
Production Planning & Control

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

ACCEPTED MANUSCRIPT

This is an Accepted Manuscript of an article published by

Taylor & Francis Group in Production Planning & Control

on 27/04/2015, available online at:

http://dx.doi.org/10.1080/09537287.2014.994685

A mathematical model and genetic algorithm-based approach for

parallel two-sided assembly line balancing problem

Ibrahim Kucukkoc ab
 and David Z. Zhang a

a College of Engineering, Mathematics and Physical Sciences, University of Exeter, Streatham

Campus, North Park Road, EX4 4QF Exeter, England, UK

b Faculty of Engineering and Architecture, Department of Industrial Engineering, Balikesir

University, Cagis Campus, 10145 Balikesir, Turkey

Email: I.Kucukkoc@exeter.ac.uk, ikucukkoc@balikesir.edu.tr, Tel: +441392723613

Email: D.Z.Zhang@exeter.ac.uk, Tel: +441392723641

Abstract: Assembly lines are usually constructed as the last stage of the entire production system

and efficiency of an assembly line is one of the most important factors which affect the performance

of a complex production system. The main purpose of this paper is to mathematically formulate and

to provide an insight for modelling the parallel two-sided assembly line balancing problem, where

two or more two-sided assembly lines are constructed in parallel to each other. We also propose a

new genetic algorithm (GA)-based approach in alternatively to the existing only solution approach in

the literature, which is a tabu search algorithm. To the best of our knowledge, this is the first formal

presentation of the problem as well as the proposed algorithm is the first attempt to solve the

problem with a GA-based approach in the literature. The proposed approach is illustrated with an

example to explain the procedures of the algorithm. Test problems are solved and promising results

are obtained. Statistical tests are designed to analyse the advantage of line parallelisation in two-

sided assembly lines through obtained test results. The response of the overall system to the changes

in the cycle times of the parallel lines is also analysed through test problems for the first time in the

literature.

Keywords: parallel two-sided assembly lines; assembly line balancing; production planning; genetic

algorithm; meta-heuristics; artificial intelligence

Corresponding author: Ibrahim Kucukkoc

http://dx.doi.org/10.1080/09537287.2014.994685
http://dx.doi.org/10.1080/09537287.2014.994685
mailto:I.Kucukkoc@exeter.ac.uk
mailto:ikucukkoc@balikesir.edu.tr
mailto:D.Z.Zhang@exeter.ac.uk

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

A Mathematical Model and Genetic Algorithm based Approach

for Parallel Two-Sided Assembly Line Balancing Problem

Assembly lines are usually constructed as the last stage of the entire production

system and efficiency of an assembly line is one of the most important factors

which affect the performance of a complex production system. The main purpose

of this paper is to mathematically formulate and to provide an insight for

modelling the parallel two-sided assembly line balancing problem, where two or

more two-sided assembly lines are constructed in parallel to each other. We also

propose a new genetic algorithm based approach in alternatively to the existing

only solution approach in the literature, which is a tabu search algorithm. To the

best of our knowledge, this is the first formal presentation of the problem as well

as the proposed algorithm is the first attempt to solve the problem with a genetic

algorithm based approach in the literature. The proposed approach is illustrated

with an example to explain the procedures of the algorithm. Test problems are

solved and promising results are obtained. Statistical tests are designed to analyse

the advantage of line parallelisation in two-sided assembly lines through obtained

test results. The response of the overall system to the changes in the cycle times

of the parallel lines is also analysed through test problems for the first time in the

literature.

Keywords: parallel two-sided assembly lines; assembly line balancing;

production planning; genetic algorithm; meta-heuristics; artificial intelligence.

1. Introduction

Assembly lines have been utilised successfully to produce large-volume high-quality

standardised homogeneous products, and have been of interest for both academia and

industry for decades. An assembly line is a sequential organisation of workstations (or

operators) linked by a conveyor belt or material handling system on which semi-

finished products are moved from one workstation to another (Ozdemir and Ayag

2011). Parts are added on the moving semi-finished products in sequence until the final

assembly is produced. A group of tasks is performed in each workstation by considering

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

capacity of the workstation and precedence relationships among tasks, where

precedence relationships are usually caused by the technological requirements or

organisational structures (Tonelli et al. 2013). Sum of processing times of all tasks

assigned to a workstation constitutes its workload time and workload time of a

workstation cannot exceed the designated cycle time. Assembly line balancing problem

is to determine which task will be accomplished in which workstation by assigning

tasks to an ordered sequence of workstations considering aforementioned constraints

(i.e. capacity constraints, assignment constraints, precedence relationships constraints,

etc.). Tasks cannot be split into two or more pieces and each task must be assigned to

exactly one workstation (Kucukkoc et al. 2013).

In accordance with the utilisation of operation sides, assembly lines can be classified

as one-sided assembly lines and two-sided assembly lines. Tasks are performed on both

left and right sides of the line in a two-sided assembly line system while only left or

right side of the line is used in a one-sided assembly line system. Two-sided assembly

lines are usually utilised to produce high-volume large-sized products, such as trucks

and buses (Kucukkoc and Zhang 2014b). Some heuristic approaches were proposed by

Lee et al. (2001), Hu et al. (2008), Ozcan and Toklu (2010) and Yegul et al. (2010); and

some exact solution approaches were developed by Wu et al. (2008) and Hu et al.

(2010) since the two-sided assembly line balancing problem was first introduced by

Bartholdi (1993). Meta-heuristics have also been presented by Baykasoglu and Dereli

(2008), Simaria and Vilarinho (2009), Ozcan and Toklu (2009), Ozbakir and Tapkan

(2010), Ozcan (2010), Ozbakir and Tapkan (2011), Chutima and Chimklai (2012), and

Khorasanian et al. (2013). Among these meta-heuristics, studies by Kim et al. (2000),

Kim et al. (2009), Taha et al. (2011), Rabbani et al. (2012) and Purnomo et al. (2013)

employed Genetic Algorithm (GA) based approaches to balance two-sided lines. As can

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

be comprehended from these studies, there exist numerous successfully implemented

GA based approaches in the literature for two-sided assembly line balancing problems.

There is another type of line configuration called parallel assembly line system,

where two or more lines are located in parallel to each other to maximise the use of

shared recourses and tools. The idea of balancing more than one assembly line with a

common set of resources was first introduced by Gökçen et al. (2006). Gökçen et al.

(2006) proposed new procedures and a mathematical model on the single model

assembly line balancing problem with parallel lines. Few researchers followed Gökçen

et al. (2006) and a novel ant colony optimisation based algorithm was proposed by

Baykasoglu et al. (2009) for the Parallel Assembly Line Balancing Problem (PALBP).

Cercioglu et al. (2009) proposed a simulated annealing approach to solve PALBP and

compared results obtained from the algorithm with the results of existing heuristic

algorithm proposed by Gökçen et al. (2006). The first multi-objective tabu search

algorithm is presented for PALBP by Ozcan et al. (2009) and its performance was

tested on a set of well-known problems in the literature. Another mathematical model of

the PALBP was developed by Scholl and Boysen (2009) along with an exact solution

procedure. Kara et al. (2010) suggested a fuzzy goal programming model that can be

used for balancing parallel assembly lines. Ozcan et al. (2010a) addressed parallel

mixed-model assembly line balancing and sequencing problem with a simulated

annealing approach to maximise the line efficiency by ensuring smooth workload

distribution among workstations. Ozbakir et al. (2011) developed a multiple-colony ant

algorithm for balancing bi-objective parallel assembly lines while Kucukkoc and Zhang

(2014a, 2014b) considered the model sequencing problem as well as the line balancing

problem on mixed-model parallel two-sided assembly lines and proposed agent based

ant colony optimisation solution approaches. Please refer to Lusa (2008) and Zhang and

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

Kucukkoc (2013) for a detailed survey on multiple and parallel assembly line balancing

problems.

The combination of above mentioned configurations, namely parallel two-sided

assembly lines, are also frequently constructed in industry in production of large-sized

items. Although vast numbers of researches have been carried out on traditional

configurations of assembly lines in the literature, there is only one research concerning

Parallel Two-Sided Assembly Line Balancing Problem (PTALBP). The concept of

parallel two-sided assembly lines was first described by Ozcan et al. (2010b). Ozcan et

al. (2010b) introduced and defined the PTALBP and proposed a tabu search algorithm

to solve the combined well-known test problems in the literature. Obtained results were

compared with theoretical minimum number of workstations to show the performance

of the proposed algorithm. The research also demonstrated that parallelisation of two-

sided lines helps lower total number of workstations, but no statistical technique was

used for this aim.

GAs as well as other evolutionary approaches have been applied to line balancing

problems earlier with success. There is continuing work in applying GA for various

types of line balancing problems, i.e. Leu et al. (1994), Rubinovitz (1995), Kim et al.

(2000), Rekiek et al. (2001), Goncalves (2002), Simaria and Vilarinho (2004), Zhang et

al. (2005), Haq et al. (2006), Levitin et al. (2006), Suwannarongsri et al. (2007), Zhang

et al. (2008), Hwang and Katayama (2009), Yu and Yin (2010), Chica et al. (2011),

Akpinar and Bayhan (2011), and Kucukkoc et al. (2013). In particular, Kim et al.

(2000), Kim et al. (2009), Taha et al. (2011), Rabbani et al. (2012), and Purnomo et al.

(2013) have solved two-sided assembly line balancing problems with different GA

based approaches but none of them have considered line parallelisation as an additional

specification. On the contrary of its successful implementations on various line systems,

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

PTALBP has not been addressed using any GA based technique. Therefore, there is

neither GA based nor evolutionary approach published concerning parallel two-sided

assembly lines. This is the main motivation of why a GA based approach is proposed in

solving the addressed problem in this research.

Evidence of the need for this research is showed by the lack of literature on

developing the mathematical model of the PTALBP and presenting the positive effect

of line parallelisation on two-sided lines, statistically. The need for this research is also

guided by the gap in the literature on balancing more than one two-sided assembly line

with a common set of resources using an evolutionary based approach, such as GA.

Moreover, the response of the whole line system against the changes in the cycle times

of the parallel lines is demonstrated for the first time in the literature. From the

managerial point of view, among the available solutions, line managers can easily pick

up a solution for a specific combination of cycle times of the parallel lines. This helps

them make decision especially when there is change in model demands.

The rest of the paper is organised as follows. Section 2 presents the main

characteristics of the problem along with the mathematical model and assumptions

considered. The proposed approach is described in Section 3 and illustrated with an

example in Section 4. Section 5 reports and statistically analyses the results of the

computational study. Section 6 concludes with the findings of the research and the

future research directions. Some graphs related to the computational study are also

depicted in the Appendices.

2. Problem Statement

2.1. Main characteristics

To maximise the use of shared tools and minimise idle times of the entire production

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

system, two or more two-sided lines – on which two or more similar product models

that have similar production processes are produced – are located in parallel to each

other. Such a configuration is called parallel two-sided assembly line system and can be

typically illustrated as in Figure 1. The parallel two-sided assembly line balancing

problem is balancing two or more two-sided assembly lines, which are constructed in

parallel to each other. A common set of resources is shared among the lines and the

main objective is allocating tasks to the workstations to optimise a performance

measure (i.e. number of workstations, line efficiency, etc.) by considering technological

priorities, capacity constraints and some other possible constraints caused by

organisational structures or technological requirements. Different product models are

produced on each of the two-sided assembly lines, represented by ℎ (where ℎ =

1, … , 𝐻); and each product model has its own set of tasks (𝑖 = 1, … , 𝑛ℎ). These tasks

are performed according to the known precedence relationships among tasks. 𝑃ℎ

represents set of precedence relationships on line ℎ, where (𝑟, 𝑠) ∈ 𝑃ℎ represents that

Task-𝑟 must be completed to be able to assign Task-𝑠. Each task, which is performed on

line ℎ, needs a certain amount of processing time symbolised with 𝑡ℎ𝑖; and each line

consists of a series of workstations (𝑘 = 1, … , 𝐾) (Ozcan et al. 2010b).

Figure 1. Typical illustration of parallel two-sided assembly lines, adapted from (Ozcan et al.

2010b).

The main advantage of parallel two-sided assembly lines is the flexibility of utilising

 b

a . .

.

 d

 . .

.
c

e . .

.

 f

 . .

.

. .

.

. .

.

. .

.

. .

.

L

R

L

R

Line-II

Line-I

Operator 1

Operator 2

Operator 3

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

multi-line stations between two adjacent lines. Operators located in stations between

two adjacent lines can perform tasks from both lines. By this way, idle times are

reduced and system utilisation is increased. As can be seen in Figure 1, three operators

are needed to perform Tasks-a – Task-f, and Operator-2 first completes Task-e at the

left side station of Line-II, and then Task-c and Task-d at the right side station of Line-I.

Please note that the shades in the figure symbolise idle times (Ozcan et al. 2010b).

It should be noted that more attention is needed when balancing two-sided assembly

lines because tasks, which have precedence relationships with each other and are

performed on different sides of the lines, must be assigned considering finishing time of

previously assigned tasks. Let 𝑃1 denotes the set of precedence relationships of Line-I.

If (𝑎, 𝑏) ∈ 𝑃1 and (𝑎, 𝑐) ∈ 𝑃1, then Task-𝑏 and Task-𝑐 can be initialised after

completion of Task-𝑎, which may be performed at the other side of the line. This

phenomenon is called interference in the literature and the violation of this rule yields

infeasible balancing solutions.

Another significant advantage of this line system is that each line may have a

different cycle time (𝐶ℎ), which means that each line may have a different throughput

rate contributing to the flexibility. When two lines which have different cycle times are

subject to balancing, a common cycle time should be used to assign tasks in each cycle.

Gökçen et al. (2006) used least common multiple (𝐿𝐶𝑀) based approach for different

cycle time situation of two parallel lines (Ozcan et al. 2010b). In this approach (Gökçen

et al. 2006):

 Least common multiple of the cycle times is found.

 Line divisors (𝑙𝑑1 and 𝑙𝑑2) are calculated through dividing the 𝐿𝐶𝑀 value by the

cycle times of Line-I and Line-II (𝐶1 and 𝐶2), respectively.

 Task times of the product models produced on the Line-I and Line-II are

multiplied by 𝑙𝑑1 and 𝑙𝑑2, separately.

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

 𝐿𝐶𝑀 is determined as the common cycle time (𝐶) of the lines and the lines are

balanced together.

To characterise the PTALBP more clearly and provide an insight for modelling of

PTALBP and utilisation of multi-line stations, a numerical example is given below.

Data given in Table 1 is used as input for the example problem and a possible balancing

solution for the considered problem is exhibited in Figure 2 under 12 time-units cycle

time constraint for both of the lines.

Table 1. Data for numerical example.

Task

No

Line-I Line-II

Side
Processing

Time

Immediate

Predecessors
 Side

Processing

Time

Immediate

Predecessors

1 Left 2 - Left 2 -

2 Either 4 1 Right 2 -

3 Right 3 - Left 4 -

4 Either 3 2 Either 1 2

5 Left 6 1 Right 3 2

6 Either 4 5 Either 3 1

7 Left 5 4,6 Left 5 3,4,6

8 Either 1 4 Either 4 5

9 Either 3 8 Left 4 7

10 Right 2 3 Either 3 7,8

11 Either 2 10 Either 3 -

12 Left 4 11 Left 2 9

13 Either 3 7 Right 5 10

14 Left 4 13 Either 3 11

15 Either 2 12 Left 6 12

16 Either 3 14,15 Either 3 13,15

17 Left 2 16 Either 6 14

18 - - - Left 2 16

Total Time 53 61

Figure 2. A possible balancing solution using multi-line stations.

1 5 6

2

1

4 3

3 6 7

2 4 5 8

Line-I

Line-II

7 13 14

8 11 10 9

9 12 15

10 13 14

12 15 16 17

17 16 18

Workstation-1 Workstation-5 Workstation-9

Workstation-2 Workstation-6

Workstation-3 Workstation-7 Workstation-10

Workstation-4 Workstation-8

11

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

Figure 2 shows the utilisation of multi-line stations between the adjacent two-sided lines

located in parallel to each other. Numbers inside bars denote task numbers while lengths

of the bars correspond to processing times of tasks. Dashed areas represent unavoidable

idle times caused by capacity and precedence relationships constraints. As it could be

seen from the figure, a total of 10 workstations are needed to perform a total of 35 tasks

on both of the lines. With the construction of multi-line stations, operator located in

workstation-2 on Line-I performs Task-1 from Line-II first, followed by Task-2, Task-

4, and Task-3 belonging to Line-I. Similarly, Task-11 from Line-II is completed by

workstation-6 located on Line-I. Thus, operators located in workstation-2 and

workstation-6 on Line-I contribute to performing tasks on Line-II as well as their main

job on Line-I. It should be noted here that Task-14 on Line-II cannot be initialised

unless its predecessor task (Task-11) is completed by workstation-6 on the other side of

the line. This is one of the most challenging issues in solving PTALBPs and that is why

unavoidable idle time occurs before Task-14 on Line-II.

If the lines were balanced individually (without multi-line stations), theoretical

minimum number of workstations for Line-I and Line-II could be calculated as

𝑚𝑖𝑛𝐾1 = [53/12]+ = 5 and 𝑚𝑖𝑛𝐾2 = [61/12]+ = 6, respectively; simply using the

well-known formula 𝑚𝑖𝑛𝐾ℎ = [𝑇𝑜𝑡𝑎𝑙 𝑇𝑎𝑠𝑘 𝑇𝑖𝑚𝑒/𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒]+, where [𝑋]+ denotes

the smallest integer greater than or equals to 𝑋. Whereas theoretical minimum number

of workstations (𝑚𝑖𝑛𝐾) decreases to 10 (𝑚𝑖𝑛𝐾 = [114/12]+), one lower than the sum

of independent balancing solutions (5 + 6 = 11), with the opportunity of assigning

tasks into a more diversified positions thanks to multi-line stations when the lines are

balanced together.

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

2.2. Mathematical model

The notation used in the study can be summarised as below to describe the problem:

2.2.1. Indices:

ℎ: line index (ℎ = 1, … , 𝐻), where 𝐻 represents total number of lines,

𝑖: task index (𝑖 = 1, … , 𝑛ℎ), where 𝑛ℎ represents total number of tasks on line ℎ,

𝑗: side of the line, 𝑗 = {
0 indicates left side

1 indicates right side
 ,

𝑘: station index (𝑘 = 1, … , 𝐾), where 𝐾 represents total number of utilised

workstations.

2.2.2. Decision Variables:

𝑋ℎ𝑖𝑗𝑘 = {
1 if task 𝑖 is assigned to workstation 𝑘, on side 𝑗 of line ℎ
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.

2.2.3. Parameters:

𝑡ℎ𝑖 : Processing time of task 𝑖 on line ℎ,

𝑃ℎ : Set of precedence relationships in precedence diagram of line ℎ,

𝐶 : Common cycle time of the lines,

𝑍𝑃 : Set of pairs of tasks that must be assigned to the same workstation, positive

zoning,

𝑁𝑃 : Set of pairs of tasks that cannot be assigned to the same workstation, negative

zoning.

2.2.4. Indicator Variables:

𝑡ℎ𝑖
𝑠 : Starting time of task 𝑖 on line ℎ,

𝑞𝑘 : Queue number that station 𝑘 is utilised on,

𝑆𝑘 = {
0 if station 𝑘 is utilised on left side of the first line
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,

𝑧𝑘 = {
1 if station 𝑘 is utilised
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

𝑈ℎ𝑗𝑘 = {
1 if station 𝑘 is utilised on side 𝑗 of line ℎ
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,

𝜎 : Variable, (𝜎 = ℎ + 1, … , 𝐻),

𝛽 : Variable, (𝛽 ∈ {0, 1}),

𝑐 = {
1 if 𝑗 = 1 and 𝛽 = 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,

𝜇 = {
1 if (𝜎 − ℎ) = 1 𝑎𝑛𝑑 𝛽 = 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,

𝑅ℎ𝑟𝑠 = {
1 if tasks 𝑟 and 𝑠 are assigned to the same workstation on line ℎ
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.

2.2.5. Objective Function:

The objective function used in this study is obtained from the modification of objective

functions used in the previous studies (see Chiang (1998) and Ozcan et al. (2010b)) and

is presented in Equation (1). This nonlinear objective function represents sum of squares

of each workstation’s workload. So, maximising this objective function helps to reduce

the number of stations.

𝑀𝑎𝑥 𝑍 = ∑ ∑ ∑ (∑ 𝑡ℎ𝑖𝑋ℎ𝑖𝑗𝑘

𝑛ℎ

𝑖=1

)

2
𝐾

𝑘=1𝑗∈{0,1}

𝐻

ℎ=1

 (1)

2.2.6. Constraints:

∑ 𝑋ℎ𝑖𝑗𝑘 = 1

𝐾

𝑘=1

, ∀𝑖 ∈ 𝑛ℎ; ∀ℎ ∈ 𝐻; ∀𝑗 ∈ {0, 1}. (2)

∑(𝑡ℎ𝑖 + 𝑡ℎ𝑖
𝑠)𝑋ℎ𝑖𝑗𝑘 + 𝑆𝑘 (∑(𝑡(ℎ+1)𝑖 + 𝑡(ℎ+1)𝑖

𝑠)𝑋(ℎ+1)𝑖(𝑗−1)𝑘

𝑛ℎ

𝑖=1

)

𝑛ℎ

𝑖=1

≤ 𝐶𝑧𝑘, ∀𝑘 ∈ 𝐾; ∀ℎ

= 1, … , 𝐻 − 1; ∀𝑗 ∈ {0, 1}. (3)

∑ 𝑋ℎ𝑖𝑗𝑘 − 𝑛ℎ𝑈ℎ𝑗𝑘 ≤ 0

𝑛ℎ

𝑖=1

, ∀𝑘 ∈ 𝐾; ∀ℎ ∈ 𝐻; ∀𝑗 ∈ {0, 1}. (4)

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

|𝑗 − 1|(𝑈ℎ𝛽𝑘 + 𝑈(𝜎−𝜇)𝑗𝑘) + 𝑗(𝑈ℎ(𝑗−1+𝑐)𝑘 + 𝑈𝜎𝑗𝑘) = 1, ∀𝑘 ∈ 𝐾; ∀ℎ ∈ 𝐻; ∀𝑗

∈ {0, 1}; ∀𝜎 = ℎ + 1, … , 𝐻; ∀𝛽 ∈ {0, 1}. (5)

∑ 𝑞𝑘(𝑋ℎ𝑟𝑗𝑘 − 𝑋ℎ𝑠𝑗𝑘) + 𝑅ℎ𝑟𝑠(𝑡ℎ𝑟
𝑠 + 𝑡ℎ𝑟 − 𝑡ℎ𝑠

𝑠) ≤ 0

𝐾

𝑘=1

, ∀ℎ ∈ 𝐻; ∀𝑗 ∈ {0, 1}; ∀(𝑟, 𝑠)

∈ 𝑃ℎ. (6)

∑ 𝑋ℎ𝑎𝑗𝑘

𝐾

𝑘=1

− ∑ 𝑋ℎ𝑏𝑗𝑘

𝐾

𝑘=1

= 0, ∀(𝑎, 𝑏) ∈ 𝑍𝑃; ∀ℎ ∈ 𝐻; ∀𝑗 ∈ {0, 1}. (7)

𝑋ℎ𝑎𝑗𝑘 + 𝑋ℎ𝑏𝑗𝑘 ≤ 1, ∀(𝑎, 𝑏) ∈ 𝑍𝑁; ∀ℎ ∈ 𝐻; ∀𝑗 ∈ {0, 1}; ∀𝑘 ∈ 𝐾. (8)

The main objective of the model given in Equation (1) is to minimise the number of

workstations by maximising sum of squares of each workstation’s workload. Constraint

(2) ensures that all tasks are assigned to a station and each task is assigned only once.

Constraint (3) represents cycle time constraint that assures each task is executed before

the cycle time. Constraints (4) and (5) ensure that an operator working at station 𝑘 can

perform additional task(s) from only one adjacent line; unless station 𝑘 is not utilised on

left side of the first line or on right side of the last line; i.e. if an operator is located on

right side of the first line (ℎ = 1, 𝑗 = 1), that operator can perform additional tasks

from only left side of the second line (ℎ = 2, 𝑗 = 0) as well as his/her main job. That

operator cannot perform any job from left side of the first line (ℎ = 1, 𝑗 = 0), or right

side of the second line (ℎ = 2, 𝑗 = 1), as it is not possible a direct communication with

those tasks assigned to these stations. Please refer to Section 2.2.4 for explanations on

indicator variables 𝑐 and 𝜇 given in constraint 5. Constraint (6) ensures that the

precedence relationships are not violated and completion times of tasks are considered

to avoid interference. Given a task pair (𝑟, 𝑠) ∈ 𝑃ℎ, where 𝑟 is one of the predecessors

of 𝑠, then 𝑠 can be initialised after 𝑟 is completed. Constraints (7) and (8) demonstrate

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

positive and negative zoning constraints, respectively. As noted above, ZP is the set of

pairs of tasks that must be assigned to the same workstation, while ZN is the set of pairs

of tasks that cannot be assigned to the same workstation.

2.3. Assumptions

The assumptions considered in the study are as follows:

 Only one product model is assembled on each line, so total number of lines

equals to total number of product models.

 Each product model has its own precedence relationships diagram.

 The precedence relationships and task times of each product model are known.

 The operators have no preference about the tasks and workstations.

 Walking times of the operators are ignored.

3. Proposed GA based Approach for PTALBP

GA is an efficient random search algorithm originating from the evolutionary rules of

the nature population. Its solution approach is motivated by the biological process of

natural selection and the solution of an optimisation problem is encoded as chromosome

where the specific parameters of solution (called genes) are located on the chromosome

(Suresh et al. 1996). Each individual (chromosome) corresponds to a possible solution

and its survival chance through generations is characterised by its fitness value, which is

defined in accordance with the objective function. A finite set of individuals constitutes

population and usually its size remains fixed through generations. The initial population

is built at random and the population is updated by generating new individuals, which

replace the old ones, in subsequent iterations. New individuals are created by means of

genetic operators, crossover and mutation, and the iterations are terminated when the

stopping criterion is satisfied (Borisovsky et al. 2013). The characteristics of the

implemented GA approach within the scope of this study are explained below.

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

3.1. General outline

The outline of the proposed GA based algorithm is exhibited in Figure 3. As can be seen

from the figure, the algorithm starts by generating an initial population, which consists

of a predefined number (population size) of chromosomes, and continues with the

evaluation of created chromosomes. Genetic operators (crossover and mutation) are

performed and some completely new chromosomes are also generated randomly with

the probability of 2% to keep diversity and avoid early convergence.

Is the task

assignable?

Utilising

multi-line

stations?

Both sides

full?

All tasks

assigned?

Yes

No

No

Yes

Yes

No

Yes

No

Start from the first line

Select left side

Select next task

Due to

interference

Due to

capacity

Merge

stations

Change side

𝑠𝑡 𝑘 = 𝑠𝑡 𝑘 + 𝑡ℎ𝑖

Assign task i to the

current available station
and chromosome

Change side

𝑠𝑡 𝑘 > 𝑠𝑡(𝑘)

𝑠𝑡 𝑘 ≤ 𝑠𝑡(𝑘)

Change side

Compute and return the

fitness value

Select

other line

Increase station
number

Start

Stop

Generate initial

population Fitness evaluation

Select chromosomes

randomly and perform

crossover

Select chromosomes

randomly and

perform mutation

Compute fitness

values of offsprings

Compute fitness

values of mutants

Generate new

individuals

randomly (2%)

Compute fitness

values of new

individuals

Replace

parents

Take the best
solution

Yes

No

Maximum

iteration

exceeded?

Figure 3. Flowchart of the proposed algorithm, adapted from Kucukkoc and Zhang (2013).

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

After the fitness evaluation of new individuals (resulting from genetic operators and

random generation), insufficient chromosomes in the population are replaced with better

ones (if any). In the fitness evaluation process, tasks are assigned to the minimum

numbered workstations as far as possible. This loop continues until the iteration number

is exceeded. Finally, the chromosome which gives the best fitness value is selected as

the best solution of the problem.

3.2. Initial population

The chromosome is made up of several genes which represent tasks (by the tasks’ index

numbers) in a sequence. So, each gene of the chromosome is an integer representing a

task number of a sequence of tasks to be assigned to the stations. Different solutions and

fitness values are examined by changing the order of the genes on the chromosome.

Figure 4 represents a sample of task based chromosome which is used in this study. The

length of the chromosome is characterised by the total number of tasks belong to the

models. If we assume two product models with 9 tasks and 8 tasks, respectively, gene

numbers lower than or equal to 9 belong to the Product Model-I (produced on Line-I).

The remaining tasks (Task-10 – Task-17) belong to the Product Model-II (produced on

Line-II) in an incremental order, i.e. Task-10 and Task-13 symbolise Task-1 and Task-4

for Product Model-II.

Figure 4. An example of task based chromosome representation.

Initial population is generated randomly using a heuristic algorithm, namely Comsoal

(Arcus 1966), to start the GA. But first of all, tasks are grouped according to the line

and preferred operation direction data. S1LE, S1RE, S2LE, and S2RE lists (named S

2 7 6 4 3 5 1 12 13 8 17 10 9 16 15 14 11

Tasks

Task number

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

lists) are formed to separate tasks according to their input data. For example, S1LE list

consists of tasks that can be assigned to left side of Line-I. After separating tasks, a

Comsoal based heuristic procedure generates different chromosomes by selecting tasks

from these lists until a population is obtained with a predetermined size. This procedure

is exhibited in Figure 5.

Start a new

chromosome

Are there

available tasks?

Utilising

multi-line

station?

Both sides

full?

All tasks

assigned?

Stop

Yes

No

No

Yes

Yes

No

Yes

No

Select first line

Select left side

Determine available

tasks

Select

other line

Due to

interference

Due to capacity

Merge

stations

Change side

Select task i randomly

for assignment

𝑠𝑡 𝑘 = 𝑠𝑡 𝑘 + 𝑡ℎ𝑖

Assign task i to the current

available station and

chromosome

Change side

𝑠𝑡 𝑘 > 𝑠𝑡(𝑘)

𝑠𝑡 𝑘 ≤ 𝑠𝑡(𝑘)

Change side

Population

completed?

No Yes

Increase station

number

Figure 5. Generating initial population for the proposed algorithm, adapted from Kucukkoc and

Zhang (2013).

The process flow as to how a chromosome is generated is also depicted in Figure 5;

where available tasks mean those tasks which (i) satisfy capacity constraints of the

current station, (ii) have no predecessors or all of their predecessor tasks are already

completed and (iii) do not violate interference rule. For each side of each line, tasks

with no predecessor and satisfy capacity constraints are selected randomly from relevant

list and allocated to the chromosome one by one, then those tasks whose predecessors

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

have been processed and allocated to the chromosome, and so on.

Allocating tasks to the chromosome continues until all tasks are sequenced on the

chromosome side by side and line by line. As only the tasks which have no predecessor

or whose predecessors have been allocated are selected in each loop, infeasible task

sequences are naturally filtered out during this process to prevent infeasible

chromosomes (solutions) that violate precedence relationships. At this step, the length

of each chromosome equals to the total number of tasks on both lines. As can be seen

from the figure, if workload of the current station is larger than the workload of its

mated station (𝑠𝑡(𝑘) > 𝑠𝑡(𝑘)), then side is changed and candidate tasks for new side

are considered. Afterwards, fitness values of the chromosomes are computed

(decoding). During the task allocation process, if the current side of a line lies between

two lines and there is no available task to be assigned from the current line but from the

adjacent line, the multi-line station is utilised so that some tasks can be performed from

the other line.

3.3. Decoding and fitness evaluation

Decoding procedure is processed by assigning tasks to workstations according to

precedence relationships, unless cycle time is not exceeded. The sequence of tasks on

the chromosome is considered while allocating tasks to the stations. The initial tasks on

the chromosome are assigned in the earliest workstations as far as possible. If the next

task in the sequence does not satisfy the precedence or capacity constraints, a new

workstation is opened and the task is assigned to this workstation. Fitness value of each

chromosome is computed when all tasks are assigned. Total number of workstations are

also recorded for each chromosome in order to compare the obtained results with

previous tabu search algorithm proposed by Ozcan et al. (2010b).

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

3.4. Selection, crossover and mutation

Crossover operator takes two parent individuals and produces two offsprings by

combining and exchanging their elements. Roulette wheel (Baker 1987) is used to select

parent chromosomes from the population to keep diversity and avoid local minima.

Two-point crossover operator is applied to recombine the chromosomes. During this

process, infeasible solutions are not allowed since missing parts of both offsprings are

built according to precedence relationships. Selected two parents are divided into three

sections: head, middle and tail. Cutting points, which cut each parent into three parts,

are determined randomly for each parent pair. By this way, diversity is preserved in the

population and it is enabled to search the solution space effectively. First offspring

keeps the head and tail parts of the first parent and the middle part of the first offspring

is filled by adding missing tasks according to the order in which they are contained in

the second parent. Similarly, second offspring is formed by head part of the second

parent, missing tasks according to the order in which they are contained in the first

parent, and tail part of the second parent (Leu et al. 1994, Akpinar and Bayhan 2011).

An example of the crossover procedure used in this study is given in Figure 6a. As

could be seen from the figure, missing tasks of Offspring-1 are 5, 12, 15, 10, 11, 14, 18,

7, 8, and 6. These tasks appear in the sequence of 6, 5, 10, 15, 12, 11, 14, 8, 7, 18 on

Parent-2, and constitute the middle part of Offspring-1.

Mutation is applied to add random changes to an individual and it plays a critical role

in GA to keep diversity by changing the order of the genes dramatically. Roulette wheel

selection strategy is applied so that an individual with a high fitness value will have

more chance to be chosen as a parent than the ones with a lower fitness. To mutate a

chromosome, two genes are selected randomly and swapped by considering precedence

relationships among tasks. An example of mutation procedure is presented in Figure 6b.

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

1 4 2 3 5 12 15 10 11 14 18 7 8 6 9 13 20 16 17 19 21

1 4 6 3 2 5 10 13 15 12 11 14 8 7 9 18 16 17 20 21 19

Parent-1

Parent-2

1 4 2 3 6 5 10 15 12 11 14 8 7 18 9 13 20 16 17 19 21

1 4 6 3 2 5 12 15 10 11 14 7 8 13 9 18 16 17 20 21 19

Offspring-1

Crossover

Offspring-2

1 3 2 5 6 10 13 11 12 14 4 8 9 7 15 16 18 17 19 20 21

1 3 2 5 6 10 4 11 12 14 13 8 9 7 15 16 18 17 19 20 21

 Mutation

Selected

gene

Selected

gene

(a)

(b)

Randomly Determined

Cutting Points

Figure 6. Illustration of (a) crossover and (b) mutation procedures.

3.5. Forming new generation

New generation is formed by comparing the fitness values of new individuals, which

are obtained from crossover – mutation procedures and random generations, with

existing chromosomes in the population and replacing the worst chromosomes in the

population with better ones (if any).

4. Illustrative Example

To explain the running mechanism of the proposed algorithm and the encoding-

decoding procedures in particular, a numerical example is given in this section. In the

example, meaning of the genes, decoding procedure of the tasks, and assigning tasks to

the stations can be investigated visually.

Two well-known test problems, P9 and P12 (Kim et al. 2000), are taken from the

literature and given in Figure 7 to be considered as precedence relationships and task

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

processing times of two different product models (Product Model-I and Product Model-

II respectively). Numbers in nodes represent task numbers while arrows between nodes

symbolise precedence relationships between tasks. To make encoding-decoding

procedures easier, each task number given in nodes and belonging to Product Model-II

(P12) is represented by the sum of the total number of tasks belonging to Product

Model-I (P9) and the original task number. For example, Task-5 of Product Model-II is

represented as 14 (5+9); and Task-11 is represented as 20 (11+9). So, 𝑛1 + 𝑛2 = 12 +

9 = 21 tasks are subject to balancing. Processing time and preferred operation direction

of each task, which represents the side where tasks can be assigned, are also given over

each node (L, R and E denote left, right and either sides, respectively). S lists, which

represent candidate tasks that can be allocated to the relevant side of each line, can be

constructed as in Figure 8.

(2, L) (3, L) (2, E)

(3, R) (1, R) (2, L)

(2, E) (1, E) (1, E)

1 4 7

3 6 9

2 5 8

(a)

(2, L) (3, L) (3, E)

(3, R) (1, E) (3, R)

(2, E) (1, L)

10 13 16

12 15

11 14

(2, E)

19

17

(1, R)

(2, E)

18

21

(2, E)

20

(b)

Figure 7. Precedence diagrams for the illustrative example: (a) P9, and (b) P12, adapted from

Kim et al. (2000).

. .

.

Line II

𝑆1𝐿𝐸 = 1, 3, 4, 6, 7, 8, 9

𝑆1𝑅𝐸 = 2, 3, 5, 6, 7, 9

. .

.
𝑆2𝐿𝐸 = 10, 12, 13, 14, 15, 16, 18, 19, 20

𝑆2𝑅𝐸 = 11, 12, 14, 16, 17, 18, 19, 20, 21

Left Side

Right Side

Left Side

Right Side

Line I

Figure 8. S lists are shown on parallel two-sided assembly lines.

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

Task assigning process to the chromosome and workstations can be seen for the first 12

steps from Figure 9 and Figure 10, respectively. The task allocation process starts from

the left side of the Line-I. If the cycle time is assumed 6 time-units for both lines,

available tasks for this particular side are Task-1 and Task-3, because Task-4 – Task-9

have predecessors which have not been completed yet. Task-3 is selected randomly, and

allocated to the chromosome (Step 1 in Figure 9) and to the current available station that

has enough capacity (see Figure 10). Then, the station time of the current workstation is

increased by the amount of assigned task’s processing time. As the station time of the

current workstation is larger than the station time of its mated workstation (𝑠𝑡(𝑘) >

𝑠𝑡(𝑘)), the side is changed and available tasks are determined for the new side again.

One of the available tasks (Task-2) is selected and allocated to the chromosome and to

the current workstation. In Step 3, Task-6 can be initialised after completion of its

predecessors, Task-2 and Task-3 (to avoid interference). When both sides of the current

line are full or there is no enough capacity for assignment, the line is changed and

available tasks are allocated to the adjacent line concurrently with the chromosome.

This cycle continues until all tasks are assigned to the chromosome.

Step No Line-Side Available Tasks Selected Task Chromosome

1 1-L 1, 3 3 3

2 1-R 2, 6 2 3, 2

3 1-L 1, 6 6 3, 2, 6

4 1-R 5, 9 9 3, 2, 6, 9

5 1-L 1 1 3, 2, 6, 9, 1

6 1-R 5 5 3, 2, 6, 9, 1, 5

7 2-L 10, 12 10 3, 2, 6, 9, 1, 5, 10

8 2-R 11, 12 11 3, 2, 6, 9, 1, 5, 10, 11

9 2-L 12, 13, 14 13 3, 2, 6, 9, 1, 5, 10, 11, 13

10 2-R 12, 14 12 3, 2, 6, 9, 1, 5, 10, 11, 13, 12

11 2-R 14 14 3, 2, 6, 9, 1, 5, 10, 11, 13, 12, 14

12 2-L 15 15 3, 2, 6, 9, 1, 5, 10, 11, 13, 12, 14, 15

Figure 9. Task sequencing process to the chromosome.

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

Figure 10. Task allocation process to the workstations.

Fitness evaluation of the new individuals obtained from the genetic operators and

random generations are computed after the chromosome is decoded. To illustrate the

decoding process, an example of decoded chromosome is demonstrated below. In the

example, decoding procedure of the tasks and assigning tasks to the workstations can be

investigated easily. The example chromosome given in Figure 11a can be decoded as in

Figure 11b under a cycle time constraint of 6 time-units.

Figure 11. (a) A chromosome sample and (b) its decoded line configuration.

As can be seen in Figure 11b, eight operators are needed to assemble two different

product models for the given example. On the right side of the Line-II, Task-16 can be

initialised upon its predecessor task, Task-13, is completed on the left side of the line.

6

3

2

10

L

R

L

R

Line II

Line I

9

13

11 12 14

Queue 1

1

5

15

 4

1

2 3

12

L

R

L

R

Line II

Line I

Operator 1

Operator 4

5

15 10

11 14 18

7

13

Operator 5

Operator 7

20

16

8 6 9

Operator 6

17 19

Operator 8

21

Operator 3

Operator 2

1 2 4 3 5 12 11 15 10 14 18 7 8 6 9 13 20 16 17 19 21 (a)

(b)

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

5. Computational Study

The proposed algorithm was coded in Java SE 7u4 environment and run on a 3.1 GHz

Intel Core i5-2400 CPU 4GB RAM computer to test the performance of the proposed

algorithm solving the test problems originally combined by Ozcan et al. (2010b). Seven

original well-known problems from the literature: P9, P12 and P24 from Kim et al.

(2000); P16, A65 and A205 from Lee et al. (2001); and B148 from Bartholdi (1993)

(B148 was then modified by Lee et al. (2001)) were derived by Ozcan et al. (2010b) in

different combinations to test the performance of tabu search algorithm in solving

parallel two-sided assembly line balancing problems. In order to analyse the efficiency

of the proposed approach in the current research, these test problems are solved using

the proposed GA in two stages. In the first stage, the problems are solved using the

cycle times provided by (Ozcan et al. 2010b) and the obtained results are compared

with the results of Ozcan et al. (2010b) to have an idea about the overall performance of

the proposed GA. In the second stage, test problems are solved for binary combinations

of different cycle time values of Line-I and Line-II. The main objectives are (i) to

observe the response of the entire system to different levels of the parallel lines’ cycle

times and (ii) to determine the best cycle time pair which gives the highest line

efficiency.

5.1. Stage-1: Comparison with the existing results

The algorithm is run using the parameters given in Table 2 to solve the test problems

given in Table 3 and the best solution is taken after three runs for each test problem. As

could be seen from Table 2, used parameters may differ from one test problem to

another in order to scan search space more effectively and increase the solution building

capacity of the algorithm, especially in the large-sized problems, as the search space

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

grows exponentially with the increasing number of tasks. These parameters are chosen

experimentally for a high quality solution in an acceptable period of time. Table 3

presents the test problems used by Ozcan et al. (2010b) along with the cycle times

considered when solving these problems in the first stage of the experimental tests.

Table 2. Parameters of the proposed GA.

Test Problem Population size Crossover rate Mutation rate Number of Iterations

1 - 8 20 0.2 0.10 30

9 - 12 30 0.3 0.15 40

13 - 16 40 0.3 0.15 60

17 - 22 50 0.4 0.20 100

23 - 28 60 0.4 0.20 150

29 - 32 80 0.5 0.20 200

Table 3. Data for test problems.

Problem

No

Test problems

(Line I – Line II)

Number of tasks

(Line I – Line II)

Cycle time

(Line I – Line II)

1 P9-P9 9-9 3-3

2 P9-P9 9-9 4-5

3 P9-P12 9-12 6-6

4 P9-P12 9-12 4-7

5 P12-P12 12-12 5-5

6 P12-P12 12-12 6-7

7 P12-P16 12-16 7-16

8 P12-P16 12-16 8-21

9 P16-P16 16-16 16-16

10 P16-P16 16-16 19-21

11 P16-P24 16-24 19-35

12 P16-P24 16-24 22-40

13 P24-P24 24-24 18-18

14 P24-P24 24-24 20-24

15 P24-A65 24-65 30-490

16 P24-A65 24-65 20-544

17 A65-A65 65-65 381-381

18 A65-A65 65-65 435-435

19 A65-A65 65-65 490-544

20 A65-B148 65-148 381-408

21 A65-B148 65-148 490-459

22 A65-B148 65-148 544-510

23 B148-B148 148-148 408-408

24 B148-B148 148-148 306-357

25 B148-B148 148-148 459-510

26 B148-A205 148-205 306-1888

27 B148-A205 148-205 510-2832

28 B148-A205 148-205 255-1510

29 A205-A205 205-205 1510-1510

30 A205-A205 205-205 2832-2832

31 A205-A205 205-205 2077-2266

32 A205-A205 205-205 2454-2643

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

Table 4. Comparison of the obtained computational results by means of total number of required

workstations.

Problem No

Independent

Balancing

(Line 1+Line 2)

Theoretical Minimum

Number

of Stations (LB)

Balancing Together

TS (Ozcan et al.
2010b)

Proposed GA

1 6 + 6 12 12 12

2 5 + 4 8 8 8

3 3 + 5 7 8 8

4 5 + 4 8 9 9

5 6 + 6 10 11 11

6 5 + 4 8 9 9

7 4 + 6 9 10 10

8 4 + 5 8 8 8

9 6 + 6 11 11 11

10 5 + 5 9 10 10

11 5 + 4 9 9 9

12 4 + 4 8 8 8

13 8 + 8 16 16 16

14 8 + 6 13 14 14

15 5 + 11 16 16 16

16 8 + 10 17 18 18

17 15 + 15 27 29 29

18 13 + 13 24 25 25

19 11 + 10 20 21 21

20 15 + 13 26 28 28

21 11 + 12 22 23 23

22 10 + 11 20 21 21

23 13 + 13 26 26 26

24 18 + 15 32 33 33

25 12 + 11 22 23 23

26 18 + 15 30 33 33

27 11 + 10 19 21 21

28 21 + 18 36 39 38

29 18 + 18 31 36 35
30 10 + 10 17 20 20

31 14 + 12 22 26 26

32 12 + 11 19 23 23

Table 4 exhibits the results (number of workstations) obtained using the proposed GA

for each test problem under designated cycle time constraints. The number of stations

obtained from the proposed algorithm is compared with the independent line balance of

the two-sided assembly lines, the theoretical minimum number of stations (LB), and the

tabu search algorithm proposed by Ozcan et al. (2010b) (which is the only study

available in the literature and given as TS in Table 4). Obtained results are compared

with respect to total number of required workstations as this is the only result reported

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

by Ozcan et al. (2010b).

Theoretical minimum number of workstations are calculated by Ozcan et al. (2010b).

They modified simple lower bound equation proposed by Hu et al. (2008) for the two-

sided assembly line balancing problems. As the calculation of lower bound does not

take the precedence constraints (Akpinar and Bayhan 2011) into consideration, real

value of the lower bound is most likely larger than the computed value, and this

situation must be taken into account to measure the efficiency of the developed

approach and comparison with the LB. Since the optimal number of stations cannot be

less than LB, if the obtained number of stations equals to the LB, then it can be said that

the obtained result is optimal (Ozcan et al. 2010b). As can be seen from Table 4, the

proposed GA discovered optimal solutions for 9 of the 32 test problems. Moreover, GA

produced one less workstation than the tabu search algorithm for the test problems 28

and 29. Therefore, it could be said that the proposed GA based approach has a

promising solution capacity for the parallel two-sided assembly line balancing

problems.

A Paired Two-Samples t-Test is conducted using Data Analysis tool available in

Microsoft ExcelTM 2010 to determine whether there is a significant difference between

independent balancing and together balancing of the lines in terms of the means of

number of workstations needed. The results presented in Independent Balancing and

Proposed GA columns in Table 4 are subject to consideration for this statistical test. The

null and alternative hypotheses are stated at the 𝑎 = 0.05 level (95%) for means of

workstation numbers obtained when the lines are balanced independently (𝜇𝐼) and when

the lines are balanced together using GA (𝜇𝑇) as follows:

𝐻0: There is no significant difference between the means of workstation numbers

obtained by the solution strategies in favour of the alternative (𝜇𝐼 ≤ 𝜇𝑇).

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

𝐻1: Balancing lines together using the proposed GA approach significantly

reduces the number of workstations needed (𝜇𝐼 > 𝜇𝑇).

As seen from the hypotheses, the test is designed as one-tailed. The summary of the test

results given in Table 5 (see Test-1 column) indicates that there is significant difference

in the means of workstation numbers when the lines are balanced independently (𝜇𝐼 =

19.06, 𝑉𝑎𝑟𝐼 = 83.42) and when the lines are balanced together using the proposed GA

based approach (𝜇𝑇 = 18.81, 𝑉𝑎𝑟𝑇 = 82.29); 𝑡(31) = 3.2146, 𝑝 = 0.0015. Thus, the

null hypothesis is rejected with very strong evidence. These results suggest that

balancing lines together allowing multi-line stations helps reduce total number of

required workstations significantly.

Table 5. Results of the Paired Two-Samples t-Test for means of workstation numbers.

Paired Two-Samples t-Test

Test-1 Test-2

Independent
Balancing

Together
Balancing

 (GA)

Together
Balancing

(TS)

Together
Balancing

(GA)
Mean (𝜇) 19.06 18.81 18.88 18.81
Variance (𝑉𝑎𝑟) 83.42 82.29 84.63 82.29
Observations 32 32 32 32
Pearson Correlation 0.998

 0.999

Hypothesised Mean Difference 0

 0
Degrees of Freedom 31

 31

𝒕 Stat 3.2146 1.4376
𝒑(𝑻 ≤ 𝒕) one-tail 0.0015 0.0803
𝒕 Critical one-tail 1.6955 1.6955
𝑝(𝑇 ≤ 𝑡) two-tail 0.0030 0.1606
𝑡 Critical two-tail 2.0395 2.0395

Using the results proposed in the relevant columns of Table 4, another Paired Two-

Samples t-Test is performed to determine whether there is a significant difference

between the means of workstation numbers found by TS (Ozcan et al.) and proposed

GA. The null and alternative hypotheses stated at the 𝑎 = 0.05 level (95%) for means

of workstation numbers obtained using TS (𝜇𝑇𝑆) and GA (𝜇𝐺𝐴) are as follows:

𝐻0: There is no significant difference between the means of workstation numbers

obtained by the solution strategies in favour of the alternative (𝜇𝑇𝑆 ≤ 𝜇𝐺𝐴).

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

𝐻1: GA algorithm finds better solutions than TS when balancing parallel two-

sided assembly lines (𝜇𝑇𝑆 > 𝜇𝐺𝐴).

Based on the summary of the test results presented in Table 5 (see Test-2 column), there

is no strong evidence to reject the null hypothesis at 𝑎 = 0.05. Therefore, it is not

possible to argue that GA (𝜇𝐺𝐴 = 18.81, 𝑉𝑎𝑟𝐺𝐴 = 82.29) performs significantly better

than TS (𝜇𝐺𝐴 = 18.88, 𝑉𝑎𝑟𝐺𝐴 = 84.63) at this confidence level; 𝑡(31) = 1.4376, 𝑝 =

0.08. However, it could be argued that GA finds significantly better solutions than TS if

the test was performed at 𝑎 = 0.1, and it can be clearly seen from Table 4 that GA finds

quite promising results.

5.2. Stage-2: Solutions for various cycle time situations

Now, we can proceed to the second stage of the computational tests assuming that the

performance of the proposed GA based algorithm is sufficient enough. In this stage, the

test problems given above are solved using the proposed GA (with the same GA

parameters used in the previous subsection) by considering different cycle times for the

lines. Four levels are determined for cycle time of each line in each test problem and the

problems are solved under the constraints of these cycle time combinations. Considered

cycle times for Line-I and Line-II, calculated common cycle time (𝐶), and obtained

number of stations (𝐾) are given in Table 6 for different test cases. The LE column

reports the computed system efficiency based on the obtained number of workstations.

This value is obtained via dividing total needed time to perform all tasks on the lines by

the total available time of the utilised system (see Equation 9, the definitions of the used

symbols have already been given in Section 2.2).

𝐿𝐸 =
∑

𝐶
𝐶ℎ

∑ 𝑡ℎ𝑖
𝑛ℎ
𝑖=1

𝐻
ℎ=1

𝐾 × 𝐶
 . (9)

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

Table 6. Computational results for different cycle time levels of the lines.

P9-P9

T. Task Times

Cycle Time of Line-II

P9 P9

4

5

6

7

17 17

C K LE

C K LE

C K LE

C K LE

C
y

cl
e

T
im

e

o
f

L
in

e-
I 3

12 11 0.90

15 10 0.91

6 9 0.94

21 9 0.90

4

4 9 0.94

20 9 0.85

12 8 0.89

28 8 0.83

5

20 8 0.96

5 8 0.85

30 7 0.89

35 7 0.83

6

12 8 0.89

30 7 0.89

6 6 0.94

42 6 0.88

 P9-P12

T. Task Times

Cycle Time of Line-II

P9 P12

6

8

10

12

17 25

C K LE

C K LE

C K LE

C K LE

C
y

cl
e

T
im

e

o
f

L
in

e-
I 4

12 10 0.84

8 8 0.92

20 8 0.84

12 7 0.90

6

6 8 0.88

24 7 0.85

30 6 0.89

12 6 0.82

8

24 8 0.79

8 6 0.88

40 6 0.77

24 6 0.70

10

30 7 0.84

40 6 0.80

10 5 0.84

60 5 0.76

 P12-P12

T. Task Times

Cycle Time of Line-II

P12 P12

6

8

10

12

25 25

C K LE

C K LE

C K LE

C K LE

C
y

cl
e

T
im

e

o
f

L
in

e-
I 5

30 11 0.83

40 10 0.81

10 9 0.83

60 8 0.89

7

42 9 0.86

56 8 0.84

70 7 0.87

84 7 0.81

9

18 8 0.87

72 7 0.84

90 7 0.75

36 6 0.81

11

66 8 0.80

88 7 0.77

110 6 0.80

132 6 0.73

 P12-P16

T. Task Times

Cycle Time of Line-II

P12 P16

16

18

20

22

25 82

C K LE

C K LE

C K LE

C K LE

C
y

cl
e

T
im

e

o
f

L
in

e-
I 8

16 10 0.83

72 9 0.85

40 9 0.80

88 8 0.86

10

80 9 0.85

90 9 0.78

20 8 0.83

110 7 0.89

12

48 9 0.80

36 8 0.83

60 8 0.77

132 7 0.83

14

112 8 0.86

126 8 0.79

140 8 0.74

154 6 0.92

 P16-P16

T. Task Times

Cycle Time of Line-II

P16 P16

17

19

21

23

82 82

C K LE

C K LE

C K LE

C K LE

C
y

cl
e

T
im

e

o
f

L
in

e-
I 14

238 13 0.82

266 13 0.78

42 13 0.75

322 12 0.79

16

272 12 0.83

304 12 0.79

336 12 0.75

368 10 0.87

18

306 12 0.78

342 12 0.74

126 11 0.77

414 11 0.74

20

340 11 0.81

380 11 0.77

420 11 0.73

460 10 0.77

P16-P24

T. Task Times

Cycle Time of Line-II

P16 P24

25

27

29

31

82 140

C K LE

C K LE

C K LE

C K LE

C
y

cl
e

T
im

e

o
f

L
in

e-
I 20

100 11 0.88

540 11 0.84

580 11 0.81

620 11 0.78

22

550 11 0.85

594 10 0.89

638 10 0.86

682 10 0.82

24

600 10 0.90

216 10 0.86

696 10 0.82

744 10 0.79

26

650 10 0.88

702 10 0.83

754 10 0.80

806 10 0.77

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

Table 6 (continued).

P24-P24

T. Task Times

Cycle Time of Line-II

P24 P24

19

21

23

25

140 140

C K LE

C K LE

C K LE

C K LE

C
y

c
le

 T
im

e

o
f

L
in

e-
I 18

342 17 0.89

126 16 0.90

414 15 0.92

450 15 0.89

20

380 16 0.90

420 16 0.85

460 15 0.87

100 15 0.84

22

418 15 0.92

462 15 0.87

506 15 0.83

550 14 0.85

24

456 15 0.88

168 14 0.89

552 14 0.85

600 13 0.88

 A65-A65

T. Task Times

Cycle Time of Line-II

A65 A65

385

425

465

505

5099 5099

C K LE

C K LE

C K LE

C K LE

C
y

cl
e

T
im

e

o
f

L
in

e-
I 360

27720 32 0.86

30600 31 0.84

11160 29 0.87

36360 28 0.87

390

30030 30 0.88

33150 28 0.90

12090 28 0.86

39390 27 0.86

420

4620 29 0.88

35700 28 0.86

13020 27 0.86

42420 26 0.86

450

34650 29 0.85

7650 26 0.90

13950 26 0.86

45450 25 0.86

 A65-B148

T. Task Times

Cycle Time of Line-II

A65 B148

375

400

425

450

5099 5024

C K LE

C K LE

C K LE

C K LE

C
y

cl
e

T
im

e

o
f

L
in

e-
I 360

9000 32 0.86

3600 31 0.86

30600 30 0.87

1800 30 0.84

380

28500 32 0.84

7600 30 0.87

32300 29 0.87

17100 29 0.85

400

6000 31 0.84

400 30 0.84

6800 29 0.85

3600 28 0.85

420

10500 30 0.85

8400 29 0.85

35700 28 0.86

6300 28 0.83

 B148-B148

T. Task Times

Cycle Time of Line-II

B148 B148

300

350

400

450

5024 5024

C K LE

C K LE

C K LE

C K LE

C
y

cl
e

T
im

e

o
f

L
in

e-
I 325

3900 38 0.85

4550 34 0.88

5200 33 0.85

5850 32 0.83

375

1500 34 0.89

5250 32 0.87

6000 30 0.87

2250 30 0.82

425

5100 34 0.84

5950 31 0.84

6800 29 0.84

7650 28 0.82

475

5700 33 0.83

6650 29 0.86

7600 28 0.83

8550 26 0.84

 A205-A205

T. Task Times

Cycle Time of Line-II

A205 A205

1550 1850 2150 2450

23345 23345

C K LE

C K LE

C K LE

C K LE

C
y

cl
e

T
im

e

o
f

L
in

e-
I 1475

91450 40 0.77 109150 36 0.79 126850 34 0.78 144550 34 0.75

1850

57350 36 0.77 1850 32 0.79 79550 32 0.73 90650 30 0.74

2225

137950 34 0.75 164650 31 0.75 191350 28 0.76 218050 27 0.74

2600

80600 32 0.75 96200 29 0.74 111800 27 0.73 127400 25 0.74

 ‘T.Task Times’ column gives the sum of all task times for the relevant problem.

Line efficiency is a well-known term which is commonly used as a measure of the

obtained solution’s quality regardless of the tackled line configuration and problem

type. Therefore, the proximity of a line system’s efficiency to ‘1’ could be considered as

an indicator whether this system is well balanced or not. If the efficiency equals to ‘1’,

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

this means that there is no idle time on the line. However, this is hardly possible in such

systems due to unsmooth task times and cycle time differences between the lines.

Although the optimality of the solutions cannot be guaranteed, our findings indicate

that near-optimal solutions can be obtained very quickly for even large-sized instances.

As could be seen from the obtained results, different solutions are obtained with

different line efficiency values corresponding to the binary combinations of the cycle

time levels of the parallel lines for the same test problem. The proposed algorithm finds

high quality solutions over 85% efficiency for the entire test problems studied, except

the case A205-A205. The best obtained efficiency result (96%) belongs to the problem

P9-P9 and is obtained with the cycle time combination of 5 and 4 for Line-I and Line-II,

respectively. The next best result, 92%, is obtained for the problems P9-P12, P12-P16,

and P24-P24. As a result of the NP-Hard characteristic of the studied problem, it is

reasonable that the efficiency value obtained for the largest problem (79% for A205-

A205) is lower than those for the small-sized ones as expected. However, even this

result could be quite reasonable for real world scenarios.

Obtained efficiency values across two dimensions (the cycle time of Line-I and the

cycle time of Line-II) are also plotted as a surface graph and are depicted in the

Appendices. Thus, readers can see the best provided cycle time combination, which

gives the highest efficiency, for each case easily. Also, managers can pick up the

number of workstation – cycle time combination that fits their organisations and model

demands from the provided results.

6. Conclusions

The simple assembly line balancing problem is an NP-hard class of combinatorial

problem, as shown by Wee and Magazine (1982). Since the PTALBP is a much more

complex version of the simple assembly line balancing problem, it is also NP-Hard. The

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

solution space grows exponentially as the number of tasks increases, which means that

obtaining an optimal solution when the problem size increases is very difficult (Kalayci

and Gupta 2014). It is the major reason why a considerable amount of researches in the

literature strives to develop heuristics and meta-heuristics instead of exact methods to

solve the assembly line balancing problems.

We developed the first mathematical model for a recently introduced production

planning problem, parallel two-sided assembly line balancing problem, and proposed

an alternative possible approach for the solution of the problem. Since the problem is

very complex and the size of the problems that can be solved in an acceptable amount

of time is drastically limited, we applied GA to the PTALBP, which is the first GA

based approach to solve such a problem, and have obtained very encouraging results. To

assess the performance of the algorithm, a set of test problems, previously combined

and solved by Ozcan et al. (2010b), are solved and obtained results are compared with

Ozcan et al. (2010b). Although the complexity of the problem is higher than other

configurations of assembly lines (i.e. one-sided straight assembly lines), computational

results demonstrate that the performance of the proposed algorithm is sufficient.

Moreover, the effect of different cycle time situations on the efficiency of the overall

line system is also studied for a parallel line system for the first time in the literature.

For this aim, parallel lines are balanced for different combinations of their different

cycle time levels and the efficiency of the entire line system is reported along with the

total number of required stations for each case. Obtained line efficiencies are plotted as

surface charts across cycle times of the parallel lines to make analyses easier. Thus, line

managers can easily pick up the number of workstations - cycle time pair that suits their

company best.

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

This study makes it clear that more research is needed to fill in the gap in the

literature on minimising cycle time of the parallel two-sided lines as well as total

number of required workstations. Hybrid meta-heuristics and/or hyper-heuristics might

also be proposed to increase the solution capacity of the algorithm; or exact solution

procedures may be developed to solve the PTALBP, even not the large-sized instances.

In addition, workload smoothness between workstations and lines may be of interest for

future studies with some more realistic conditions of real applications (i.e. zoning

constraints, task synchronisation constraints, positional constraints, etc.).

Acknowledgement

The first author gratefully acknowledges the financial support from the Balikesir

University and the Turkish Council of Higher Education during his Ph.D. at the

University of Exeter in England. Both authors are grateful to anonymous reviewers for

their valuable comments and suggestions to improve the quality of the paper.

Appendices

A.1. Surface charts of the line efficiency values across the cycle times of Line-I and

Line-II for the test problems.

3

4

5

6

0,80

0,85

0,90

0,95

1,00

4
5

6
7

C
yc

le
 T

im
e

 L
in

e
-I

Li
n

e
 E

ff
ic

ie
n

cy

Cycle Time Line-II

P9-P9

0,95-1,00

0,90-0,95

0,85-0,90

0,80-0,85

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

4

6

8

10

0,70

0,75

0,80

0,85

0,90

0,95

6
8

10
12

C
yc

le
 T

im
e

 L
in

e
-I

Li
n

e
 E

ff
ic

ie
n

cy

Cycle Time Line-II

P9-P12

0,90-0,95

0,85-0,90

0,80-0,85

0,75-0,80

0,70-0,75

5

7

9

11

0,70

0,75

0,80

0,85

0,90

6
8

10
12

C
yc

le
 T

im
e

 L
in

e
-I

Li
n

e
 E

ff
ic

ie
n

cy

Cycle Time Line-II

P12-P12

0,85-0,90

0,80-0,85

0,75-0,80

0,70-0,75

8

10

12

14

0,70

0,75

0,80

0,85

0,90

0,95

16
18

20
22

C
yc

le
 T

im
e

 L
in

e
-I

Li
n

e
 E

ff
ic

ie
n

cy

Cycle Time Line-II

P12-P16

0,90-0,95

0,85-0,90

0,80-0,85

0,75-0,80

0,70-0,75

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

16

18

20

22

0,70

0,75

0,80

0,85

0,90

17
19

21
23

C
yc

le
 T

im
e

 L
in

e
-I

Li
n

e
 E

ff
ic

ie
n

cy

Cycle Time Line-II

P16-P16

0,85-0,90

0,80-0,85

0,75-0,80

0,70-0,75

20

22

24

26

0,75

0,80

0,85

0,90

0,95

25
27

29
31

C
yc

le
 T

im
e

 L
in

e
-I

Li
n

e
 E

ff
ic

ie
n

cy

Cycle Time Line-II

P16-P24

0,90-0,95

0,85-0,90

0,80-0,85

0,75-0,80

18

20

22

24

0,80

0,85

0,90

0,95

19
21

23
25

C
yc

le
 T

im
e

 L
in

e
-I

Li
n

e
 E

ff
ic

ie
n

cy

Cycle Time Line-II

P24-P24

0,90-0,95

0,85-0,90

0,80-0,85

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

360

390

420

450

0,80

0,83

0,85

0,88

0,90

345
385

425
465

C
yc

le
 T

im
e

 L
in

e
-I

Li
n

e
 E

ff
ic

ie
n

cy

Cycle Time Line-II

A65-A65

0,88-0,90

0,85-0,88

0,83-0,85

0,80-0,83

360

380

400

420

0,80

0,83

0,85

0,88

0,90

375
400

425
450

C
yc

le
 T

im
e

 L
in

e
-I

Li
n

e
 E

ff
ic

ie
n

cy

Cycle Time Line-II

A65-B148

0,88-0,90

0,85-0,88

0,83-0,85

0,80-0,83

325

375

425

475

0,80

0,83

0,85

0,88

0,90

300
350

400
450

C
yc

le
 T

im
e

 L
in

e
-I

Li
n

e
 E

ff
ic

ie
n

cy

Cycle Time Line-II

B148-B148

0,88-0,90

0,85-0,88

0,83-0,85

0,80-0,83

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

References

Akpinar, S. and Bayhan, G.M., 2011. A hybrid genetic algorithm for mixed model assembly

line balancing problem with parallel workstations and zoning constraints. Engineering

Applications of Artificial Intelligence, 24 (3), 449-457.

Arcus, A., 1966. Comsoal, a computer method of sequencing operations for assembly lines. The

International Journal of Production Research, 4 (4), 259-277.

Baker, J.E., Year. Reducing bias and inefficiency in the selection algorithm. In: Proceedings of

the Second International Conference on Genetic Algorithms and their Application,

Hillsdale, New Jersey, USA: Lawrence Erlbaum Associates, 14-21.

Bartholdi, J.J., 1993. Balancing 2-sided assembly lines - a case-study. International Journal of

Production Research, 31 (10), 2447-2461.

Baykasoglu, A. and Dereli, T., 2008. Two-sided assembly line balancing using an ant-colony-

based heuristic. International Journal of Advanced Manufacturing Technology, 36 (5-

6), 582-588.

Baykasoglu, A., Ozbakir, L., Gorkemli, L. and Gorkemli, B., 2009. Balancing parallel assembly

lines via ant colony optimization. CIE: 2009 International Conference on Computers

and Industrial Engineering, Vols 1-3, 506-511.

Borisovsky, P.A., Delorme, X. and Dolgui, A., 2013. Genetic algorithm for balancing

reconfigurable machining lines. Computers & Industrial Engineering, 66 (3), 541-547.

Cercioglu, H., Ozcan, U., Gokcen, H. and Toklu, B., 2009. A simulated annealing approach for

parallel assembly line balancing problem. Journal of the Faculty of Engineering and

Architecture of Gazi University, 24 (2), 331-341.

Chiang, W.C., 1998. The application of a tabu search metaheuristic to the assembly line

balancing problem. Annals of Operations Research, 77 (1998), 209-227.

Chica, M., Cordon, O. and Damas, S., 2011. An advanced multiobjective genetic algorithm

design for the time and space assembly line balancing problem. Computers & Industrial

Engineering, 61 (1), 103-117.

Chutima, P. and Chimklai, P., 2012. Multi-objective two-sided mixed-model assembly line

balancing using particle swarm optimisation with negative knowledge. Computers &

Industrial Engineering, 62 (1), 39-55.

Gökçen, H., Agpak, K. and Benzer, R., 2006. Balancing of parallel assembly lines.

International Journal of Production Economics, 103 (2), 600-609.

Goncalves, J.F. and De Almeida, J.R., 2002. A hybrid genetic algorithm for assembly line

balancing. Journal of Heuristics, 8 (6), 629-642.

1475

1850

2225

2600

0,70

0,72

0,74

0,76

0,78

0,80

1550
1850

2150
2450

C
yc

le
 T

im
e

 L
in

e
-I

Li
n

e
 E

ff
ic

ie
n

cy

Cycle Time Line-II

A205-A205

0,78-0,80

0,76-0,78

0,74-0,76

0,72-0,74

0,70-0,72

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

Haq, A.N., Rengarajan, K. and Jayaprakash, J., 2006. A hybrid genetic algorithm approach to

mixed-model assembly line balancing. International Journal of Advanced

Manufacturing Technology, 28 (3-4), 337-341.

Hu, X.F., Wu, E.F., Bao, J.S. and Jin, Y., 2010. A branch-and-bound algorithm to minimize the

line length of a two-sided assembly line. European Journal of Operational Research,

206 (3), 703-707.

Hu, X.F., Wu, E.F. and Jin, Y., 2008. A station-oriented enumerative algorithm for two-sided

assembly line balancing. European Journal of Operational Research, 186 (1), 435-440.

Hwang, R. and Katayama, H., 2009. A multi-decision genetic approach for workload balancing

of mixed-model u-shaped assembly line systems. International Journal of Production

Research, 47 (14), 3797-3822.

Kalayci, C.B. and Gupta, S.M., 2014. A tabu search algorithm for balancing a sequence-

dependent disassembly line. Production Planning & Control, 25 (2), 149-160.

Kara, Y., Gokcen, H. and Atasagun, Y., 2010. Balancing parallel assembly lines with precise

and fuzzy goals. International Journal of Production Research, 48 (6), 1685-1703.

Khorasanian, D., Hejazi, S.R. and Moslehi, G., 2013. Two-sided assembly line balancing

considering the relationships between tasks. Computers & Industrial Engineering, 66

(4), 1096-1105.

Kim, Y.K., Kim, Y.H. and Kim, Y.J., 2000. Two-sided assembly line balancing: A genetic

algorithm approach. Production Planning & Control, 11 (1), 44-53.

Kim, Y.K., Song, W.S. and Kim, J.H., 2009. A mathematical model and a genetic algorithm for

two-sided assembly line balancing. Computers & Operations Research, 36 (3), 853-

865.

Kucukkoc, I., Karaoglan, A.D. and Yaman, R., 2013. Using response surface design to

determine the optimal parameters of genetic algorithm and a case study. International

Journal of Production Research, 51 (17), 5039-5054.

Kucukkoc, I. and Zhang, D.Z., 2013. Balancing parallel two-sided assembly lines via a genetic

algorithm based approach. Proceedings of the 43rd International Conference on

Computers and Industrial Engineering (CIE43). The University of Hong Kong, Hong

Kong, 1-16.

Kucukkoc, I. and Zhang, D.Z., 2014a. Mathematical model and agent based solution approach

for the simultaneous balancing and sequencing of mixed-model parallel two-sided

assembly lines. International Journal of Production Economics, 158, , 314-333.

Kucukkoc, I. and Zhang, D.Z., 2014b. Simultaneous balancing and sequencing of mixed-model

parallel two-sided assembly lines. International Journal of Production Research, 52

(12), 3665-3687.

Lee, T.O., Kim, Y. and Kim, Y.K., 2001. Two-sided assembly line balancing to maximize work

relatedness and slackness. Computers & Industrial Engineering, 40 (3), 273-292.

Leu, Y.Y., Matheson, L.A. and Rees, L.P., 1994. Assembly-line balancing using genetic

algorithms with heuristic-generated initial populations and multiple evaluation criteria.

Decision Sciences, 25 (4), 581-606.

Levitin, G., Rubinovitz, J. and Shnits, B., 2006. A genetic algorithm for robotic assembly line

balancing. European Journal of Operational Research, 168 (3), 811-825.

Lusa, A., 2008. A survey of the literature on the multiple or parallel assembly line balancing

problem. European Journal of Industrial Engineering, 2 (1), 50-72.

Ozbakir, L., Baykasoglu, A., Gorkemli, B. and Gorkemli, L., 2011. Multiple-colony ant

algorithm for parallel assembly line balancing problem. Applied Soft Computing, 11 (3),

3186-3198.

Ozbakir, L. and Tapkan, P., 2010. Balancing fuzzy multi-objective two-sided assembly lines via

bees algorithm. Journal of Intelligent & Fuzzy Systems, 21 (5), 317-329.

Ozbakir, L. and Tapkan, P., 2011. Bee colony intelligence in zone constrained two-sided

assembly line balancing problem. Expert Systems with Applications, 38 (9), 11947-

11957.

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

Ozcan, U., 2010. Balancing stochastic two-sided assembly lines: A chance-constrained,

piecewise-linear, mixed integer program and a simulated annealing algorithm.

European Journal of Operational Research, 205 (1), 81-97.

Ozcan, U., Cercioglu, H., Gokcen, H. and Toklu, B., 2009. A tabu search algorithm for the

parallel assembly line balancing problem. Gazi University Journal of Science, 22 (4),

313-323.

Ozcan, U., Cercioglu, H., Gokcen, H. and Toklu, B., 2010a. Balancing and sequencing of

parallel mixed-model assembly lines. International Journal of Production Research, 48

(17), 5089-5113.

Ozcan, U., Gokcen, H. and Toklu, B., 2010b. Balancing parallel two-sided assembly lines.

International Journal of Production Research, 48 (16), 4767-4784.

Ozcan, U. and Toklu, B., 2009. A tabu search algorithm for two-sided assembly line balancing.

International Journal of Advanced Manufacturing Technology, 43 (7-8), 822-829.

Ozcan, U. and Toklu, B., 2010. Balancing two-sided assembly lines with sequence-dependent

setup times. International Journal of Production Research, 48 (18), 5363-5383.

Ozdemir, R.G. and Ayag, Z., 2011. An integrated approach to evaluating assembly-line design

alternatives with equipment selection. Production Planning & Control, 22 (2), 194-206.

Purnomo, H.D., Wee, H.M. and Rau, H., 2013. Two-sided assembly lines balancing with

assignment restrictions. Mathematical and Computer Modelling, 57 (1-2), 189-199.

Rabbani, M., Moghaddam, M. and Manavizadeh, N., 2012. Balancing of mixed-model two-

sided assembly lines with multiple u-shaped layout. International Journal of Advanced

Manufacturing Technology, 59 (9-12), 1191-1210.

Rekiek, B., De Lit, P., Pellichero, F., L'eglise, T., Fouda, P., Falkenauer, E. and Delchambre,

A., 2001. A multiple objective grouping genetic algorithm for assembly line design.

Journal of Intelligent Manufacturing, 12 (5-6), 467-485.

Rubinovitz, J. and Levitin, G., 1995. Genetic algorithm for assembly line balancing.

International Journal of Production Economics, 41 (1-3), 343-354.

Scholl, A. and Boysen, N., 2009. Designing parallel assembly lines with split workplaces:

Model and optimization procedure. International Journal of Production Economics,

119 (1), 90-100.

Simaria, A.S. and Vilarinho, P.M., 2004. A genetic algorithm based approach to the mixed-

model assembly line balancing problem of type ii. Computers & Industrial Engineering,

47 (4), 391-407.

Simaria, A.S. and Vilarinho, P.M., 2009. 2-antbal: An ant colony optimisation algorithm for

balancing two-sided assembly lines. Computers & Industrial Engineering, 56 (2), 489-

506.

Suresh, G., Vinod, V.V. and Sahu, S., 1996. A genetic algorithm for assembly line balancing.

Production Planning & Control, 7 (1), 38-46.

Suwannarongsri, S., Limnararat, S. and Puangdownreong, D., 2007. A new hybrid intelligent

method for assembly line balancing. IEEE International Conference on Industrial

Engineering and Engineering Management, Vols 1-4, 1115-1119.

Taha, R.B., El-Kharbotly, A.K., Sadek, Y.M. and Afia, N.H., 2011. A genetic algorithm for

solving two-sided assembly line balancing problems. Ain Shams Engineering Journal, 2

(3-4), 227-240.

Tonelli, F., Paolucci, M., Anghinolfi, D. and Taticchi, P., 2013. Production planning of mixed-

model assembly lines: A heuristic mixed integer programming based approach.

Production Planning & Control, 24 (1), 110-127.

Ugarte, B.S., Pellerin, R. and Artiba, A., 2011. An improved genetic algorithm approach for on-

line optimisation problems. Production Planning & Control, 22 (8), 742-753.

Wee, T.S. and Magazine, M.J., 1982. Assembly line balancing as generalized bin packing.

Operations Research Letters, 1 (2), 56-58.

Wu, E.F., Jin, Y., Bao, J.S. and Hu, X.F., 2008. A branch-and-bound algorithm for two-sided

assembly line balancing. International Journal of Advanced Manufacturing

Technology, 39 (9-10), 1009-1015.

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

Yegul, M.F., Agpak, K. and Yavuz, M., 2010. A new algorithm for u-shaped two-sided

assembly line balancing. Transactions of the Canadian Society for Mechanical

Engineering, 34 (2), 225-241.

Yu, J.F. and Yin, Y.H., 2010. Assembly line balancing based on an adaptive genetic algorithm.

International Journal of Advanced Manufacturing Technology, 48 (1-4), 347-354.

Zhang, D.Z. and Kucukkoc, I., 2013. Balancing mixed-model parallel two-sided assembly lines.

In Amodeo, L., Dolgui, A. and Yalaoui, F. eds. Proceedings of the International

Conference on Industrial Engineering and Systems Management (IEEE-IESM’2013),

École Mohammadia d’Ingénieurs de Rabat (EMI), International Institute for

Innovation, Industrial Engineering and Entrepreneurship (I4E2). Rabat, Morocco, 391-

401.

Zhang, W.Q., Gen, M. and Lin, L., 2008. A multiobjective genetic algorithm for assembly line

balancing problem with worker allocation. IEEE International Conference on Systems,

Man and Cybernetics (SMC 2008), Vols 1-6, 3026-3033.

Zhang, Y.N., Kan, S.L. and Wang, Y., 2005. A multi-objective genetic-tabu algorithm for the

assembly line balancing problem. Proceedings of the 11th International Conference on

Industrial Engineering and Engineering Management, Vols 1-2, 735-738.

http://dx.doi.org/10.1080/09537287.2014.994685

Final version available online at: http://dx.doi.org/10.1080/09537287.2014.994685

List of Tables

Table 1. Data for numerical example.

Table 2. Parameters of the proposed GA.

Table 3. Data for test problems.

Table 4. Comparison of the obtained computational results by means of total number of required

workstations.

Table 5. Results of the Paired Two-Samples t-Test for means of workstation numbers.

Table 6. Computational results for different cycle time levels of the lines.

Table 6 (continued).

List of Figures

Figure 1. Typical illustration of parallel two-sided assembly lines, adapted from (Ozcan et al.

2010b).

Figure 2. A possible balancing solution using multi-line stations.

Figure 3. Flowchart of the proposed algorithm, adapted from Kucukkoc and Zhang (2013).

Figure 4. An example of task based chromosome representation.

Figure 5. Generating initial population for the proposed algorithm, adapted from Kucukkoc and

Zhang (2013).

Figure 6. Illustration of (a) crossover and (b) mutation procedures.

Figure 7. Precedence diagrams for the illustrative example: (a) P9, and (b) P12, adapted from

Kim et al. (2000).

Figure 8. S lists are shown on parallel two-sided assembly lines.

Figure 9. Task sequencing process to the chromosome.

Figure 10. Task allocation process to the workstations.

Figure 11. (a) A chromosome sample and (b) its decoded line configuration.

A.1. Surface charts of the line efficiency values across the cycle times of Line-I and Line-II for

the test problems.

http://dx.doi.org/10.1080/09537287.2014.994685

