics have also been presented by Baykasoglu and Dereli 

(2008), Simaria and Vilarinho (2009), Ozcan and Toklu (2009), Ozbakir and Tapkan 

(2010), Ozcan (2010), Ozbakir and Tapkan (2011), Chutima and Chimklai (2012), and 

Khorasanian et al. (2013). Among these meta-heuristics, studies by Kim et al. (2000), 

Kim et al. (2009), Taha et al. (2011), Rabbani et al. (2012) and Purnomo et al. (2013) 

employed Genetic Algorithm (GA) based approaches to balance two-sided lines. As can 
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be comprehended from these studies, there exist numerous successfully implemented 

GA based approaches in the literature for two-sided assembly line balancing problems. 

There is another type of line configuration called parallel assembly line system, 

where two or more lines are located in parallel to each other to maximise the use of 

shared recourses and tools. The idea of balancing more than one assembly line with a 

common set of resources was first introduced by Gökçen et al. (2006). Gökçen et al. 

(2006) proposed new procedures and a mathematical model on the single model 

assembly line balancing problem with parallel lines. Few researchers followed Gökçen 

et al. (2006) and a novel ant colony optimisation based algorithm was proposed by 

Baykasoglu et al. (2009) for the Parallel Assembly Line Balancing Problem (PALBP). 

Cercioglu et al. (2009) proposed a simulated annealing approach to solve PALBP and 

compared results obtained from the algorithm with the results of existing heuristic 

algorithm proposed by Gökçen et al. (2006). The first multi-objective tabu search 

algorithm is presented for PALBP by Ozcan et al. (2009) and its performance was 

tested on a set of well-known problems in the literature. Another mathematical model of 

the PALBP was developed by Scholl and Boysen (2009) along with an exact solution 

procedure. Kara et al. (2010) suggested a fuzzy goal programming model that can be 

used for balancing parallel assembly lines. Ozcan et al. (2010a) addressed parallel 

mixed-model assembly line balancing and sequencing problem with a simulated 

annealing approach to maximise the line efficiency by ensuring smooth workload 

distribution among workstations. Ozbakir et al. (2011) developed a multiple-colony ant 

algorithm for balancing bi-objective parallel assembly lines while Kucukkoc and Zhang 

(2014a, 2014b) considered the model sequencing problem as well as the line balancing 

problem on mixed-model parallel two-sided assembly lines and proposed agent based 

ant colony optimisation solution approaches. Please refer to Lusa (2008) and Zhang and 
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Kucukkoc (2013) for a detailed survey on multiple and parallel assembly line balancing 

problems. 

The combination of above mentioned configurations, namely parallel two-sided 

assembly lines, are also frequently constructed in industry in production of large-sized 

items. Although vast numbers of researches have been carried out on traditional 

configurations of assembly lines in the literature, there is only one research concerning 

Parallel Two-Sided Assembly Line Balancing Problem (PTALBP). The concept of 

parallel two-sided assembly lines was first described by Ozcan et al. (2010b). Ozcan et 

al. (2010b) introduced and defined the PTALBP and proposed a tabu search algorithm 

to solve the combined well-known test problems in the literature. Obtained results were 

compared with theoretical minimum number of workstations to show the performance 

of the proposed algorithm. The research also demonstrated that parallelisation of two-

sided lines helps lower total number of workstations, but no statistical technique was 

used for this aim. 

GAs as well as other evolutionary approaches have been applied to line balancing 

problems earlier with success. There is continuing work in applying GA for various 

types of line balancing problems, i.e. Leu et al. (1994), Rubinovitz (1995), Kim et al. 

(2000), Rekiek et al. (2001), Goncalves (2002), Simaria and Vilarinho (2004), Zhang et 

al. (2005), Haq et al. (2006), Levitin et al. (2006), Suwannarongsri et al. (2007), Zhang 

et al. (2008), Hwang and Katayama (2009), Yu and Yin (2010), Chica et al. (2011), 

Akpinar and Bayhan (2011), and Kucukkoc et al. (2013). In particular, Kim et al. 

(2000), Kim et al. (2009), Taha et al. (2011), Rabbani et al. (2012), and Purnomo et al. 

(2013) have solved two-sided assembly line balancing problems with different GA 

based approaches but none of them have considered line parallelisation as an additional 

specification. On the contrary of its successful implementations on various line systems, 
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PTALBP has not been addressed using any GA based technique. Therefore, there is 

neither GA based nor evolutionary approach published concerning parallel two-sided 

assembly lines. This is the main motivation of why a GA based approach is proposed in 

solving the addressed problem in this research. 

Evidence of the need for this research is showed by the lack of literature on 

developing the mathematical model of the PTALBP and presenting the positive effect 

of line parallelisation on two-sided lines, statistically. The need for this research is also 

guided by the gap in the literature on balancing more than one two-sided assembly line 

with a common set of resources using an evolutionary based approach, such as GA. 

Moreover, the response of the whole line system against the changes in the cycle times 

of the parallel lines is demonstrated for the first time in the literature. From the 

managerial point of view, among the available solutions, line managers can easily pick 

up a solution for a specific combination of cycle times of the parallel lines. This helps 

them make decision especially when there is change in model demands. 

The rest of the paper is organised as follows. Section 2 presents the main 

characteristics of the problem along with the mathematical model and assumptions 

considered. The proposed approach is described in Section 3 and illustrated with an 

example in Section 4. Section 5 reports and statistically analyses the results of the 

computational study. Section 6 concludes with the findings of the research and the 

future research directions. Some graphs related to the computational study are also 

depicted in the Appendices. 

2. Problem Statement 

2.1. Main characteristics 

To maximise the use of shared tools and minimise idle times of the entire production 
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system, two or more two-sided lines – on which two or more similar product models 

that have similar production processes are produced – are located in parallel to each 

other. Such a configuration is called parallel two-sided assembly line system and can be 

typically illustrated as in Figure 1. The parallel two-sided assembly line balancing 

problem is balancing two or more two-sided assembly lines, which are constructed in 

parallel to each other. A common set of resources is shared among the lines and the 

main objective is allocating tasks to the workstations to optimise a performance 

measure (i.e. number of workstations, line efficiency, etc.) by considering technological 

priorities, capacity constraints and some other possible constraints caused by 

organisational structures or technological requirements. Different product models are 

produced on each of the two-sided assembly lines, represented by ℎ (where ℎ =

1, … , 𝐻); and each product model has its own set of tasks (𝑖 = 1, … , 𝑛ℎ). These tasks 

are performed according to the known precedence relationships among tasks. 𝑃ℎ 

represents set of precedence relationships on line ℎ, where (𝑟, 𝑠) ∈ 𝑃ℎ represents that 

Task-𝑟 must be completed to be able to assign Task-𝑠. Each task, which is performed on 

line ℎ, needs a certain amount of processing time symbolised with 𝑡ℎ𝑖; and each line 

consists of a series of workstations (𝑘 = 1, … , 𝐾) (Ozcan et al. 2010b). 

 

Figure 1. Typical illustration of parallel two-sided assembly lines, adapted from (Ozcan et al. 

2010b). 

The main advantage of parallel two-sided assembly lines is the flexibility of utilising 
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multi-line stations between two adjacent lines. Operators located in stations between 

two adjacent lines can perform tasks from both lines. By this way, idle times are 

reduced and system utilisation is increased. As can be seen in Figure 1, three operators 

are needed to perform Tasks-a – Task-f, and Operator-2 first completes Task-e at the 

left side station of Line-II, and then Task-c and Task-d at the right side station of Line-I. 

Please note that the shades in the figure symbolise idle times (Ozcan et al. 2010b). 

It should be noted that more attention is needed when balancing two-sided assembly 

lines because tasks, which have precedence relationships with each other and are 

performed on different sides of the lines, must be assigned considering finishing time of 

previously assigned tasks. Let 𝑃1 denotes the set of precedence relationships of Line-I. 

If (𝑎, 𝑏) ∈ 𝑃1 and (𝑎, 𝑐) ∈ 𝑃1, then Task-𝑏 and Task-𝑐 can be initialised after 

completion of Task-𝑎, which may be performed at the other side of the line. This 

phenomenon is called interference in the literature and the violation of this rule yields 

infeasible balancing solutions. 

Another significant advantage of this line system is that each line may have a 

different cycle time (𝐶ℎ), which means that each line may have a different throughput 

rate contributing to the flexibility. When two lines which have different cycle times are 

subject to balancing, a common cycle time should be used to assign tasks in each cycle. 

Gökçen et al. (2006) used least common multiple (𝐿𝐶𝑀) based approach for different 

cycle time situation of two parallel lines (Ozcan et al. 2010b). In this approach (Gökçen 

et al. 2006): 

 Least common multiple of the cycle times is found. 

 Line divisors (𝑙𝑑1 and 𝑙𝑑2) are calculated through dividing the 𝐿𝐶𝑀 value by the 

cycle times of Line-I and Line-II  (𝐶1 and 𝐶2), respectively. 

 Task times of the product models produced on the Line-I and Line-II are 

multiplied by 𝑙𝑑1 and 𝑙𝑑2, separately. 
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 𝐿𝐶𝑀 is determined as the common cycle time (𝐶) of the lines and the lines are 

balanced together. 

To characterise the PTALBP more clearly and provide an insight for modelling of 

PTALBP and utilisation of multi-line stations, a numerical example is given below. 

Data given in Table 1 is used as input for the example problem and a possible balancing 

solution for the considered problem is exhibited in Figure 2 under 12 time-units cycle 

time constraint for both of the lines. 

Table 1. Data for numerical example. 

Task 

No 

Line-I  Line-II 

Side 
Processing  

Time 

Immediate 

Predecessors 
 Side 

Processing  

Time 

Immediate 

Predecessors 

1 Left 2 -  Left 2 - 

2 Either 4 1  Right 2 - 

3 Right 3 -  Left 4 - 

4 Either 3 2  Either 1 2 

5 Left 6 1  Right 3 2 

6 Either 4 5  Either 3 1 

7 Left 5 4,6  Left 5 3,4,6 

8 Either 1 4  Either 4 5 

9 Either 3 8  Left 4 7 

10 Right 2 3  Either 3 7,8 

11 Either 2 10  Either 3 - 

12 Left 4 11  Left 2 9 

13 Either 3 7  Right 5 10 

14 Left 4 13  Either 3 11 

15 Either 2 12  Left 6 12 

16 Either 3 14,15  Either 3 13,15 

17 Left 2 16  Either 6 14 

18 - - -  Left 2 16 

Total Time 53    61  

 

 
Figure 2. A possible balancing solution using multi-line stations. 
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Figure 2 shows the utilisation of multi-line stations between the adjacent two-sided lines 

located in parallel to each other. Numbers inside bars denote task numbers while lengths 

of the bars correspond to processing times of tasks. Dashed areas represent unavoidable 

idle times caused by capacity and precedence relationships constraints. As it could be 

seen from the figure, a total of 10 workstations are needed to perform a total of 35 tasks 

on both of the lines. With the construction of multi-line stations, operator located in 

workstation-2 on Line-I performs Task-1 from Line-II first, followed by Task-2, Task-

4, and Task-3 belonging to Line-I. Similarly, Task-11 from Line-II is completed by 

workstation-6 located on Line-I. Thus, operators located in workstation-2 and 

workstation-6 on Line-I contribute to performing tasks on Line-II as well as their main 

job on Line-I. It should be noted here that Task-14 on Line-II cannot be initialised 

unless its predecessor task (Task-11) is completed by workstation-6 on the other side of 

the line. This is one of the most challenging issues in solving PTALBPs and that is why 

unavoidable idle time occurs before Task-14 on Line-II.  

If the lines were balanced individually (without multi-line stations), theoretical 

minimum number of workstations for Line-I and Line-II could be calculated as 

𝑚𝑖𝑛𝐾1 = [53/12]+ = 5 and 𝑚𝑖𝑛𝐾2 = [61/12]+ = 6, respectively; simply using the 

well-known formula 𝑚𝑖𝑛𝐾ℎ = [𝑇𝑜𝑡𝑎𝑙 𝑇𝑎𝑠𝑘 𝑇𝑖𝑚𝑒/𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒]+, where [𝑋]+ denotes 

the smallest integer greater than or equals to 𝑋. Whereas theoretical minimum number 

of workstations (𝑚𝑖𝑛𝐾) decreases to 10 (𝑚𝑖𝑛𝐾 = [114/12]+), one lower than the sum 

of independent balancing solutions (5 + 6 = 11), with the opportunity of assigning 

tasks into a more diversified positions thanks to multi-line stations when the lines are 

balanced together. 
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2.2. Mathematical model 

The notation used in the study can be summarised as below to describe the problem: 

2.2.1. Indices: 

ℎ: line index (ℎ = 1, … , 𝐻), where 𝐻 represents total number of lines, 

𝑖: task index (𝑖 = 1, … , 𝑛ℎ), where 𝑛ℎ represents total number of tasks on line ℎ, 

𝑗: side of the line, 𝑗 = {
0 indicates left side

1 indicates right side
 , 

𝑘: station index (𝑘 = 1, … , 𝐾), where 𝐾 represents total number of utilised 

workstations. 

2.2.2. Decision Variables: 

𝑋ℎ𝑖𝑗𝑘 = {
1 if task 𝑖 is assigned to workstation 𝑘, on side 𝑗 of line ℎ
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.  

2.2.3. Parameters: 

𝑡ℎ𝑖 : Processing time of task 𝑖 on line ℎ, 

𝑃ℎ : Set of precedence relationships in precedence diagram of line ℎ, 

𝐶 : Common cycle time of the lines, 

𝑍𝑃 : Set of pairs of tasks that must be assigned to the same workstation, positive 

zoning, 

𝑁𝑃 : Set of pairs of tasks that cannot be assigned to the same workstation, negative 

zoning. 

2.2.4. Indicator Variables: 

𝑡ℎ𝑖
𝑠  : Starting time of task 𝑖 on line ℎ, 

𝑞𝑘 : Queue number that station 𝑘 is utilised on, 

𝑆𝑘 = {
0 if station 𝑘 is utilised on left side of the first line
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

𝑧𝑘 = {
1 if station 𝑘 is utilised
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 
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𝑈ℎ𝑗𝑘 = {
1 if station 𝑘 is utilised on side 𝑗 of line ℎ
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

𝜎 : Variable, (𝜎 = ℎ + 1, … , 𝐻), 

𝛽 : Variable, (𝛽 ∈ {0, 1}), 

𝑐 = {
1 if  𝑗 = 1 and 𝛽 = 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

𝜇 = {
1 if (𝜎 − ℎ) = 1 𝑎𝑛𝑑 𝛽 = 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

𝑅ℎ𝑟𝑠 = {
1 if tasks 𝑟 and 𝑠 are assigned to the same workstation on line ℎ
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

2.2.5. Objective Function: 

The objective function used in this study is obtained from the modification of objective 

functions used in the previous studies (see Chiang (1998) and Ozcan et al. (2010b)) and 

is presented in Equation (1). This nonlinear objective function represents sum of squares 

of each workstation’s workload. So, maximising this objective function helps to reduce 

the number of stations. 

𝑀𝑎𝑥 𝑍 = ∑ ∑ ∑ (∑ 𝑡ℎ𝑖𝑋ℎ𝑖𝑗𝑘

𝑛ℎ

𝑖=1

)

2
𝐾

𝑘=1𝑗∈{0,1}

𝐻

ℎ=1

                                                                                 (1) 

2.2.6. Constraints: 

∑ 𝑋ℎ𝑖𝑗𝑘 = 1

𝐾

𝑘=1

,          ∀𝑖 ∈ 𝑛ℎ;      ∀ℎ ∈ 𝐻;     ∀𝑗 ∈ {0, 1}.                                                     (2) 

∑(𝑡ℎ𝑖 + 𝑡ℎ𝑖
𝑠 )𝑋ℎ𝑖𝑗𝑘 + 𝑆𝑘 (∑(𝑡(ℎ+1)𝑖 + 𝑡(ℎ+1)𝑖

𝑠 )𝑋(ℎ+1)𝑖(𝑗−1)𝑘

𝑛ℎ

𝑖=1

)

𝑛ℎ

𝑖=1

≤ 𝐶𝑧𝑘,     ∀𝑘 ∈ 𝐾;    ∀ℎ

= 1, … , 𝐻 − 1;    ∀𝑗 ∈ {0, 1}.                                                                          (3) 

∑ 𝑋ℎ𝑖𝑗𝑘 − 𝑛ℎ𝑈ℎ𝑗𝑘 ≤ 0

𝑛ℎ

𝑖=1

,        ∀𝑘 ∈ 𝐾;     ∀ℎ ∈ 𝐻;    ∀𝑗 ∈ {0, 1}.                                      (4) 
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|𝑗 − 1|(𝑈ℎ𝛽𝑘 + 𝑈(𝜎−𝜇)𝑗𝑘) + 𝑗(𝑈ℎ(𝑗−1+𝑐)𝑘 + 𝑈𝜎𝑗𝑘) = 1,     ∀𝑘 ∈ 𝐾;     ∀ℎ ∈ 𝐻;    ∀𝑗

∈ {0, 1};    ∀𝜎 = ℎ + 1, … , 𝐻;     ∀𝛽 ∈ {0, 1}.                                            (5) 

∑ 𝑞𝑘(𝑋ℎ𝑟𝑗𝑘 − 𝑋ℎ𝑠𝑗𝑘) + 𝑅ℎ𝑟𝑠(𝑡ℎ𝑟
𝑠 + 𝑡ℎ𝑟 − 𝑡ℎ𝑠

𝑠 ) ≤ 0

𝐾

𝑘=1

,     ∀ℎ ∈ 𝐻;    ∀𝑗 ∈ {0, 1};    ∀(𝑟, 𝑠)

∈ 𝑃ℎ.                                                                                                                     (6) 

∑ 𝑋ℎ𝑎𝑗𝑘

𝐾

𝑘=1

− ∑ 𝑋ℎ𝑏𝑗𝑘

𝐾

𝑘=1

= 0,         ∀(𝑎, 𝑏) ∈ 𝑍𝑃;     ∀ℎ ∈ 𝐻;     ∀𝑗 ∈ {0, 1}.                      (7) 

𝑋ℎ𝑎𝑗𝑘 + 𝑋ℎ𝑏𝑗𝑘 ≤ 1,     ∀(𝑎, 𝑏) ∈ 𝑍𝑁;     ∀ℎ ∈ 𝐻;     ∀𝑗 ∈ {0, 1};      ∀𝑘 ∈ 𝐾.                  (8) 

The main objective of the model given in Equation (1) is to minimise the number of 

workstations by maximising sum of squares of each workstation’s workload. Constraint 

(2) ensures that all tasks are assigned to a station and each task is assigned only once. 

Constraint (3) represents cycle time constraint that assures each task is executed before 

the cycle time. Constraints (4) and (5) ensure that an operator working at station 𝑘 can 

perform additional task(s) from only one adjacent line; unless station 𝑘 is not utilised on 

left side of the first line or on right side of the last line; i.e. if an operator is located on 

right side of the first line (ℎ = 1, 𝑗 = 1), that operator can perform additional tasks 

from only left side of the second line (ℎ = 2, 𝑗 = 0) as well as his/her main job. That 

operator cannot perform any job from left side of the first line (ℎ = 1, 𝑗 = 0), or right 

side of the second line (ℎ = 2, 𝑗 = 1), as it is not possible a direct communication with 

those tasks assigned to these stations. Please refer to Section 2.2.4 for explanations on 

indicator variables 𝑐 and 𝜇 given in constraint 5. Constraint (6) ensures that the 

precedence relationships are not violated and completion times of tasks are considered 

to avoid interference. Given a task pair (𝑟, 𝑠) ∈ 𝑃ℎ, where 𝑟 is one of the predecessors 

of 𝑠, then 𝑠 can be initialised after 𝑟 is completed. Constraints (7) and (8) demonstrate 
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positive and negative zoning constraints, respectively. As noted above, ZP is the set of 

pairs of tasks that must be assigned to the same workstation, while ZN is the set of pairs 

of tasks that cannot be assigned to the same workstation. 

2.3. Assumptions 

The assumptions considered in the study are as follows: 

 Only one product model is assembled on each line, so total number of lines 

equals to total number of product models.  

 Each product model has its own precedence relationships diagram. 

 The precedence relationships and task times of each product model are known. 

 The operators have no preference about the tasks and workstations. 

 Walking times of the operators are ignored. 

3. Proposed GA based Approach for PTALBP 

GA is an efficient random search algorithm originating from the evolutionary rules of 

the nature population. Its solution approach is motivated by the biological process of 

natural selection and the solution of an optimisation problem is encoded as chromosome 

where the specific parameters of solution (called genes) are located on the chromosome 

(Suresh et al. 1996). Each individual (chromosome) corresponds to a possible solution 

and its survival chance through generations is characterised by its fitness value, which is 

defined in accordance with the objective function. A finite set of individuals constitutes 

population and usually its size remains fixed through generations. The initial population 

is built at random and the population is updated by generating new individuals, which 

replace the old ones, in subsequent iterations. New individuals are created by means of 

genetic operators, crossover and mutation, and the iterations are terminated when the 

stopping criterion is satisfied (Borisovsky et al. 2013). The characteristics of the 

implemented GA approach within the scope of this study are explained below. 
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3.1. General outline 

The outline of the proposed GA based algorithm is exhibited in Figure 3. As can be seen 

from the figure, the algorithm starts by generating an initial population, which consists 

of a predefined number (population size) of chromosomes, and continues with the 

evaluation of created chromosomes. Genetic operators (crossover and mutation) are 

performed and some completely new chromosomes are also generated randomly with 

the probability of 2% to keep diversity and avoid early convergence.  
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Figure 3. Flowchart of the proposed algorithm, adapted from Kucukkoc and Zhang (2013). 
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After the fitness evaluation of new individuals (resulting from genetic operators and 

random generation), insufficient chromosomes in the population are replaced with better 

ones (if any). In the fitness evaluation process, tasks are assigned to the minimum 

numbered workstations as far as possible. This loop continues until the iteration number 

is exceeded. Finally, the chromosome which gives the best fitness value is selected as 

the best solution of the problem. 

3.2. Initial population 

The chromosome is made up of several genes which represent tasks (by the tasks’ index 

numbers) in a sequence. So, each gene of the chromosome is an integer representing a 

task number of a sequence of tasks to be assigned to the stations. Different solutions and 

fitness values are examined by changing the order of the genes on the chromosome. 

Figure 4 represents a sample of task based chromosome which is used in this study. The 

length of the chromosome is characterised by the total number of tasks belong to the 

models. If we assume two product models with 9 tasks and 8 tasks, respectively, gene 

numbers lower than or equal to 9 belong to the Product Model-I (produced on Line-I). 

The remaining tasks (Task-10 – Task-17) belong to the Product Model-II (produced on 

Line-II) in an incremental order, i.e. Task-10 and Task-13 symbolise Task-1 and Task-4 

for Product Model-II. 

 
Figure 4. An example of task based chromosome representation. 

Initial population is generated randomly using a heuristic algorithm, namely Comsoal 

(Arcus 1966), to start the GA. But first of all, tasks are grouped according to the line 

and preferred operation direction data. S1LE, S1RE, S2LE, and S2RE lists (named S 
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lists) are formed to separate tasks according to their input data. For example, S1LE list 

consists of tasks that can be assigned to left side of Line-I. After separating tasks, a 

Comsoal based heuristic procedure generates different chromosomes by selecting tasks 

from these lists until a population is obtained with a predetermined size. This procedure 

is exhibited in Figure 5.  
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Figure 5. Generating initial population for the proposed algorithm, adapted from Kucukkoc and 

Zhang (2013). 

The process flow as to how a chromosome is generated is also depicted in Figure 5; 

where available tasks mean those tasks which (i) satisfy capacity constraints of the 

current station, (ii) have no predecessors or all of their predecessor tasks are already 

completed and (iii) do not violate interference rule. For each side of each line, tasks 

with no predecessor and satisfy capacity constraints are selected randomly from relevant 

list and allocated to the chromosome one by one, then those tasks whose predecessors 
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have been processed and allocated to the chromosome, and so on. 

Allocating tasks to the chromosome continues until all tasks are sequenced on the 

chromosome side by side and line by line. As only the tasks which have no predecessor 

or whose predecessors have been allocated are selected in each loop, infeasible task 

sequences are naturally filtered out during this process to prevent infeasible 

chromosomes (solutions) that violate precedence relationships. At this step, the length 

of each chromosome equals to the total number of tasks on both lines. As can be seen 

from the figure, if workload of the current station is larger than the workload of its 

mated station (𝑠𝑡(𝑘) > 𝑠𝑡(𝑘)), then side is changed and candidate tasks for new side 

are considered. Afterwards, fitness values of the chromosomes are computed 

(decoding). During the task allocation process, if the current side of a line lies between 

two lines and there is no available task to be assigned from the current line but from the 

adjacent line, the multi-line station is utilised so that some tasks can be performed from 

the other line. 

3.3. Decoding and fitness evaluation 

Decoding procedure is processed by assigning tasks to workstations according to 

precedence relationships, unless cycle time is not exceeded. The sequence of tasks on 

the chromosome is considered while allocating tasks to the stations. The initial tasks on 

the chromosome are assigned in the earliest workstations as far as possible. If the next 

task in the sequence does not satisfy the precedence or capacity constraints, a new 

workstation is opened and the task is assigned to this workstation. Fitness value of each 

chromosome is computed when all tasks are assigned. Total number of workstations are 

also recorded for each chromosome in order to compare the obtained results with 

previous tabu search algorithm proposed by Ozcan et al. (2010b).  
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3.4. Selection, crossover and mutation 

Crossover operator takes two parent individuals and produces two offsprings by 

combining and exchanging their elements. Roulette wheel (Baker 1987) is used to select 

parent chromosomes from the population to keep diversity and avoid local minima. 

Two-point crossover operator is applied to recombine the chromosomes. During this 

process, infeasible solutions are not allowed since missing parts of both offsprings are 

built according to precedence relationships. Selected two parents are divided into three 

sections: head, middle and tail. Cutting points, which cut each parent into three parts, 

are determined randomly for each parent pair. By this way, diversity is preserved in the 

population and it is enabled to search the solution space effectively. First offspring 

keeps the head and tail parts of the first parent and the middle part of the first offspring 

is filled by adding missing tasks according to the order in which they are contained in 

the second parent. Similarly, second offspring is formed by head part of the second 

parent, missing tasks according to the order in which they are contained in the first 

parent, and tail part of the second parent (Leu et al. 1994, Akpinar and Bayhan 2011). 

An example of the crossover procedure used in this study is given in Figure 6a. As 

could be seen from the figure, missing tasks of Offspring-1 are 5, 12, 15, 10, 11, 14, 18, 

7, 8, and 6. These tasks appear in the sequence of 6, 5, 10, 15, 12, 11, 14, 8, 7, 18 on 

Parent-2, and constitute the middle part of Offspring-1.  

Mutation is applied to add random changes to an individual and it plays a critical role 

in GA to keep diversity by changing the order of the genes dramatically. Roulette wheel 

selection strategy is applied so that an individual with a high fitness value will have 

more chance to be chosen as a parent than the ones with a lower fitness. To mutate a 

chromosome, two genes are selected randomly and swapped by considering precedence 

relationships among tasks. An example of mutation procedure is presented in Figure 6b. 
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Figure 6. Illustration of (a) crossover and (b) mutation procedures. 

3.5. Forming new generation 

New generation is formed by comparing the fitness values of new individuals, which 

are obtained from crossover – mutation procedures and random generations, with 

existing chromosomes in the population and replacing the worst chromosomes in the 

population with better ones (if any).  

4. Illustrative Example 

To explain the running mechanism of the proposed algorithm and the encoding-

decoding procedures in particular, a numerical example is given in this section. In the 

example, meaning of the genes, decoding procedure of the tasks, and assigning tasks to 

the stations can be investigated visually. 

Two well-known test problems, P9 and P12 (Kim et al. 2000), are taken from the 

literature and given in Figure 7 to be considered as precedence relationships and task 
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processing times of two different product models (Product Model-I and Product Model-

II respectively). Numbers in nodes represent task numbers while arrows between nodes 

symbolise precedence relationships between tasks. To make encoding-decoding 

procedures easier, each task number given in nodes and belonging to Product Model-II 

(P12) is represented by the sum of the total number of tasks belonging to Product 

Model-I (P9) and the original task number. For example, Task-5 of Product Model-II is 

represented as 14 (5+9); and Task-11 is represented as 20 (11+9). So, 𝑛1 + 𝑛2 = 12 +

9 = 21 tasks are subject to balancing. Processing time and preferred operation direction 

of each task, which represents the side where tasks can be assigned, are also given over 

each node (L, R and E denote left, right and either sides, respectively). S lists, which 

represent candidate tasks that can be allocated to the relevant side of each line, can be 

constructed as in Figure 8. 
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Figure 7. Precedence diagrams for the illustrative example: (a) P9, and (b) P12, adapted from 

Kim et al. (2000). 
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Figure 8. S lists are shown on parallel two-sided assembly lines. 
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Task assigning process to the chromosome and workstations can be seen for the first 12 

steps from Figure 9 and Figure 10, respectively. The task allocation process starts from 

the left side of the Line-I. If the cycle time is assumed 6 time-units for both lines, 

available tasks for this particular side are Task-1 and Task-3, because Task-4 – Task-9 

have predecessors which have not been completed yet. Task-3 is selected randomly, and 

allocated to the chromosome (Step 1 in Figure 9) and to the current available station that 

has enough capacity (see Figure 10). Then, the station time of the current workstation is 

increased by the amount of assigned task’s processing time. As the station time of the 

current workstation is larger than the station time of its mated workstation (𝑠𝑡(𝑘) >

𝑠𝑡(𝑘)), the side is changed and available tasks are determined for the new side again. 

One of the available tasks (Task-2) is selected and allocated to the chromosome and to 

the current workstation. In Step 3, Task-6 can be initialised after completion of its 

predecessors, Task-2 and Task-3 (to avoid interference). When both sides of the current 

line are full or there is no enough capacity for assignment, the line is changed and 

available tasks are allocated to the adjacent line concurrently with the chromosome. 

This cycle continues until all tasks are assigned to the chromosome. 

Step No Line-Side Available Tasks Selected Task Chromosome 

1 1-L 1, 3 3 3 

2 1-R 2, 6 2 3, 2 

3 1-L 1, 6 6 3, 2, 6 

4 1-R 5, 9 9 3, 2, 6, 9 

5 1-L 1 1 3, 2, 6, 9, 1  

6 1-R 5 5 3, 2, 6, 9, 1, 5  

7 2-L 10, 12 10 3, 2, 6, 9, 1, 5, 10  

8 2-R 11, 12 11 3, 2, 6, 9, 1, 5, 10, 11  

9 2-L 12, 13, 14 13 3, 2, 6, 9, 1, 5, 10, 11, 13  

10 2-R 12, 14 12 3, 2, 6, 9, 1, 5, 10, 11, 13, 12  

11 2-R 14 14 3, 2, 6, 9, 1, 5, 10, 11, 13, 12, 14 

12 2-L 15 15 3, 2, 6, 9, 1, 5, 10, 11, 13, 12, 14, 15 

Figure 9. Task sequencing process to the chromosome. 
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Figure 10. Task allocation process to the workstations. 

Fitness evaluation of the new individuals obtained from the genetic operators and 

random generations are computed after the chromosome is decoded. To illustrate the 

decoding process, an example of decoded chromosome is demonstrated below. In the 

example, decoding procedure of the tasks and assigning tasks to the workstations can be 

investigated easily. The example chromosome given in Figure 11a can be decoded as in 

Figure 11b under a cycle time constraint of 6 time-units. 

 

Figure 11. (a) A chromosome sample and (b) its decoded line configuration. 

As can be seen in Figure 11b, eight operators are needed to assemble two different 

product models for the given example. On the right side of the Line-II, Task-16 can be 

initialised upon its predecessor task, Task-13, is completed on the left side of the line. 
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5. Computational Study 

The proposed algorithm was coded in Java SE 7u4 environment and run on a 3.1 GHz 

Intel Core i5-2400 CPU 4GB RAM computer to test the performance of the proposed 

algorithm solving the test problems originally combined by Ozcan et al. (2010b). Seven 

original well-known problems from the literature: P9, P12 and P24 from Kim et al. 

(2000); P16, A65 and A205 from Lee et al. (2001); and B148 from Bartholdi (1993) 

(B148 was then modified by Lee et al. (2001)) were derived by Ozcan et al. (2010b) in 

different combinations to test the performance of tabu search algorithm in solving 

parallel two-sided assembly line balancing problems. In order to analyse the efficiency 

of the proposed approach in the current research, these test problems are solved using 

the proposed GA in two stages. In the first stage, the problems are solved using the 

cycle times provided by (Ozcan et al. 2010b) and the obtained results are compared 

with the results of Ozcan et al. (2010b) to have an idea about the overall performance of 

the proposed GA. In the second stage, test problems are solved for binary combinations 

of different cycle time values of Line-I and Line-II. The main objectives are (i) to 

observe the response of the entire system to different levels of the parallel lines’ cycle 

times and (ii) to determine the best cycle time pair which gives the highest line 

efficiency. 

5.1. Stage-1: Comparison with the existing results 

The algorithm is run using the parameters given in Table 2 to solve the test problems 

given in Table 3 and the best solution is taken after three runs for each test problem. As 

could be seen from Table 2, used parameters may differ from one test problem to 

another in order to scan search space more effectively and increase the solution building 

capacity of the algorithm, especially in the large-sized problems, as the search space 
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grows exponentially with the increasing number of tasks. These parameters are chosen 

experimentally for a high quality solution in an acceptable period of time. Table 3 

presents the test problems used by Ozcan et al. (2010b) along with the cycle times 

considered when solving these problems in the first stage of the experimental tests. 

Table 2. Parameters of the proposed GA. 

Test Problem Population size Crossover rate Mutation rate Number of Iterations 

1 - 8 20 0.2 0.10 30 

9 - 12 30 0.3 0.15 40 

13 - 16 40 0.3 0.15 60 

17 - 22 50 0.4 0.20 100 

23 - 28 60 0.4 0.20 150 

29 - 32 80 0.5 0.20 200 

 

Table 3. Data for test problems. 

Problem 

No 

Test problems 

(Line I – Line II) 

Number of tasks 

(Line I – Line II) 

Cycle time 

(Line I – Line II) 

1 P9-P9 9-9 3-3 

2 P9-P9 9-9 4-5 

3 P9-P12 9-12 6-6 

4 P9-P12 9-12 4-7 

5 P12-P12 12-12 5-5 

6 P12-P12 12-12 6-7 

7 P12-P16 12-16 7-16 

8 P12-P16 12-16 8-21 

9 P16-P16 16-16 16-16 

10 P16-P16 16-16 19-21 

11 P16-P24 16-24 19-35 

12 P16-P24 16-24 22-40 

13 P24-P24 24-24 18-18 

14 P24-P24 24-24 20-24 

15 P24-A65 24-65 30-490 

16 P24-A65 24-65 20-544 

17 A65-A65 65-65 381-381 

18 A65-A65 65-65 435-435 

19 A65-A65 65-65 490-544 

20 A65-B148 65-148 381-408 

21 A65-B148 65-148 490-459 

22 A65-B148 65-148 544-510 

23 B148-B148 148-148 408-408 

24 B148-B148 148-148 306-357 

25 B148-B148 148-148 459-510 

26 B148-A205 148-205 306-1888 

27 B148-A205 148-205 510-2832 

28 B148-A205 148-205 255-1510 

29 A205-A205 205-205 1510-1510 

30 A205-A205 205-205 2832-2832 

31 A205-A205 205-205 2077-2266 

32 A205-A205 205-205 2454-2643 
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Table 4. Comparison of the obtained computational results by means of total number of required 

workstations. 

Problem No 

Independent 

Balancing  

(Line 1+Line 2) 

Theoretical Minimum 

Number  

of Stations (LB) 

Balancing Together 

TS (Ozcan et al. 
2010b) 

Proposed GA 

1 6 + 6 12 12 12 

2 5 + 4 8 8 8 

3 3 + 5 7 8 8 

4 5 + 4 8 9 9 

5 6 + 6 10 11 11 

6 5 + 4 8 9 9 

7 4 + 6 9 10 10 

8 4 + 5 8 8 8 

9 6 + 6 11 11 11 

10 5 + 5 9 10 10 

11 5 + 4 9 9 9 

12 4 + 4 8 8 8 

13 8 + 8 16 16 16 

14 8 + 6 13 14 14 

15 5 + 11 16 16 16 

16 8 + 10 17 18 18 

17 15 + 15 27 29 29 

18 13 + 13 24 25 25 

19 11 + 10 20 21 21 

20 15 + 13 26 28 28 

21 11 + 12 22 23 23 

22 10 + 11 20 21 21 

23 13 + 13 26 26 26 

24 18 + 15 32 33 33 

25 12 + 11 22 23 23 

26 18 + 15 30 33 33 

27 11 + 10 19 21 21 

28 21 + 18 36 39 38 

29 18 + 18 31 36 35 
30 10 + 10 17 20 20 

31 14 + 12 22 26 26 

32 12 + 11 19 23 23 

 

Table 4 exhibits the results (number of workstations) obtained using the proposed GA 

for each test problem under designated cycle time constraints. The number of stations 

obtained from the proposed algorithm is compared with the independent line balance of 

the two-sided assembly lines, the theoretical minimum number of stations (LB), and the 

tabu search algorithm proposed by Ozcan et al. (2010b) (which is the only study 

available in the literature and given as TS in Table 4). Obtained results are compared 

with respect to total number of required workstations as this is the only result reported 

http://dx.doi.org/10.1080/09537287.2014.994685


 

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685 

by Ozcan et al. (2010b). 

Theoretical minimum number of workstations are calculated by Ozcan et al. (2010b). 

They modified simple lower bound equation proposed by Hu et al. (2008) for the two-

sided assembly line balancing problems. As the calculation of lower bound does not 

take the precedence constraints (Akpinar and Bayhan 2011) into consideration, real 

value of the lower bound is most likely larger than the computed value, and this 

situation must be taken into account to measure the efficiency of the developed 

approach and comparison with the LB. Since the optimal number of stations cannot be 

less than LB, if the obtained number of stations equals to the LB, then it can be said that 

the obtained result is optimal (Ozcan et al. 2010b). As can be seen from Table 4, the 

proposed GA discovered optimal solutions for 9 of the 32 test problems. Moreover, GA 

produced one less workstation than the tabu search algorithm for the test problems 28 

and 29. Therefore, it could be said that the proposed GA based approach has a 

promising solution capacity for the parallel two-sided assembly line balancing 

problems. 

A Paired Two-Samples t-Test is conducted using Data Analysis tool available in 

Microsoft ExcelTM 2010 to determine whether there is a significant difference between 

independent balancing and together balancing of the lines in terms of the means of 

number of workstations needed. The results presented in Independent Balancing and 

Proposed GA columns in Table 4 are subject to consideration for this statistical test. The 

null and alternative hypotheses are stated at the 𝑎 = 0.05 level (95%) for means of 

workstation numbers obtained when the lines are balanced independently (𝜇𝐼) and when 

the lines are balanced together using GA (𝜇𝑇) as follows: 

𝐻0: There is no significant difference between the means of workstation numbers 

obtained by the solution strategies in favour of the alternative (𝜇𝐼 ≤ 𝜇𝑇). 
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𝐻1: Balancing lines together using the proposed GA approach significantly 

reduces the number of workstations needed (𝜇𝐼 > 𝜇𝑇). 

As seen from the hypotheses, the test is designed as one-tailed. The summary of the test 

results given in Table 5 (see Test-1 column) indicates that there is significant difference 

in the means of workstation numbers when the lines are balanced independently (𝜇𝐼 =

19.06, 𝑉𝑎𝑟𝐼 = 83.42) and when the lines are balanced together using the proposed GA 

based approach (𝜇𝑇 = 18.81, 𝑉𝑎𝑟𝑇 = 82.29); 𝑡(31) = 3.2146, 𝑝 = 0.0015. Thus, the 

null hypothesis is rejected with very strong evidence. These results suggest that 

balancing lines together allowing multi-line stations helps reduce total number of 

required workstations significantly.  

Table 5. Results of the Paired Two-Samples t-Test for means of workstation numbers. 

Paired Two-Samples t-Test 

Test-1  Test-2 

Independent 
Balancing 

Together 
Balancing 

 (GA) 

 
Together 
Balancing 

(TS) 

Together 
Balancing 

(GA) 
Mean (𝜇) 19.06 18.81  18.88 18.81 
Variance (𝑉𝑎𝑟) 83.42 82.29  84.63 82.29 
Observations 32 32  32 32 
Pearson Correlation 0.998 

 
 0.999  

Hypothesised Mean Difference 0 
 

 0  
Degrees of Freedom 31 

 
 31  

𝒕 Stat 3.2146   1.4376  
𝒑(𝑻 ≤ 𝒕) one-tail 0.0015   0.0803  
𝒕 Critical one-tail 1.6955   1.6955  
𝑝(𝑇 ≤ 𝑡) two-tail 0.0030   0.1606  
𝑡 Critical two-tail 2.0395   2.0395  

 

Using the results proposed in the relevant columns of Table 4, another Paired Two-

Samples t-Test is performed to determine whether there is a significant difference 

between the means of workstation numbers found by TS (Ozcan et al.) and proposed 

GA. The null and alternative hypotheses stated at the 𝑎 = 0.05 level (95%) for means 

of workstation numbers obtained using TS (𝜇𝑇𝑆) and GA (𝜇𝐺𝐴) are as follows: 

𝐻0: There is no significant difference between the means of workstation numbers 

obtained by the solution strategies in favour of the alternative (𝜇𝑇𝑆 ≤ 𝜇𝐺𝐴). 
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𝐻1: GA algorithm finds better solutions than TS when balancing parallel two-

sided assembly lines (𝜇𝑇𝑆 > 𝜇𝐺𝐴). 

Based on the summary of the test results presented in Table 5 (see Test-2 column), there 

is no strong evidence to reject the null hypothesis at 𝑎 = 0.05. Therefore, it is not 

possible to argue that GA (𝜇𝐺𝐴 = 18.81, 𝑉𝑎𝑟𝐺𝐴 = 82.29) performs significantly better 

than TS (𝜇𝐺𝐴 = 18.88, 𝑉𝑎𝑟𝐺𝐴 = 84.63) at this confidence level; 𝑡(31) = 1.4376, 𝑝 =

0.08. However, it could be argued that GA finds significantly better solutions than TS if 

the test was performed at 𝑎 = 0.1, and it can be clearly seen from Table 4 that GA finds 

quite promising results. 

5.2. Stage-2: Solutions for various cycle time situations 

Now, we can proceed to the second stage of the computational tests assuming that the 

performance of the proposed GA based algorithm is sufficient enough. In this stage, the 

test problems given above are solved using the proposed GA (with the same GA 

parameters used in the previous subsection) by considering different cycle times for the 

lines. Four levels are determined for cycle time of each line in each test problem and the 

problems are solved under the constraints of these cycle time combinations. Considered 

cycle times for Line-I and Line-II, calculated common cycle time (𝐶), and obtained 

number of stations (𝐾) are given in Table 6 for different test cases. The LE column 

reports the computed system efficiency based on the obtained number of workstations. 

This value is obtained via dividing total needed time to perform all tasks on the lines by 

the total available time of the utilised system (see Equation 9, the definitions of the used 

symbols have already been given in Section 2.2).  

𝐿𝐸 =
∑

𝐶
𝐶ℎ

∑ 𝑡ℎ𝑖
𝑛ℎ
𝑖=1

𝐻
ℎ=1

𝐾 × 𝐶
 .                                                    (9) 
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Table 6. Computational results for different cycle time levels of the lines. 

P9-P9 
                

T. Task Times 
 

Cycle Time of Line-II 

P9 P9 
 

4 
 

5 
 

6 
 

7 

17 17 
 

C K LE 
 

C K LE 
 

C K LE 
 

C K LE 

C
y

cl
e 

T
im

e 
 

o
f 

L
in

e-
I 3 

 
12 11 0.90 

 
15 10 0.91 

 
6 9 0.94 

 
21 9 0.90 

4 
 

4 9 0.94 
 

20 9 0.85 
 

12 8 0.89 
 

28 8 0.83 

5 
 

20 8 0.96 
 

5 8 0.85 
 

30 7 0.89 
 

35 7 0.83 

6 
 

12 8 0.89 
 

30 7 0.89 
 

6 6 0.94 
 

42 6 0.88 

                  P9-P12 
                

T. Task Times 
 

Cycle Time of Line-II 

P9 P12 
 

6 
 

8 
 

10 
 

12 

17 25 
 

C K LE 
 

C K LE 
 

C K LE 
 

C K LE 

C
y

cl
e 

T
im

e 
 

o
f 

L
in

e-
I 4 

 
12 10 0.84 

 
8 8 0.92 

 
20 8 0.84 

 
12 7 0.90 

6 
 

6 8 0.88 
 

24 7 0.85 
 

30 6 0.89 
 

12 6 0.82 

8 
 

24 8 0.79 
 

8 6 0.88 
 

40 6 0.77 
 

24 6 0.70 

10 
 

30 7 0.84 
 

40 6 0.80 
 

10 5 0.84 
 

60 5 0.76 

                  P12-P12 
                

T. Task Times 
 

Cycle Time of Line-II 

P12 P12 
 

6 
 

8 
 

10 
 

12 

25 25 
 

C K LE 
 

C K LE 
 

C K LE 
 

C K LE 

C
y

cl
e 

T
im

e 
 

o
f 

L
in

e-
I 5 

 
30 11 0.83 

 
40 10 0.81 

 
10 9 0.83 

 
60 8 0.89 

7 
 

42 9 0.86 
 

56 8 0.84 
 

70 7 0.87 
 

84 7 0.81 

9 
 

18 8 0.87 
 

72 7 0.84 
 

90 7 0.75 
 

36 6 0.81 

11 
 

66 8 0.80 
 

88 7 0.77 
 

110 6 0.80 
 

132 6 0.73 

                  P12-P16 
                

T. Task Times 
 

Cycle Time of Line-II 

P12 P16 
 

16 
 

18 
 

20 
 

22 

25 82 
 

C K LE 
 

C K LE 
 

C K LE 
 

C K LE 

C
y

cl
e 

T
im

e 
 

o
f 

L
in

e-
I 8 

 
16 10 0.83 

 
72 9 0.85 

 
40 9 0.80 

 
88 8 0.86 

10 
 

80 9 0.85 
 

90 9 0.78 
 

20 8 0.83 
 

110 7 0.89 

12 
 

48 9 0.80 
 

36 8 0.83 
 

60 8 0.77 
 

132 7 0.83 

14 
 

112 8 0.86 
 

126 8 0.79 
 

140 8 0.74 
 

154 6 0.92 

                  P16-P16 
                

T. Task Times 
 

Cycle Time of Line-II 

P16 P16 
 

17 
 

19 
 

21 
 

23 

82 82 
 

C K LE 
 

C K LE 
 

C K LE 
 

C K LE 

C
y

cl
e 

T
im

e 
 

o
f 

L
in

e-
I 14 

 
238 13 0.82 

 
266 13 0.78 

 
42 13 0.75 

 
322 12 0.79 

16 
 

272 12 0.83 
 

304 12 0.79 
 

336 12 0.75 
 

368 10 0.87 

18 
 

306 12 0.78 
 

342 12 0.74 
 

126 11 0.77 
 

414 11 0.74 

20 
 

340 11 0.81 
 

380 11 0.77 
 

420 11 0.73 
 

460 10 0.77 

                  
P16-P24 

                
T. Task Times 

 
Cycle Time of Line-II 

P16 P24 
 

25 
 

27 
 

29 
 

31 

82 140 
 

C K LE 
 

C K LE 
 

C K LE 
 

C K LE 

C
y

cl
e 

T
im

e 
 

o
f 

L
in

e-
I 20 
 

100 11 0.88 
 

540 11 0.84 
 

580 11 0.81 
 

620 11 0.78 

22 
 

550 11 0.85 
 

594 10 0.89 
 

638 10 0.86 
 

682 10 0.82 

24 
 

600 10 0.90 
 

216 10 0.86 
 

696 10 0.82 
 

744 10 0.79 

26 
 

650 10 0.88 
 

702 10 0.83 
 

754 10 0.80 
 

806 10 0.77 
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Table 6 (continued). 

P24-P24 
                

T. Task Times 
 

Cycle Time of Line-II 

P24 P24 
 

19 
 

21 
 

23 
 

25 

140 140 
 

C K LE 
 

C K LE 
 

C K LE 
 

C K LE 

C
y

c
le

 T
im

e 
 

o
f 

L
in

e-
I 18 

 
342 17 0.89 

 
126 16 0.90 

 
414 15 0.92 

 
450 15 0.89 

20 
 

380 16 0.90 
 

420 16 0.85 
 

460 15 0.87 
 

100 15 0.84 

22 
 

418 15 0.92 
 

462 15 0.87 
 

506 15 0.83 
 

550 14 0.85 

24 
 

456 15 0.88 
 

168 14 0.89 
 

552 14 0.85 
 

600 13 0.88 

                  A65-A65 
                

T. Task Times 
 

Cycle Time of Line-II 

A65 A65 
 

385 
 

425 
 

465 
 

505 

5099 5099 
 

C K LE 
 

C K LE 
 

C K LE 
 

C K LE 

C
y

cl
e 

T
im

e 
 

o
f 

L
in

e-
I 360 

 
27720 32 0.86 

 
30600 31 0.84 

 
11160 29 0.87 

 
36360 28 0.87 

390 
 

30030 30 0.88 
 

33150 28 0.90 
 

12090 28 0.86 
 

39390 27 0.86 

420 
 

4620 29 0.88 
 

35700 28 0.86 
 

13020 27 0.86 
 

42420 26 0.86 

450 
 

34650 29 0.85 
 

7650 26 0.90 
 

13950 26 0.86 
 

45450 25 0.86 

                  A65-B148 
                

T. Task Times 
 

Cycle Time of Line-II 

A65 B148 
 

375 
 

400 
 

425 
 

450 

5099 5024 
 

C K LE 
 

C K LE 
 

C K LE 
 

C K LE 

C
y

cl
e 

T
im

e 
 

o
f 

L
in

e-
I 360 

 
9000 32 0.86 

 
3600 31 0.86 

 
30600 30 0.87 

 
1800 30 0.84 

380 
 

28500 32 0.84 
 

7600 30 0.87 
 

32300 29 0.87 
 

17100 29 0.85 

400 
 

6000 31 0.84 
 

400 30 0.84 
 

6800 29 0.85 
 

3600 28 0.85 

420 
 

10500 30 0.85 
 

8400 29 0.85 
 

35700 28 0.86 
 

6300 28 0.83 

                  B148-B148 
                

T. Task Times 
 

Cycle Time of Line-II 

B148 B148 
 

300 
 

350 
 

400 
 

450 

5024 5024 
 

C K LE 
 

C K LE 
 

C K LE 
 

C K LE 

C
y

cl
e 

T
im

e 
 

o
f 

L
in

e-
I 325 

 
3900 38 0.85 

 
4550 34 0.88 

 
5200 33 0.85 

 
5850 32 0.83 

375 
 

1500 34 0.89 
 

5250 32 0.87 
 

6000 30 0.87 
 

2250 30 0.82 

425 
 

5100 34 0.84 
 

5950 31 0.84 
 

6800 29 0.84 
 

7650 28 0.82 

475 
 

5700 33 0.83 
 

6650 29 0.86 
 

7600 28 0.83 
 

8550 26 0.84 

                 A205-A205                 

T. Task Times 
 

Cycle Time of Line-II 

A205 A205 
 

1550  1850  2150  2450 

23345 23345 
 

C K LE 
 

C K LE 
 

C K LE 
 

C K LE 

C
y

cl
e 

T
im

e 
 

o
f 

L
in

e-
I 1475 

 
91450 40 0.77   109150 36 0.79   126850 34 0.78   144550 34 0.75 

1850 
 

57350 36 0.77   1850 32 0.79   79550 32 0.73   90650 30 0.74 

2225 
 

137950 34 0.75   164650 31 0.75   191350 28 0.76   218050 27 0.74 

2600 
 

80600 32 0.75   96200 29 0.74   111800 27 0.73   127400 25 0.74 

 ‘T.Task Times’ column gives the sum of all task times for the relevant problem. 

 

Line efficiency is a well-known term which is commonly used as a measure of the 

obtained solution’s quality regardless of the tackled line configuration and problem 

type. Therefore, the proximity of a line system’s efficiency to ‘1’ could be considered as 

an indicator whether this system is well balanced or not. If the efficiency equals to ‘1’, 
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this means that there is no idle time on the line. However, this is hardly possible in such 

systems due to unsmooth task times and cycle time differences between the lines. 

Although the optimality of the solutions cannot be guaranteed, our findings indicate 

that near-optimal solutions can be obtained very quickly for even large-sized instances. 

As could be seen from the obtained results, different solutions are obtained with 

different line efficiency values corresponding to the binary combinations of the cycle 

time levels of the parallel lines for the same test problem. The proposed algorithm finds 

high quality solutions over 85% efficiency for the entire test problems studied, except 

the case A205-A205. The best obtained efficiency result (96%) belongs to the problem 

P9-P9 and is obtained with the cycle time combination of 5 and 4 for Line-I and Line-II, 

respectively. The next best result, 92%, is obtained for the problems P9-P12, P12-P16, 

and P24-P24. As a result of the NP-Hard characteristic of the studied problem, it is 

reasonable that the efficiency value obtained for the largest problem (79% for A205-

A205) is lower than those for the small-sized ones as expected. However, even this 

result could be quite reasonable for real world scenarios. 

Obtained efficiency values across two dimensions (the cycle time of Line-I and the 

cycle time of Line-II) are also plotted as a surface graph and are depicted in the 

Appendices. Thus, readers can see the best provided cycle time combination, which 

gives the highest efficiency, for each case easily. Also, managers can pick up the 

number of workstation – cycle time combination that fits their organisations and model 

demands from the provided results. 

6. Conclusions 

The simple assembly line balancing problem is an NP-hard class of combinatorial 

problem, as shown by Wee and Magazine (1982). Since the PTALBP is a much more 

complex version of the simple assembly line balancing problem, it is also NP-Hard. The 
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solution space grows exponentially as the number of tasks increases, which means that 

obtaining an optimal solution when the problem size increases is very difficult (Kalayci 

and Gupta 2014). It is the major reason why a considerable amount of researches in the 

literature strives to develop heuristics and meta-heuristics instead of exact methods to 

solve the assembly line balancing problems.  

We developed the first mathematical model for a recently introduced production 

planning problem, parallel two-sided assembly line balancing problem, and proposed 

an alternative possible approach for the solution of the problem. Since the problem is 

very complex and the size of the problems that can be solved in an acceptable amount 

of time is drastically limited, we applied GA to the PTALBP, which is the first GA 

based approach to solve such a problem, and have obtained very encouraging results. To 

assess the performance of the algorithm, a set of test problems, previously combined 

and solved by Ozcan et al. (2010b), are solved and obtained results are compared with 

Ozcan et al. (2010b). Although the complexity of the problem is higher than other 

configurations of assembly lines (i.e. one-sided straight assembly lines), computational 

results demonstrate that the performance of the proposed algorithm is sufficient. 

Moreover, the effect of different cycle time situations on the efficiency of the overall 

line system is also studied for a parallel line system for the first time in the literature. 

For this aim, parallel lines are balanced for different combinations of their different 

cycle time levels and the efficiency of the entire line system is reported along with the 

total number of required stations for each case. Obtained line efficiencies are plotted as 

surface charts across cycle times of the parallel lines to make analyses easier. Thus, line 

managers can easily pick up the number of workstations - cycle time pair that suits their 

company best. 
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This study makes it clear that more research is needed to fill in the gap in the 

literature on minimising cycle time of the parallel two-sided lines as well as total 

number of required workstations. Hybrid meta-heuristics and/or hyper-heuristics might 

also be proposed to increase the solution capacity of the algorithm; or exact solution 

procedures may be developed to solve the PTALBP, even not the large-sized instances. 

In addition, workload smoothness between workstations and lines may be of interest for 

future studies with some more realistic conditions of real applications (i.e. zoning 

constraints, task synchronisation constraints, positional constraints, etc.). 
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Appendices 

A.1. Surface charts of the line efficiency values across the cycle times of Line-I and 

Line-II for the test problems. 
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