

University of Exeter’s Institutional Repository, ORE

https://ore.exeter.ac.uk/repository/

Please scroll down to view the document

Article version: AUTHOR’S ACCEPTED MANUSCRIPT

Author(s): Kadir BUYUKOZKAN, Ibrahim KUCUKKOC, Sule Itir SATOGLU, David Z. ZHANG

Article title: Lexicographic bottleneck mixed-model assembly line balancing problem: Artificial bee

colony and tabu search approaches with optimised parameters

Originally published in: Expert Systems with Applications, Volume 50, 15 May 2016, Pages 151–166,

DOI: 10.1016/j.eswa.2015.12.018 © 2015 Elsevier Ltd. All rights reserved.

To cite this article: Buyukozkan, K., Kucukkoc, I., Satoglu, S. I., Zhang, D. Z. (2016). Lexicographic

bottleneck mixed-model assembly line balancing problem: Artificial bee colony and tabu search

approaches with optimised parameters, Expert Systems with Applications, Volume 50, 15 May 2016,

Pages 151–166, DOI: 10.1016/j.eswa.2015.12.018.

Link to published article:

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Usage guidelines

This version is made available online in accordance with publisher policies. To see the final version of

this paper, please visit the publisher’s website (a subscription may be required to access the full text).

Before reusing this item please check the rights under which it has been made available. Some items

are restricted to non-commercial use. Please cite the published version where applicable.

Further information about usage policies can be found at:

http://as.exeter.ac.uk/library/resources/openaccess/ore/orepolicies/

https://ore.exeter.ac.uk/repository/
http://dx.doi.org/10.1016/j.eswa.2015.12.018
http://as.exeter.ac.uk/library/resources/openaccess/ore/orepolicies/

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

ACCEPTED MANUSCRIPT

This is an Accepted Manuscript of an article published by

Elsevier Ltd. in Expert Systems with Applications on 15/05/2016,

available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

Lexicographic bottleneck mixed-model assembly line

balancing problem: Artificial bee colony and tabu search approaches with

optimised parameters

Kadir Buyukozkan ac, Ibrahim Kucukkoc bd*, Sule Itir Satoglu a, David Z. Zhang b

a Industrial Engineering Department, Istanbul Technical University, Istanbul, Turkey

b College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, EX4 4QF

Exeter, England, United Kingdom

c Department of Industrial Engineering, Faculty of Engineering, Karadeniz Technical University, Kanuni Campus,

Trabzon, Turkey

d Department of Industrial Engineering, Faculty of Engineering and Architecture, Balikesir University, Cagis

Campus, Balikesir, Turkey

* Corresponding author: Ibrahim Kucukkoc, Email: i.kucukkoc@exeter.ac.uk, Tel: +441392723613.

K.B Email: kbuyukozkan@ktu.edu.tr, Tel: +904623772954; S.I.S Email: onbaslis@itu.edu.tr, Tel:

+902122856801; D.Z.Z Email: d.z.zhang@exeter.ac.uk, Tel: +441392723641.

Abstract: The lexicographic bottleneck assembly line balancing problem is a recently introduced problem which aims

at obtaining a smooth workload distribution among workstations. This is achieved hierarchically. The workload of the

most heavily loaded workstation is minimised, followed by the workload of the second most heavily loaded

workstation and so on. This study contributes to knowledge by examining the application of the lexicographic

bottleneck objective on mixed-model lines, where more than one product model is produced in an inter-mixed

sequence. The main characteristics of the lexicographic bottleneck mixed-model assembly line balancing problem are

described with numerical examples. Another contribution of the study is the methodology used to deal with the

complex structure of the problem. Two effective meta-heuristic approaches, namely artificial bee colony and tabu

search, are proposed. The parameters of the proposed meta-heuristics are optimised using response surface

methodology, which is a well-known design of experiments technique, as a unique contribution to the expert and

intelligent systems literature. Different from the common tendency in the literature (which aims to optimise one

parameter at a time), all parameters are optimised simultaneously. Therefore, it is shown how a complex production

planning problem can be solved using sophisticated artificial intelligence techniques with optimised parameters. The

methodology used for parameter setting can be applied to other metaheuristics for solving complex problems in

practice. The performances of both algorithms are assessed using well-known test problems and it is observed that both

algorithms find promising solutions. Artificial bee colony algorithm outperforms tabu search in minimising the number

of workstations while tabu search shows a better performance in minimising the value of lexicographic bottleneck

objective function.

Keywords: mixed-model assembly line balancing; lexicographic bottleneck; artificial bee colony; tabu search,

parameter optimisation; response surface methodology.

http://dx.doi.org/10.1016/j.eswa.2015.12.018
http://dx.doi.org/10.1016/j.eswa.2015.12.018
mailto:i.kucukkoc@exeter.ac.uk
mailto:kbuyukozkan@ktu.edu.tr
mailto:onbaslis@itu.edu.tr
mailto:d.z.zhang@exeter.ac.uk

Expert Systems with Applications

1

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

Lexicographic Bottleneck Mixed-model Assembly Line Balancing Problem:

Artificial Bee Colony and Tabu Search Approaches with Optimised Parameters

Kadir Buyukozkan ac, Ibrahim Kucukkoc bd*, Sule Itir Satoglu a, David Z. Zhang b

a Industrial Engineering Department, Istanbul Technical University, Istanbul, Turkey

b College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, EX4 4QF

Exeter, England, United Kingdom

c Department of Industrial Engineering, Faculty of Engineering, Karadeniz Technical University, Kanuni Campus,

Trabzon, Turkey

d Department of Industrial Engineering, Faculty of Engineering and Architecture, Balikesir University, Cagis

Campus, Balikesir, Turkey

Abstract

The lexicographic bottleneck assembly line balancing problem is a recently introduced problem which

aims at obtaining a smooth workload distribution among workstations. This is achieved hierarchically.

The workload of the most heavily loaded workstation is minimised, followed by the workload of the

second most heavily loaded workstation and so on. This study contributes to knowledge by examining

the application of the lexicographic bottleneck objective on mixed-model lines, where more than one

product model is produced in an inter-mixed sequence. The main characteristics of the lexicographic

bottleneck mixed-model assembly line balancing problem are described with numerical examples.

Another contribution of the study is the methodology used to deal with the complex structure of the

problem. Two effective meta-heuristic approaches, namely artificial bee colony and tabu search, are

proposed. The parameters of the proposed meta-heuristics are optimised using response surface

methodology, which is a well-known design of experiments technique, as a unique contribution to the

expert and intelligent systems literature. Different from the common tendency in the literature (which

aims to optimise one parameter at a time), all parameters are optimised simultaneously. Therefore, it is

shown how a complex production planning problem can be solved using sophisticated artificial

intelligence techniques with optimised parameters. The methodology used for parameter setting can be

applied to other metaheuristics for solving complex problems in practice. The performances of both

algorithms are assessed using well-known test problems and it is observed that both algorithms find

promising solutions. Artificial bee colony algorithm outperforms tabu search in minimising the number

of workstations while tabu search shows a better performance in minimising the value of lexicographic

bottleneck objective function.

Keywords: mixed-model assembly line balancing; lexicographic bottleneck; artificial bee colony; tabu

search, parameter optimisation; response surface methodology.

* Corresponding author: Ibrahim Kucukkoc, Email: i.kucukkoc@exeter.ac.uk, Tel: +441392723613.

http://dx.doi.org/10.1016/j.eswa.2015.12.018
mailto:i.kucukkoc@exeter.ac.uk

Expert Systems with Applications

2

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

K.B Email: kbuyukozkan@ktu.edu.tr, Tel: +904623772954; S.I.S Email: onbaslis@itu.edu.tr, Tel:

+902122856801; D.Z.Z Email: d.z.zhang@exeter.ac.uk, Tel: +441392723641.

1. Introduction

Six decades have passed since the idea of balancing assembly lines has been introduced by

Bryton (1954). This idea was described systematically and formulated mathematically by

Salveson (1955) and has received a great deal of attention from both academia and industry.

With the change of the global market, product diversity has become one of the key parameters

in attracting customers. Mass customisation has been adopted by companies as a flexible

manufacturing tool to meet diversified customer demands in a timely manner (Goh & Zhang,

2003; I. Kucukkoc & D.Z. Zhang, 2014). In this context, companies converted existing single-

model lines into mixed-model lines to enable producing more than one product model on the

same line where set-up times between model changes are small enough (Zhang & Kucukkoc,

2013). Thus, similar product models could be produced on the same line, avoiding the cost of

utilising a new line for each product model.

Battaïa and Dolgui (2013) presented a taxonomy of line balancing problems and their solution

approaches, recently. In its traditional and simplest form, which is called simple assembly line

balancing problem, the assembly line balancing problem is assigning tasks into a serially

linked set of workstations by ensuring that capacity constraints and precedence relationship

constraints are satisfied. The tasks belonging to a single commodity (or product model) are

performed on the line and a decision is made to determine which task will be accommodated

in which workstation (I. Kucukkoc & Zhang, 2013; I. Kucukkoc & D. Z. Zhang, 2015).

Obtaining a smooth workload distribution among the workstations is very important to have a

well-balanced and reliable assembly line which has strengths against unforeseeable

circumstances such as breakdowns and other tolerable small extra works that can be performed

while the line is running. For this aim, Pastor et al. (2011; 2012) proposed a new approach to

systematically distribute the total workload among the workstations utilised across the line.

Also, they showed the advantage of the lexicographic bottleneck objective function

(Buyukozkan, Kucukkoc, & Zhang, 2014). The main aim of this paper is to experiment the

lexicographic bottleneck objective on mixed-model assembly line balancing problem and to

address the lexicographic bottleneck mixed-model assembly line balancing problem. Two

powerful solution approaches, namely artificial bee colony and tabu search, are also developed

to solve the addressed problem efficiently. The parameters of the proposed algorithms are

optimised using a robust methodology that can be applied to other metaheuristics.

http://dx.doi.org/10.1016/j.eswa.2015.12.018
mailto:kbuyukozkan@ktu.edu.tr
mailto:onbaslis@itu.edu.tr
mailto:d.z.zhang@exeter.ac.uk

Expert Systems with Applications

3

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

The remainder of the paper is organised as follows. Section 2 provides a comprehensive

review of the literature on mixed-model assembly line balancing problem as well as the

applications of proposed techniques on various line balancing configurations. Section 3

describes the main characteristics of the lexicographic bottleneck mixed-model assembly line

balancing problem and briefly presents its differences from the existing problems. Section 4

presents the artificial bee colony and tabu search algorithms developed to solve the addressed

problem and gives numerical examples to describe their solution procedures stepwise. Section

5 explains the response surface methodology (called RSM hereafter) used for parameter

setting, and reports the experimental test results. After a brief discussion on the strengths and

weaknesses of the proposed research method in Section 6, Section 7 draws conclusions along

with the future research directions.

2. Literature Review

The mixed-model assembly line balancing problem, which aims at finding an optimal

assignment of tasks belonging to more than one product model produced on the same line, has

been introduced by Thomopoulos (1967, 1970). Since then, the mixed-model assembly line

balancing problem has attracted a vast number of researchers from both academia and

industry. Minimising the number of workstations, which could also help reduce cost, has been

considered as an ultimate goal in the majority of studies, e.g. Simaria and Vilarinho (2009),

Kara and Tekin (2009), Ozcan and Toklu (2009), Xu and Xiao (2011), Yagmahan (2011),

Akpinar and Bayhan (2011), Hamzadayi and Yildiz (2012), Rabbani et al. (2012), Chutima

and Chimklai (2012), Liao et al. (2012), Akpinar et al. (2013), Kucukkoc et al. (2013),

Manavizadeh et al. (2013), Kucukkoc et al. (2013) and Kucukkoc and Zhang (2014b). This

problem is called type-1, as the number of workstations is minimised for a predefined cycle

time value.

Minimising cycle time for the given number of workstations is another type of line balancing

problem, called type-2. This problem has been studied by Simaria and Vilarinho (2004),

Battini et al. (2007) and Ozcan et al. (2011) recently. Some studies considered both objectives

(the minimisation of cycle time and the number of workstations) at the same time, such as

Manavizadeh et al. (2012) and Kucukkoc and Zhang (2015). Manavizadeh et al. (2012)

proposed a multi-objective genetic algorithm based approach to optimise both the number of

workstations and the cycle time (called type-E) in a stochastic make-to-order environment.

Kucukkoc and Zhang (2015) addressed the type-E problem on parallel two-sided assembly

lines and proposed an ant colony optimisation algorithm where the parameters of ant colony

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

4

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

optimisation algorithm are calibrated through RSM, which is a well-known design of

experiment method proposed by Box and Wilson (1951).

Workload smoothness is an important criterion which also needs to be taken into account: (i)

to maintain an even workload distribution among workstations and so workers, (ii) to improve

the quality of product(s) assembled on the line, and (iii) to reduce the risk of incomplete tasks

exceeding the cycle time due to some unforeseeable circumstances. This criterion has been

taken into account as an additional performance measure in many researches, such as Simaria

and Vilarinho (2009), Ozcan and Toklu (2009), Ozcan et al. (2010), Akpinar and Bayhan

(2011), Yagmahan (2011), Hamzadayi and Yildiz (2012), Liao et al. (2012), Chutima and

Chimklai (2012), Manavizadeh et al. (2013) and Kucukkoc et al. (2013).

In terms of the applied solution techniques, there is an increasing interest in the applications of

population (or swarm intelligence) based and neighbourhood search based optimisation

algorithms on a variety of line balancing problems. Specifically, Simaria and Vilarinho (2009),

Yagmahan (2011), Kucukkoc et al. (2013) and Kucukkoc and Zhang (2014a, 2014b)

developed different ant colony optimisation based approaches; Ozcan et al. (2011), Xu and

Xiao (2011), Akpinar and Bayhan (2011), Hamzadayi and Yildiz (2012), Rabbani et al.

(2012), Manavizadeh et al. (2012) and Kucukkoc et al. (2013) developed different genetic

algorithm based techniques and Chutima and Chimklai (2012) proposed a particle swarm

optimisation approach for the solution of mixed-model assembly line balancing problem.

However, the applications of bee colony optimisation (D. Karaboga, 2005) and bees algorithm

(Pham, et al., 2006) are quite scarce in the entire line balancing domain. Akpinar and

Baykasoğlu (2014) applied the bee colony algorithm for solving the mixed-model assembly

line balancing problem. Özbakir and Tapkan (2011) and Tapkan et al. (2012a, 2012b) used

bee colony intelligence and bees algorithms, respectively, to solve zone constrained two-sided

assembly line balancing problem.

Lapierre et al. (2006) applied tabu search algorithm for solving the simple assembly line

balancing problem (with the aim of minimising the number of workstations) and non-standard

versions of this problem coming from real life. Computational tests showed that the proposed

tabu search method had advantages over existing priority based procedures. Ozcan and Toklu

(2008) presented a tabu search algorithm for two-sided assembly line balancing problem,

where workstations are located on both sides (left and right) of a straight line. The

performance of the proposed method was compared to the existing methods and it was

observed that the proposed method performed well. Özcan et al. (2009) used the tabu search to

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

5

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

balance the parallel lines, where resources between two adjacent lines are shared, with the aim

of maximising line efficiency. The proposed method was illustrated through a numerical

example and its performance was tested through existing test problems. Özcan et al. (2010)

introduced the parallel two-sided assembly line configuration, which is referred to as

advantageous for producing large-sized items (such as buses and trucks) and developed a tabu

search based approach. Two numerical examples were given and computational tests were

performed to explain the solution building mechanism of the algorithm and to prove its

performance. Esmaeilian et al. (2011) presented a tabu search approach, which incorporates a

heuristic procedure to provide an initial solution, for solving the parallel assembly line

balancing problem in a mixed-model production environment. The computational experiments

showed that the proposed approach produces promising solutions.

The lexicographic bottleneck objective has been recently introduced for assembly line

balancing domain. Pastor et al. (2011) presented and formalised the lexicographic bottleneck

assembly line balancing problem; which aims at hierarchically minimising the workload of the

most heavily loaded workstation, followed by the workload of the second most heavily loaded

workstation and so on. Two mixed-integer linear programming models and three heuristic

procedures were proposed for solving the problem. Pastor et al. (2011) have proven that the

lexicographic bottleneck objective has advantages over traditional smoothness index

objectives to obtain a more smoothly distributed workload across the workstations. In their

latter study, Pastor et al. (2012) proposed and tested new algorithms, which were different

combinations of a heuristic procedure and several local search procedures derived from the

literature. The computational experiments showed that the heuristic procedure developed by

Pastor et al. (2012) was an improvement upon the heuristic procedures (three heuristic

procedures based on two mixed-integer linear programming models) published by Pastor et al.

(2011).

The lexicographic bottleneck assembly line balancing problem, which is different from type-2

line balancing problem as it was exposed by Pastor et al. (2011; 2012), has not been studied

properly for mixed-model lines in the literature. Based on this motivation, we apply the

lexicographic bottleneck objective on mixed-model assembly line balancing problem and

propose new solution techniques, namely an artificial bee colony algorithm and a tabu search

algorithm, for the possible solution of the addressed problem. This paper is original in terms of

both the addressed problem and the proposed solution methods. This paper addresses the

lexicographic bottleneck mixed-model assembly line balancing problem, whose primitive

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

6

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

version was introduced by Pastor et al. (2011) for the simple assembly line balancing problem,

by building work on Kucukkoc et al. (2015). In addition to the developed artificial bee colony

algorithm, the tabu search algorithm is applied for any type of lexicographic bottleneck

assembly line balancing problem for the first time in the literature. Also, the parameters of

both proposed techniques are optimised using RSM as a pioneering research in expert and

intelligent systems domain. Therefore, this paper contributes to knowledge by not only

addressing a newly introduced assembly line balancing problem type but also developing

novel artificial bee colony and tabu search algorithms (with optimised parameters through

RSM) for solving this problem.

3. Problem Statement

The workload time of a workstation is constituted by the summation of processing times of all

tasks assigned to that workstation. In traditional type-2 assembly line balancing problems, the

workload of the most heavily loaded workstation is minimised as it determines the cycle time

of the entire production system in synchronised assembly lines. As only the workload of the

workstation which has the largest workload time is minimised, the remaining workload times

are ignored in type-2 assembly line balancing problems. However, as indicated by Pastor et al.

(2012) and Boysen et al. (2007), there are some important factors that tightly depend on the

workload distribution among all workstations: the reliability of the line, uniform (or equitable)

distribution of the total workload among all operators, quality defects caused by stations with

disproportionately large station times, etc. Therefore, it is important to consider the second-

largest workload, the third-largest workload, etc., as the criticalness of the workstations and

the reliability of the line are tightly interrelated to each other. The larger the difference

between the total workload of a workstation and cycle time, the less critical becomes the

workstation. That means the reliability of the entire system could be increased by reducing the

criticalness (R. Pastor, 2011).

Pastor et al. (2011) have already proven with an example that the optimal solution based on

the lexicographic bottleneck objective may be different from the optimal solution based on the

‘Smoothness Index’ objective, which was considered as an additional objective in many

researchers. Although this situation has been proven for only a simple assembly line balancing

problem, it is highly possible to observe the same situation for mixed-model assembly lines, as

well.

The main aim of the introduced problem in this research, which is called lexicographic

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

7

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

bottleneck mixed-model assembly line balancing problem, is to hierarchically minimise the

weighted-workload of the most heavily loaded workstation, followed by the weighted-

workload of the second most heavily loaded workstation and so on. More details on how to

calculate the weighted-workload of a workstation will be specified below.

Let us consider the graph given in Figure 1 as the combined precedence relationships diagram

of three models (𝑚1, 𝑚2, and 𝑚3), where a model is symbolised with 𝑚𝑗 (𝑗 = 1, … , 𝑀) ,

assembled on a mixed-model assembly line. Table 1 presents the processing times (𝑝𝑡𝑗𝑖) of

tasks, where a task is represented by 𝑡𝑗𝑖 (𝑖 = 1, … , 𝑇𝑗) , belonging to the product models.

Demands (𝐷𝑗) are considered 16, 24 and 8 for models 𝑚1, 𝑚2, and 𝑚3 , respectively (𝐷1 =

16, 𝐷2 = 24 and 𝐷3 = 8) . The task processing times given in this table are taken from

Simaria (2006) except that of task-10. As cycle time (𝐶𝑇) is assumed 12.5 time units, in such

an environment where parallel workstations or feeding lines are not allowed, the processing

times of all tasks must be smaller than the cycle time. For that reason, the processing time of

task-10 is assumed 8.6 time units rather than its original value of 13.6 time units, which

exceeds the cycle time.

Figure 1. Combined precedence relationships diagram of the instance, adapted from Gökçen and Erel

(1998)

Table 1. Task processing times of the models for the given instance

Task No / Model 𝒎𝟏 𝒎𝟐 𝒎𝟑

1 8.3 8.6 8.3

2 0.0 2.0 2.0

3 9.6 9.6 9.6

4 1.8 1.8 1.8

5 2.4 2.4 2.5

6 2.3 2.3 2.3

7 2.3 2.3 2.5

8 4.7 4.7 4.7

9 0.0 9.0 9.0

10 8.6 8.6 8.6

11 1.0 1.0 1.0

1

4 5 6 7

3

2

11

8 9 10

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

8

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

The two possible line balancing assignments of the example problem are given in Table 2

where upper bound of 𝐶𝑇 is set to 12.5 time units. The table presents the task assignments to

the workstations, symbolised with 𝑘 (𝑘 = 1, … , 𝐾), and the workloads of workstations based

on these assignments. Each workstation’s workload time for individual models and also the

total weighted-workloads (𝑊𝑊) of the workstations are calculated and presented in the table.

Table 2. Two alternative assignment solutions of the given instance

Alternative Assignment 1 Alternative Assignment 2

Station
Assigned

Tasks

Workloads

(Time Units)
Weighted-

workload

(WW)

Station

Assigned

Tasks

Workloads

(Time Units)
Weighted-

workload

(WW) 𝑚1 𝑚2 𝑚3 𝑚1 𝑚2 𝑚3

1 1,2,4 10.10 12.40 12.10 11.58 1 1,4 10.10 10.40 10.10 10.25

2 3,5 12.00 12.00 12.10 12.02 2 2,3 9.60 11.60 11.60 10.93

3 6,8 7.00 7.00 7.00 7.00 3 5,6,8 9.40 9.40 9.50 9.42

4 9,7 2.30 11.30 11.50 8.33 4 7,9 2.30 11.30 11.50 8.33

5 10,11 9.60 9.60 9.60 9.60 5 10,11 9.60 9.60 9.60 9.60

The weighted-workload (𝑊𝑊) of a workstation corresponds to the sum of weighted

processing times of all tasks assigned to this workstation. The weighted processing time of a

task is obtained by summing the multiplications of processing times belonging to different

models by proportional demands of these models. Also, proportional demand of a model

corresponds to division of this model’s demand by the total demand of the models produced

on the same line (𝐷𝑗 ∑ 𝐷𝑗
𝑀
𝑗=1⁄). Thus, the weighted-workload of station 𝑘 , represented by

𝑊𝑊𝑘, could be calculated as in Equation (1).

𝑊𝑊𝑘 = ∑ (
𝐷𝑗

∑ 𝐷𝑗
𝑀
𝑗=1

∙ ∑ 𝑝𝑡𝑗𝑖

𝑡𝑗𝑖∈𝑆𝑘

)

𝑀

𝑗=1

, (1)

where 𝑆𝑘 denotes the set of tasks assigned to workstation 𝑘. 𝐷𝑗 and 𝑝𝑡𝑗𝑖 are demand for model

𝑚𝑗 and processing time of task 𝑡𝑗𝑖, respectively.

As seen from Table 2, five workstations are needed to perform a total of 11 tasks for both

situations. However, there are differences in the workloads and weighted-workload columns of

these two alternative solutions. Figure 2 comparatively depicts the workload distributions

among workstations for both solutions. Apparently, the second solution has a more uniform

workload distribution than the first solution. It should be noted here that there could be more

fluctuation in the distribution of workloads between workstations if there were tens of tasks

(not five) to be assigned. However, even this small-sized numerical example shows the

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

9

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

dependency of workload times to model types. For example, the workload of workstation 4

equals to 2.30 time units when model 1 is being operated in this workstation. However, this

will change when model 2 and model 3 will be assembled in workstation 4. Specifically, the

workload will dramatically increase from 2.30 time units to 11.30 and 11.50 time units when

model 2 and model 3 are assembled, respectively. On one hand, huge idle times will occur

when producing model 1 in workstation 4. On the other hand, the workstation will be loaded

almost full when producing model 2 and model 3. This clearly shows the importance of having

a smooth workload across workstations on mixed-model assembly lines.

 (a) (b)

Figure 2. Workload distributions among workstations: (a) Solution-1, (b) Solution-2

Figure 3 exhibits the weighted-workload of each workstation for both alternative solutions. As

seen from the figure, distributing the weighted-workload among five workstations as 11.58,

12.02, 7.00, 8.33 and 9.60 is not equivalent to distributing it as 10.25, 10.93, 9.42, 8.33 and

9.60. Although both solutions are obtained under the same upper bound for the cycle time

(𝐶𝑇 = 12.5), the second solution has less critical workstations and it is more reliable.

Figure 3. Weighted-workload of each workstation for both alternative solutions

Following assumptions are made for the solution of the lexicographic bottleneck mixed-model

assembly line balancing problem:

 Two or more models of a product are assembled on a paced (synchronous) mixed-

0

2

4

6

8

10

12

14

1 2 3 4 5

W
o

rk
lo

ad
 t

im
e

Workstation Number
Model 1 Model 2 Model 3

0

2

4

6

8

10

12

14

1 2 3 4 5

W
o

rk
lo

ad
 t

im
e

Workstation number
Model 1 Model 2 Model 3

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

1 2 3 4 5

W
o

rk
lo

ad
 (

ti
m

e
u
n
it

s)

Workstation No

Solution-1

Solution-2

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

10

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

model assembly line.

 Model demands are deterministic and known for a pre-defined planning horizon.

 Task processing times are deterministic and known for each product model produced

on the line. When a specific task is not necessary for a certain model, then its

processing time is considered zero.

 A common (or joint) precedence diagram, which satisfies all precedence relationships

between tasks belonging to different product models, is used in order to maximise the

resource utilisation by assigning common tasks between similar models to the same

workstation.

 Each task for each product model must be assigned to exactly one workstation. Tasks

cannot be split into two or more workstations.

 A task can only be assigned if all of its predecessors have been assigned and

completed.

 Operators are multi-skilled and any task can be performed at any workstation with no

change in its processing time.

 Parallel workstations and buffers between workstations (or work in progress inventory)

are not allowed.

 Setup operations are not required between model changes.

 Operator travel times are ignored.

4. Proposed Algorithms

This section presents the artificial bee colony and tabu search algorithms proposed for solving

the lexicographic bottleneck assembly line balancing problem. Both artificial bee colony and

tabu search approaches have been recognised as powerful and flexible optimisation

algorithms, which have the capability of robustly solving global optimisation problems with

linear and nonlinear objective functions. As shown by Karaboga and Akay (2009) through a

set of comprehensive experimental tests, artificial bee colony is better than or similar to those

of other population-based algorithms with the advantage of employing fewer control

parameters. It is flexible and has strengths in both local and global searches. This reduces the

possibility of being trapped at a local optimum. In comparison with evolutionary algorithms,

the fast convergence feature of artificial bee colony algorithm – which can be considered an

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

11

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

advantage in a timely manner – may result in premature convergence as a possible

disadvantage of the algorithm.

Different from most metaheuristics, including tabu search, the basic artificial bee colony

approach employs multiple random starting points for initialisation. This attribute helps to

explore the search space more effectively. On the other hand, as emphasised by Glover and

Marti (2006) a bad strategic choice may often yield better results than a good random choice.

Therefore, by taking the advantage of keeping search history, this strategic choice builds a

base point for the progressive improvement of tabu search. Both tabu search and artificial bee

colony algorithms can be easily implemented for a wide range of optimisation problems.

Although some promising areas of the search space may be missed when only one solution is

used and the algorithm is purely progressed from its neighbourhood solutions, tabu search still

produces promising results as will be shown in the following subsections. Tabu search needs

relatively less number of parameters in comparison with most of the metaheuristics, including

ant colony, genetic and artificial bee colony algorithms. However, as in the majority of other

metaheuristics, both algorithms need parameter tuning. For this reason, a novel RSM based

parameter optimisation approach is adopted, as will be explained in Section 5.

 Artificial bee colony algorithm

Artificial bee colony algorithm, which is proposed by Karaboga (2005), is a swarm

intelligence method. It was inspired from the foraging behaviour of bees in nature. In social

life, foraging begins with random food search. The scout bees find new food sources in their

neighbourhood and perform waggle-dance in front of the hive. This dance movement gives

information about (i) the distance from the food source to the hive, (ii) the nectar quality of the

source and (iii) the nectar quantity of the source. The onlooker bees in the hive watch this

dance movement and choose the scout bees to follow. When an onlooker bee follows a scout

bee, it starts foraging and is called a follower bee. Each bee, which collects food, performs

waggle-dance to give information about the food source. By this way, the bees meet the food

need of the hive. When a food source is exhausted, this source is abandoned and scout bees

continue to seek new sources.

When the behaviour of bees is adapted to an optimisation problem, each bee represents a

solution and the algorithm starts with randomly generated initial solutions. These solutions are

considered as scout bees and the algorithm continues with the neighbourhood search with the

help of the follower bees around these solutions. The general structure of the proposed

artificial bee colony algorithm is presented in Figure 4.

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

12

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

Figure 4. Flow chart of the proposed artificial bee colony algorithm

The parameters of the algorithm (namely, the number of scout bees (𝑆) , the number of

follower bees (𝐹), the maximum number of iterations (𝑀𝑎𝑥𝐼𝑡𝑒𝑟), life time (𝐿𝐹), cycle time

(𝐶𝑇) and hierarchy parameter (𝛽)) are initialised. Afterwards, 𝑆 number of solutions are

generated considering the precedence relationships. While generating these solutions, the tasks

are sequenced in random orders ensuring that the precedence relations are not violated. The

workstations are formed by splitting the ordered tasks into groups (which is equivalent to

allocating the tasks into the workstations) considering the 𝐶𝑇 value. Hence, it is ensured that

the initial solutions (scout bees) are produced very quickly. Each scout bee is assigned an 𝐿𝐹

value, which corresponds to the maximum number of trials that can be passed without

improvement. 𝐹 number of follower bees are directed to each scout bee for the neighbourhood

search mechanism.

The neighbourhoods are searched using insert method. In doing so, two random numbers, i.e.

𝑟1 and 𝑟2, are generated and the task located at 𝑟1
th position is relocated to 𝑟2

th position by

checking the precedence relationships to ensure feasibility. If this move is considered to

violate the precedence relationships, a new point (𝑟2), which satisfies the precedence

relationships is determined and the task is allocated to this position. After completing

neighbourhood searches for all followers in such a way, the performance values (δ) of scout

Iteration Number+=1

Create follower

bees of this scout

bee

Calculate performance values of

scout bee and its followers for

comparison

Designate best

follower as scout

Life time of the

scout −= 1

All scouts

completed?

Generate scout bee

randomly

Better solution

than the

current best?

Bring the best solution

Designate the best scout

as the best solution

All iterations

completed?

Input

Paramaters

Generate initial solutions

(scout bees)

Assign each bee a

life time

Better follower

than scout bee?

Select next scout

bee

Yes

No

Yes

No

No

No

No

Yes

Yes

Yes

Life time of

the scout=0?

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

13

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

bees and their followers are calculated using Equation (2), which is modified from Pastor

(2011). This is equivalent to using Equation (3) when comparing two different solutions. By

this way, it is endeavoured to hierarchically minimise the weighted-workload of the most

heavily loaded workstation.

𝛿 =
∑ (𝛽𝐾−𝑘+1 ∙ 𝑊𝑊𝑘)𝐾

𝑘=1

𝐶𝑇 ∙ 𝛽𝐾−1
. (2)

𝛿𝑑𝑖𝑓𝑓 =
∑ (𝛽𝐾−𝑘+1 ∙ ∑ 𝑑𝑗 ∙ ∆𝑘𝑗

𝐽
𝑗=1)𝐾

𝑘=1

𝐶𝑇𝑏𝑒𝑠𝑡 ∙ 𝛽𝐾−1
, (3)

where ∆𝑘𝑗 is the positive, null, or negative workload difference in terms of model 𝑚𝑗 in the

𝑘𝑡ℎ most heavily loaded workstation between the worst and best solutions compared. 𝐶𝑇𝑏𝑒𝑠𝑡 is

the best cycle time of the two solutions compared. 𝛽 is a parameter whose value must

guarantee the hierarchy of the objectives (𝛽 > max (∆𝑘𝑗 − ∆(𝑘+1)𝑗) and 𝑑𝑗 is the proportional

demand of model 𝑚𝑗, (𝑑𝑗 =
𝐷𝑗

∑ 𝐷𝑗
𝑀
𝑗=1

). Please refer to Pastor (2011) for more details about 𝛽

parameter.

The best performance value among the followers is compared with the performance value of

its scout bee and the scout bee is replaced with that follower if the follower is better. If not, 𝐿𝐹

value of the scout bee is decreased by one. When the 𝐿𝐹 value gets zero, scout bee is replaced

with a randomly generated feasible solution. The global best solution is updated if any of the

scout bees has a better performance value than the global best. The same procedures are

carried out for all scout bees and this cycle continues until all iterations are completed. Note

that better performance values could be obtained with solutions which require larger numbers

of workstations. However, in practice, designs which require fewer number of workstations

are preferred by line managers. For that reason, when two solutions which require different

numbers of workstations are subject to comparison, the solution which requires the fewer

number of workstations is favoured regardless of its performance value.

For a better understanding of the steps of the algorithm, a numerical example is given below.

The precedence relationships and task processing times are given in Figure 1 and Table 1,

respectively. The parameters considered are as follows: 𝑆 = 5, 𝐹 = 10, 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = 25, 𝐿𝐹 =

5, 𝐶𝑇 = 12.5 and 𝛽 = 100.

Table 3 shows the initial solutions (scout bees) generated randomly. Let us consider the first

scout bee in Table 3. Three follower bees generated from this scout bee are given in Table 4.

The follower bees search neighbourhood solutions around the scout bee using the randomly

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

14

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

determined two numbers. It could be seen that the random numbers are 2 and 5 for the first

follower (𝑟1 = 2, 𝑟2 = 5). So the job located in the 2𝑛𝑑 position is relocated to the 5𝑡ℎ position

for this follower. The random numbers for the second and the third followers are 3 and 9, and

7 and 5, respectively. The performance values of the followers are also given in Table 4. To

calculate the performance value of a solution, the tasks are assigned to the workstations as in

the same order they are sequenced by bees and Equation (2) is used for calculation.

Table 3. Initial solutions generated by the algorithm

Sequence of Tasks
Workstations

1 2 3 4 5 6

1 1 2 3 4 8 9 5 10 6 7 11

Assignments 1,2 3,4 8 9,5 10,6 7,11

Weighted Stat.

Workloads

9.790 11.400 4.700 8.450 10.900 3.340

2 1 2 4 3 5 6 7 8 9 10 11

Assignments 1,2,4 3,5 6,7,8 9 10,11 -

Weighted Stat.

Workloads

11.590 12.070 9.330 6.030 9.600 -

3 1 2 3 4 8 5 6 9 10 7 11

Assignments 1,2 3,4 8,5,6 9 10,7,11 -

Weighted Stat.

Workloads

9.790 11.400 9.420 6.030 11.930 -

4 1 4 5 6 8 3 9 2 10 7 11

Assignments 1,4 5,6,8 3 9,2 10,7,11 -

Weighted Stat.

Workloads

10,250 9,417 9,600 7,370 11,934 -

5 1 4 8 5 6 2 9 3 7 10 11

Assignments 1,4 8,5,6 2,9 3,7 10,11 -

Weighted Stat.

Workloads

10,250 9,417 6,030 11,934 9,600 -

Table 4. Followers of the first scout bee

 Task Sequence
Weighted-workload Times (𝑾𝑾) Performance Value

(𝛿) 1 2 3 4 5 6

Scout Bee 1 2 3 4 8 9 5 10 6 7 11 9.79 11.40 4.70 8.45 10.90 3.34 92.080

Follower-1 1 3 4 8 2 9 5 10 6 7 11 8.45 11.39 6.04 8.45 10.90 3.34 91.999

Follower-2 1 2 4 8 9 5 10 6 3 7 11 11.59 4.70 8.45 10.90 11.93 1.00 96.376

Follower-3 1 2 3 4 5 8 9 10 6 7 11 9.79 11.39 7.12 6.03 10.90 3.34 92.000

The overall survival of this scout bee through 25 iterations is presented in Table 5. As could be

seen from the table, the scout bee is regenerated randomly in the tenth and twentieth iterations

to avoid local minima. Better solutions are sought by local search procedures within the

neighbourhoods of all scout bees at different locations of the global search space. Figure 5

presents the movements of five scout bees. As seen, these five scouts find solutions with

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

15

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

different performance values, which prove the algorithm’s effective search capability.

Table 5. Survival of the first scout bee through 25 iterations

Iteration Task Sequence Iteration Task Sequence

Scout Bee 1 2 3 4 8 9 5 10 6 7 11 Iteration 13 1 8 2 3 9 10 4 5 6 7 11

Iteration-1 1 3 4 8 9 5 2 10 6 7 11 Iteration-14 1 8 2 3 9 10 4 5 6 7 11

Iteration-2 1 4 8 9 5 2 3 10 6 7 11 Iteration-15 1 8 2 3 9 4 5 6 7 10 11

Iteration-3 1 4 8 9 5 3 10 2 6 7 11 Iteration-16 1 8 2 3 9 4 5 6 7 10 11

Iteration-4 1 8 4 9 5 3 10 2 6 7 11 Iteration-17 1 8 2 3 9 4 5 6 7 10 11

Iteration-5 1 8 4 9 3 10 2 5 6 7 11 Iteration-18 1 8 2 3 9 4 5 6 7 10 11

Iteration-6 1 8 4 9 3 10 2 5 6 7 11 Iteration-19 1 8 2 3 9 4 5 6 7 10 11

Iteration-7 1 8 4 9 3 10 2 5 6 7 11 Iteration-20 1 8 4 2 5 9 3 10 6 7 11

Iteration-8 1 8 4 9 3 10 2 5 6 7 11 Iteration-21 1 8 4 2 9 5 3 10 6 7 11

Iteration-9 1 8 4 9 3 10 2 5 6 7 11 Iteration-22 1 8 4 2 9 5 3 6 7 10 11

Iteration-10 1 2 8 3 4 9 10 5 6 7 11 Iteration-23 1 8 4 2 5 3 6 7 9 10 11

Iteration-11 1 2 8 3 9 10 4 5 6 7 11 Iteration-24 1 4 8 2 5 3 6 7 9 10 11

Iteration-12 1 8 3 9 2 10 4 5 6 7 11 Iteration-25 1 4 8 2 5 3 6 7 9 10 11

Figure 5. The movements of the scout bees

The convergence of the artificial bee colony algorithm for solving the given instance is also

depicted in Figure 5 (please see ‘Solution’ curve). As could be seen from the figure, the

algorithm finds the best solution in only three iterations consuming a CPU time of 0.1976 s.

Please note that the solution curve does not follow the minimum values for all iterations. This

is why scouts find solutions with larger number of workstations, which yield lower

performance values (see the shaded area in the figure). However, such solutions are discarded

by the algorithm as the solutions with fewer number of workstations are favourable in real

world implementations. The task assignments, the weighted-workload times, the number of

workstations and the performance value (calculated using Equation (2)) of the best balancing

950

1000

1050

1100

1150

1200

1250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

O
b

je
ct

iv
e

V
al

u
e

Iteration Number

Unacceptable Scout-1 Scout-2 Scout-3 Scout-4 Scout-5 Solution

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

16

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

solution are given in Table 6 along with the CPU time consumed. Five workstations are

needed to perform 11 tasks under the predefined cycle time constraint.

Table 6. Best balancing solution obtained using artificial bee colony algorithm

Task Assignment
 Number of

Stations

Performance

Value
CPU (s)

Workstations Station-1 Station-2 Station-3 Station-4 Station-5

5 86.883 0.1976 Assigned Tasks 1,4 5,6,2,8 3 9,7 10,11

Weighted-workloads 10.25 10.76 9.60 8.36 9.60

 Tabu search algorithm

Tabu search, defined and developed primarily by Glover (1989, 1990), is a neighbourhood

search algorithm which uses effective local search procedures. It uses some taboos in

neighbourhood search process to escape local optimality and has been used widely for solving

complex combinatorial optimisation problems (Özcan, et al., 2010). Please refer to Glover and

Laguna (1993, 1997) and Gendreau (2003) for more details on tabu search.

With motivation from successful applications of tabu search in assembly line balancing

domain, a tabu search algorithm is also developed in this research as well as the artificial bee

colony algorithm proposed. The steps of tabu search procedure proposed in this research are

explained below through a numerical example.

Step 1. The algorithm starts by determining the algorithmic parameters and initialising the

tabu lists. The tabu size and the maximum number of iterations are determined as

10 and 300, respectively, for this example.

Step 2. An initial solution is generated randomly using the same procedure to produce

scout bees for artificial bee colony algorithm in the previous subsection (please see

Section 0). To give an example, let us assume that the initial solution has the same

task sequence (1-2-3-4-8-9-5-10-6-7-11) given in the first row of Table 3.

Step 3. A neighbourhood solution is generated. To do this, as in artificial bee colony

algorithm, two random numbers (𝑟1 and 𝑟2) are generated and a new

neighbourhood solution is built by moving the task located at 𝑟1
th position to 𝑟2

th

position. For example, let 𝑟1 and 𝑟2 be 2 and 5, respectively. Then, the new

neighbourhood solution will have the task sequence of 1-3-4-8-2-9-5-10-6-7-11.

Step 4. The feasibility of newly generated neighbourhood solution is ensured by checking

the precedence relationships matrix of the problem as well as the tabu tables used

by the algorithm. The proposed tabu search algorithm incorporates two tabu tables,

which are given in Table 7. The first table, given in Table 7a, is used to hold the

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

17

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

number of iteration values during which the tasks cannot be moved to the same

position again. The second table, given in Table 7b, forbids moving the tasks into

their previous locations until a predefined iteration number.

Step 5. If the newly generated neighbourhood solution is not feasible, new random values

are determined for 𝑟1 and 𝑟2 until the feasibility is maintained. An unfeasible

solution becomes feasible upon the sequence of tasks in this solution satisfy the

precedence relationships matrix.

Step 6. The values in the tabu tables are updated based on the move performed. In our

example, the neighbourhood solution is built by moving the task placed in the

second position to fifth position.

 In tabu table-1, the value of cell corresponding to the second row of fifth

column is updated as 𝐶𝑒𝑙𝑙_𝑉𝑎𝑙𝑢𝑒 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑁𝑢𝑚𝑏𝑒𝑟 +

𝑇𝑎𝑏𝑢_𝑆𝑖𝑧𝑒 = 1 + 10 = 11. The cell that will be updated is determined based

on the task’s number (in our case it is task 2 as it is located at the second

position in the task sequence) and its new location (it is five as the task is

relocated to fifth position in the task sequence). Thus, it is not allowed to

move task 2 into fifth position again until iteration 11.

 In tabu table-2, the value of cell on fifth row and second column is updated as

𝐶𝑒𝑙𝑙_𝑉𝑎𝑙𝑢𝑒 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑁𝑢𝑚𝑏𝑒𝑟 + 2 = 3 . By this way, it is

prohibited to relocate task 2 in its previous position in the next iteration. Thus,

the algorithm avoids getting stuck in local optima. Table 7 depicts the tabu

tables after these operations.

Table 7. Tabu tables employed by the tabu search algorithm

a) Tabu table-1 b) Tabu table-2

Task

No

Position

Position

Position

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 11 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0

5 0 3 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

18

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

Step 7. The current solution and the new neighbourhood solution are compared to each

other based on their performance values, which are computed as in the artificial

bee colony algorithm. If the neighbourhood solution has a better performance

value than the current solution, the neighbourhood solution replaces the current

solution.

Step 8. This cycle continues until the maximum iteration number and the best solution is

taken. Table 8 shows the best solution found by tabu search algorithm.

Table 8. The best balancing solution obtained by the tabu search algorithm

Task Assignment
 Number of

Stations

Performance

Value
CPU (s)

Workstations Station-1 Station-2 Station-3 Station-4 Station-5

5 82.818 0.0175 Assigned Tasks 1, 4 3 8,2,5 9,6 7,10,11

Weighted-workloads 10.250 9.600 8.457 8.330 10.134

As can be seen from the table, a total of five workstations are required to perform 11 tasks,

which is the same as the artificial bee colony algorithm. However, tabu search finds a better

configuration of tasks, which has a better performance value (82.818) than the performance

value of the solution (86.883) obtained by the artificial bee colony algorithm.

5. Experimental Study

 Test data

Twenty test problems, whose main characteristics are given in Table 9, are taken from Simaria

and Vilarinho (2002) and solved using the proposed artificial bee colony algorithm and tabu

search algorithm. Information regarding the precedence diagrams used for the problem set is

shown in the second column. 𝑇𝑗 and 𝐶𝑇 columns denote the number of tasks of the combined

precedence diagram and the cycle time of the assembly line, respectively. Models demands are

given in 𝐷𝑗 column. The minimum, maximum and average processing times of tasks for the

considered test problems are also presented in columns 𝑝𝑡𝑚𝑖𝑛, 𝑝𝑡𝑚𝑎𝑥 and 𝑝𝑡𝑎𝑣𝑔.

Please note that if the processing time of a task belonging to any product model exceeds the

cycle time, processing times of that task are divided into two for all product models. The

reason for this modification is that parallel workstations are not allowed in the current work,

different from the original study belonging to Simaria and Vilarinho (2002).

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

19

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

Table 9. Data for computational tests

Test Problem 𝑻𝒋 𝑪𝑻 𝒎𝒋 𝑫𝒋 𝒑𝒕𝒎𝒊𝒏 𝒑𝒕𝒎𝒂𝒙 𝒑𝒕𝒂𝒗𝒈

1 Bowman 8 10 A 20 1.8 7.8 3.73
B 28 1.8 7.9 3.57

2 Bowman 8 10
A 16 0 10 3.54
B 24 0 7 4.40
C 8 0 10 5.87

3 Gökçen and Erel (1998) 11 10 A 20 1.9 8.8 4.97
B 28 0 8.7 3.37

4 Gökçen and Erel (1998) 11 12.5
A 16 0 9.6 3.56
B 24 1 9.6 4.59
C 8 1 9.6 4.59

5 Mitchel 21 10 A 20 0 9.6 5.29
B 28 0 9.6 4.46

6 Mitchel 21 10
A 16 0 7.5 4.06
B 24 0 7.5 4.19
C 8 0 10 4.68

7 Simaria and Vilarinho 25 10 A 20 0 9.6 4.74
B 28 0 9.4 4.35

8 Simaria and Vilarinho 25 10
A 16 0 9.9 4.37
B 24 1 10 4.85
C 8 1 10 4.87

9 Heskiaoff 28 10 A 20 0 10 5.46
B 28 0 10 5.75

10 Heskiaoff 28 10
A 16 0 10 5.39
B 24 0 10 5.53
C 8 0 10 5.78

11 Sawyer 30 10 A 20 0 9.9 4.49
B 28 0 9.9 4.46

12 Sawyer 30 10
A 16 0 9.9 4.65
B 24 0 9.9 4.40
C 8 0 9.9 4.79

13 Lutz1 32 10 A 20 0 9.5 3.85
B 28 0 10 4.21

14 Lutz1 32 10
A 16 0 9.7 4.60
B 24 0 9.5 4.40
C 8 0 9.7 4.61

15 Gunther 35 10 A 20 0 8.2 4.97
B 28 0 9 4.88

16 Gunther 35 10
A 16 0 8.7 4.66
B 24 0 8.7 4.84
C 8 0 8.8 4.90

17 Kilbridge and Wester 45 10 A 20 0 10 4.63
B 28 0 10 4.53

18 Kilbridge and Wester 45 10
A 16 0 9.3 4.64
B 24 0 9.3 4.61
C 8 0 9.3 4.24

19 Tonge 70 10 A 20 0 9.9 4.85
B 28 0 10 4.99

20 Tonge 70 10
A 16 0 9.7 5.02
B 24 0 9.7 5.02
C 8 0 9.6 5.03

 Parameter setting

The proposed artificial bee colony algorithm and tabu search algorithm have been coded in C#

environment and run on a workstation with the specifications of Intel Xeon CPU E5-2643

3.30GHz (2 processors) with 128GB RAM. The parameters of the algorithm were determined

through a well-known design of experiments method, response surface methodology (RSM) to

get high quality solutions (where 𝛽 = 100 for all test problems).

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

20

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

RSM is a combination of statistical and mathematical techniques and has been used

extensively to examine and characterise problems and/or processes in which the input

variables (called factors) influence the outputs (called response) of the process (Bicakci,

Akdas, & Deniz Karaoglan, 2014). It was proposed by Box and Wilson (1951) to determine

the best combination of input parameters that minimise the output of a real non-simulated

system. The main advantage of RSM is its capability to provide process optimisation by

simultaneous testing of numerous factors in a limited number of experiments. This consumes

less time and effort in comparison to experimenting all possible combinations of parameters

one-by-one. Another advantage of RSM is that RSM provides a mathematical relation between

the inputs and outputs of the system, including the interactions between the factors. Equation

(4) shows the general second-order polynomial response surface model (full quadratic model)

used for the experimental design (Demirtas & Karaoglan, 2012).

𝑌𝑢 = 𝛽0 + ∑ 𝛽𝑖𝑋𝑖𝑢
𝑛
𝑖=1 + ∑ 𝛽𝑖𝑖𝑋𝑖𝑢

2𝑛
𝑖=1 + ∑ 𝛽𝑖𝑗𝑋𝑖𝑢𝑋𝑗𝑢

𝑛
𝑖<𝑗 + 𝑒𝑢 (4)

where 𝑌𝑢 is the corresponding response; 𝛽0, 𝛽𝑖, 𝛽𝑖𝑖 and 𝛽𝑖𝑗 represent the regression

coefficients; 𝑋𝑖𝑢 and 𝑋𝑗𝑢 are coded values of the 𝑖𝑡ℎ and 𝑗𝑡ℎ input parameters (𝑖 < 𝑗)

respectively, and 𝑒𝑢 is the residual experimental error of the 𝑢𝑡ℎ observation.

The model in terms of the observations may be written in matrix notation as 𝑌 = 𝛽𝑋 + 𝜀,

where 𝑋 and 𝑌 represent input and output matrices, respectively; and 𝜀 is the matrix of

residuals (error term) (Montgomery, 2001). The least square estimator of 𝛽 matrix that is

composed of coefficients of the regression equation is calculated as 𝛽 = (𝑋′𝑋)−1𝑋′𝑌 (I.

Kucukkoc, Karaoglan, et al., 2013; Yalcinkaya & Bayhan, 2009). The fitted regression models

with the fitness value coefficients are formulated in the next section.

5.2.1. Optimisation of artificial bee colony algorithm parameters

Experiments have been conducted on a randomly selected large-sized test problem (#15) given

in Section 5.1. The factor levels of artificial bee colony parameters for the experiments are

listed in Table 10.

Table 10. Levels and values of parameters belonging to artificial bee colony algorithm

Parameter Symbol
Level

-1 0 1

The number of scout bees S 5 20 35

The number of follower bees F 5 15 25

The maximum number of iterations Maxiter 50 175 300

Life time LF 10 25 40

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

21

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

Table 11 shows the experimental design, detailing the experiment run order and un-coded

values of the algorithm parameters. To have a more consistent analysis, the artificial bee

colony algorithm was run for 5 times with the designated factor levels for each experiment.

The average values of the responses (Number of Stations and LB Fitness, where LB means

lexicographic bottleneck) are reported in Table 11.

A commercial statistical software package (Minitab-17) was used to find the coefficients

matrix and establish the mathematical models for predicting the responses (namely, Number of

Stations and LB Fitness). The regression equations, which depict the RSM based mathematical

models representing the relations between the responses and the factors based on the results

observed, are given in Equations (5) and (6) in un-coded units. Please see Figure A1 (in

Appendices) for residual plots.

Table 11. Design of experiments matrix showing un-coded values and observed responses

Experiment

No

Run

Order

 Factors (Un-coded Values) Responses (Average)

 S F Maxiter LF Number of Stations LB Fitness

1 1 5 5 50 10 22.90 95.96
2 2 35 5 50 10 22.20 96.95
3 3 5 25 50 10 22.40 95.93
4 4 35 25 50 10 21.90 95.95
5 5 5 5 300 10 22.30 97.14
6 6 35 5 300 10 22.00 95.04
7 7 5 25 300 10 22.10 94.94
8 8 35 25 300 10 22.00 94.86
9 9 5 5 50 40 23.20 95.05
10 10 35 5 50 40 22.50 95.83
11 11 5 25 50 40 23.20 93.42
12 12 35 25 50 40 22.10 96.26
13 13 5 5 300 40 22.80 94.42
14 14 35 5 300 40 21.80 96.66
15 15 5 25 300 40 22.30 95.46
16 16 35 25 300 40 22.00 94.94
17 17 5 15 175 25 22.40 95.64
18 18 35 15 175 25 21.90 95.55
19 19 20 5 175 25 22.10 96.14
20 20 20 25 175 25 21.90 96.07
21 21 20 15 50 25 22.30 95.35
22 22 20 15 300 25 22.00 94.94
23 23 20 15 175 10 21.90 95.65
24 24 20 15 175 40 22.10 95.94
25 25 20 15 175 25 22.00 95.34
26 26 20 15 175 25 22.10 95.84
27 27 20 15 175 25 22.10 94.94
28 28 20 15 175 25 22.10 95.64
29 29 20 15 175 25 22.00 95.05
30 30 20 15 175 25 22.00 94.94
31 31 20 15 175 25 22.00 95.86

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

22

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠
= 23.258 − 00490 ∗ 𝑆 − 0.0282 ∗ 𝐹 − 0.00553 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 + 0.0195 ∗ 𝐿𝐹
+ 0.000704 ∗ 𝑆2 + 0.000084 ∗ 𝐹2 + 0.000010 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟2 + 0.000037 ∗ 𝐿𝐹2

+ 0.000292 ∗ 𝑆 ∗ 𝐹 + 0.000043 ∗ 𝑆 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 − 0.000417 ∗ 𝑆 ∗ 𝐿𝐹 + 0.000035
∗ 𝐹 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 + 0.000125 ∗ 𝐹 ∗ 𝐿𝐹 − 0.000037 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 ∗ 𝐿𝐹

(5)

𝐿𝐵 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 97.68 + 0.0061 ∗ 𝑆 − 0.180 ∗ 𝐹 + 0.01096 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 − 0.1182 ∗ 𝐿𝐹 − 0.00022
∗ 𝑆2 + 0.00462 ∗ 𝐹2 − 0.000032 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟2 + 0.00068 ∗ 𝐿𝐹2 + 0.00015 ∗ 𝑆 ∗ 𝐹
− 0.000170 ∗ 𝑆 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 + 0.001812 ∗ 𝑆 ∗ 𝐿𝐹 − 0.000041 ∗ 𝐹 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟
+ 0.00065 ∗ 𝐹 ∗ 𝐿𝐹 + 0.000124 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 ∗ 𝐿𝐹

(6)

The parameter optimisation was performed with the aim of minimising Number of Stations

and LB Fitness values, where the importance of responses were set to 2 and 1, respectively.

The optimal un-coded process parameter setting of artificial bee colony algorithm was found

as 𝑆 = 28.03, 𝐹 = 23.18, 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 = 277.27 and 𝐿𝐹 = 10 with a composite desirability of

𝑑 = 0.80. The optimisation plot is given in Figure 6.

Figure 6. Optimisation results for the parameters of artificial bee colony algorithm

5.2.2. Optimisation of the tabu search algorithm parameters

The optimised parameters of tabu search algorithm were the number of iterations (Maxiter)

and tabu size. Experiments have been conducted on the same test problem (#15) used for

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

23

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

optimising artificial bee colony parameters. Table 12 presents the factor levels for Maxiter and

tabu size while Table 13 provides experimental design, detailing the experiment run order and

un-coded values of the algorithm parameters, as well as observed responses.

Table 12. Levels and values of parameters belonging to tabu search algorithm

Parameter Symbol
Level

-1 0 1

The maximum number of iterations Maxiter 100 550 1000

Tabu size Tabu size 10 20 30

As in the previous subsection, the tabu search algorithm was run for 5 times for each

experiment using the designated factor values and the average values of the observed

responses are reported. The regression equations, which depict the RSM based mathematical

models that represent the relations between the responses and the factors based on the

observed results, are given in Equations (7) and (8) in un-coded units. Please see Figure A2 (in

Appendices) for residual plots.

Table 13. Design of experiments matrix showing un-coded values and observed responses

Experiment

No

Run

Order

 Factors (Un-coded Units) Responses (Average)

 Maxiter Tabu size Number of Stations LB Fitness

1 1 100 10 23.40 97.74
2 2 1000 10 23.00 94.71
3 3 100 30 23.80 94.72
4 4 1000 30 23.00 94.10
5 5 100 20 24.00 94.18
6 6 1000 20 22.80 97.36
7 7 550 10 24.20 89.74
8 8 550 30 23.80 89.50
9 9 550 20 23.00 94.52
10 10 550 20 23.00 93.90
11 11 550 20 23.00 95.52
12 12 550 20 22.60 94.52
13 13 550 20 23.40 94.49

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠
= 25.08 + 0.00027 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 − 0.175 ∗ 𝑇𝑎𝑏𝑢𝑆𝑖𝑧𝑒 − 0.000001 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟2

+ 0.00469 ∗ 𝑇𝑎𝑏𝑢𝑆𝑖𝑧𝑒2 − 0.000022 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 ∗ 𝑇𝑎𝑏𝑢𝑆𝑖𝑧𝑒
(7)

𝐿𝐵𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 90.68 − 0.02111 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 + 0.978 ∗ 𝑇𝑎𝑏𝑢𝑆𝑖𝑧𝑒 + 0.000017 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟2 − 0.0279
∗ 𝑇𝑎𝑏𝑢𝑆𝑖𝑧𝑒2 + 0.000134 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 ∗ 𝑇𝑎𝑏𝑢𝑆𝑖𝑧𝑒

(8)

A multi-objective optimisation analysis was performed to minimise the Number of Stations

and LB Fitness value based on the developed mathematical formulation in Equations (7) and

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

24

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

(8). The Minitab-17 software was utilised for multi-objective optimisation with the weights of

2 and 1 for Number of Stations and LB Fitness, respectively. The optimum parameter setting

was obtained as 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 = 881.81 and 𝑇𝑎𝑏𝑢 𝑆𝑖𝑧𝑒 = 24.54 with a composite desirability of

𝑑 = 0.54 (see Figure 7).

Figure 7. Optimisation results for tabu search parameters

 Experimental test results

This section presents the experimental tests, which were conducted using the optimised values

of the algorithm parameters for each solution method, namely artificial bee colony algorithm

and tabu search algorithm. The decimals obtained from the RSM for the artificial bee colony

and tabu search parameters have been rounded to the nearest integer value. Thus, optimum

parameters were considered as 𝑆 = 28, 𝐹 = 23, 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 = 277 and 𝐿𝐹 = 10 for artificial

bee colony algorithm and 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 = 882 and 𝑇𝑎𝑏𝑢 𝑆𝑖𝑧𝑒 = 25 for tabu search algorithm and

the test problems have been solved.

As mentioned earlier, a tabu search algorithm, as well as artificial bee colony algorithm, was

also developed to provide a comprehensive experimental study. Table 14 reports the best

results obtained for each test problem using artificial bee colony and tabu search algorithms.

The columns K and IT provide the total number of workstations and the iteration number in

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

25

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

which the best solution is found, respectively. Furthermore, the CPU time consumed to solve

the relevant test problem by each algorithm is presented in the CPU column. The overall

performance measures (𝜹) of the best solutions are also provided in Table 14 to provide

comparable results for future studies.

Table 14. Computational test results

Problem #
 Artificial Bee Colony Tabu Search

 K 𝜹 IT CPU K 𝜹 IT CPU

1 4 79.34 1 39.92 4 79.34 17 0.01

2 8 78.87 1 45.83 8 78.87 32 0.01

3 7 87.85 1 44.21 7 87.85 50 0.01

4 5 81.86 1 44.45 5 81.86 118 0.00

5 13 97.98 4 45.86 13 97.98 232 0.01

6 13 82.52 5 53.09 13 84.32 49 0.01

7 15 94.89 38 53.09 16 94.89 258 0.01

8 14 99.98 8 62.89 15 99.88 353 0.01

9 19 100.99 30 52.80 20 101.00 171 0.01

10 19 101.00 92 57.62 19 101.00 106 0.01

11 16 99.96 39 65.11 17 99.96 487 0.01

12 18 99.98 62 47.92 18 99.98 153 0.02

13 17 95.94 8 48.15 17 95.94 496 0.02

14 18 97.46 7 47.53 18 97.46 89 0.02

15 22 94.94 9 47.24 23 93.91 281 0.02

16 21 90.41 24 47.27 22 87.88 487 0.02

17 25 97.71 79 47.22 25 97.65 483 0.02

18 26 97.92 96 46.80 27 93.93 400 0.02

19 45 99.97 66 56.36 44 99.97 476 0.03

20 44 96.97 80 74.51 46 96.96 413 0.04

As can be seen from Table 14, artificial bee colony algorithm found solutions with fewer

numbers of workstations for test problems 7-9, 11, 15, 16, 18 and 20. That is why tabu search

algorithm found solutions with lower 𝛿 values for the same instances, except test problem 9.

In this particular case, artificial bee colony algorithm outperformed tabu search in terms of the

number of workstations value as well as the 𝛿 value. In only one test problem (test problem

19), tabu search obtained a solution with one lower workstation than the one found by

artificial bee colony algorithm (where 𝛿 values were the same). For test problems 7 and 11, the

solution gathered by artificial bee colony algorithm requires one lower workstation than the

one gathered by tabu search (while 𝛿 values were the same for both methods). It can be said

that the artificial bee colony algorithm provided more promising results in comparison with

tabu search in terms of the number of workstations. On the other hand, tabu search performed

better in obtaining smoother workload distributions with better 𝛿 values. Therefore, it can be

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

26

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

concluded that neither of the algorithms outperformed the other one in terms of the sought

performance measures.

The weighted-workloads of workstations for the solutions obtained are given in descending

order in the Appendices section for both methods. As seen from the table, the weighted-

workloads of workstations are quite close to each other in both solution strategies. Please note

that the difference between the weighted-workloads of workstations is a bit higher in some

solutions. This situation occurs if there are tasks, which require zero processing time for some

product models. Another reason could be the processing times of tasks, which exceed the

cycle time were divided into “two” to make the dataset suitable for the experimental study.

Therefore, the compatibility of the total workload of the test problems for predefined cycle

times may have been impaired.

6. Discussion

The methodology used in this research adopted an RSM based parameter optimisation strategy

for the proposed artificial bee colony and tabu search algorithms. The variants of both artificial

bee colony and tabu search algorithms have been applied successfully in solving many

assembly line balancing problems in the literature. However, as known, there is no algorithm,

which works perfectly for all optimisation problems.

Although artificial bee colony and tabu search algorithms are recognised with employing

fewer control parameters (Dervis Karaboga & Akay, 2009), both algorithms need some

preliminary work to determine the values of control parameters, as in the majority of heuristic

and meta-heuristic approaches. The proposed RSM based parameter optimisation technique

aims to overcome this issue and determine the best combinations of different parameter values

for both algorithms. As it concurrently determines all input parameters (or factors) of the

system for an optimised output (or response), RSM is more economical than conventional

experimental or optimisation methods in which one input parameter at a time is optimised.

Also, the regression equation produced by the RSM represents the effects for binary

combinations of input parameters on the output. Furthermore, in comparison to other design of

experiments techniques (including Taguchi and 2k factorial design), RSM has the strength of

providing optimised parameter values between the parameter levels determined by the user.

One could argue that the artificial bee colony and tabu search parameters could be optimised

for each test problem individually. However, due to the page limit, the parameters have been

optimised for a large-sized test problem (i.e. #15) and the same parameter sets have been used

for solving all test problems. The truth lying behind this idea was that the parameters used for

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

27

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

solving the large-sized problems will have the ability to solve smaller sized ones. Although

this may yield extra computational time in terms of solving the small and medium-sized test

problems, the CPU times reported together with the experimental results are quite desirable

due to the efficient and compact structure of the developed algorithms.

7. Conclusions and Future Work

Different from existing traditional mostly studied types of line balancing problems in the

literature, a new type of problem, called lexicographic bottleneck assembly line balancing

problem, has been defined for the simple (straight) assembly line configuration, recently.

Moving from that base point, the lexicographic bottleneck assembly line balancing problem

has been handled in a mixed-model production environment, which is a more flexible but

complicated version of the simple assembly line balancing system tackled in the former study.

One of the major contributions of this paper is addressing the lexicographic bottleneck mixed-

model assembly line balancing problem. The weighted-workloads of workstations have been

minimised hierarchically starting from the most heavily loaded workstation, followed by the

second heavily loaded workstation and so on. Illustrative examples were given to describe the

problem and explore its main characteristics. The artificial bee colony and tabu search

algorithms developed for efficiently solving the problem by dealing with the variations in

processing times of tasks among different product models are of major contributions of this

research. The solution procedures of the algorithms were depicted using numerical examples.

Furthermore, RSM has been applied to systematically optimise the parameters of the proposed

algorithms for the first time in the literature. In accordance with the experimental test results,

artificial bee colony algorithm found slightly better solutions than tabu search in terms of the

number of workstations. However, tabu search performed better in obtaining smoother

workload distributions in terms of the lexicographic bottleneck objective. It was observed that

CPU times consumed by the algorithms were quite reasonable especially for the large-sized

test problems.

The lexicographic bottleneck model has a wide range of application area in the assembly line

balancing domain. Therefore, the proposed lexicographic bottleneck model can be applied to

other types of line configurations, e.g. two-sided lines, U-shaped lines, parallel lines, etc. in

future studies. New solution methods can also be developed and their performances can be

compared to the performances of the algorithms developed in the current work. Developing

robust models considering dynamic model demands in a lexicographic bottleneck environment

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

28

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

may also be of interest for researchers.

Appendices

Figure A1. Residual plots for artificial bee colony parameter optimisation

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

29

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

Figure A2. Residual plots for tabu search parameter optimisation

Table A1. The weighted-workloads of workstations when the problems are solved using artificial bee

colony algorithm

The Weighted-workloads of Workstations in Descending Order

1 7.858 - 7.5 - 7.259 - 6.458

2 7.825 - 6.15 - 4.69 - 4.02 - 3.9 - 3.652 - 3 - 1.7

3 8.7 - 8.4 - 6.584 - 6.26 - 5.6 - 5.223 - 3.696

4 10.134 - 9.79 - 9.6 - 8.917 - 8.33

5 9.7 - 9.7 - 9.6 - 8.936 - 8.5 - 8.038 - 7.7 - 7.482 - 7.438 - 6.474 - 6.4 - 6.1 - 4.998

6 8.17 - 8.083 - 8 - 7.65 - 7.3 - 7 - 6.85 - 6.653 - 6.599 - 5.9 - 5.76 - 5.67 - 5.217

7 9.4 - 8.8 - 8.788 - 8.568 - 8.46 - 8.4 - 7.858 - 7.7 - 7.5 - 7.5 - 7.32 - 6.66 - 6.6 - 5.146 - 4.116

8 9.9 - 9.75 - 9.566 - 9.383 - 9.14 - 8.8 - 8.7 - 8.687 - 8.617 - 7.8 - 7.2 - 6.8 - 6.7 - 6.299

9 10 - 9.8 - 9.8 - 9.732 - 9.7 - 9.6 - 9.2 - 9.162 - 9.158 - 9.1 - 8.8 - 8.6 - 7.9 - 7.7 - 7.6 - 7.348 - 5.22 - 5.22 - 4.158

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

30

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

10 10 - 9.9 - 9.585 - 9.3 - 9.25 - 9.2 - 8.972 - 8.6 - 8.6 - 8.6 - 8.4 - 8.398 - 8 - 8 - 7 - 6.685 - 6.03 - 5.45 - 4.933

11 9.9 - 9.5 - 9.1 - 8.96 - 8.77 - 8.7 - 8.7 - 8.6 - 8.5 - 8.374 - 8.3 - 8.3 - 7.868 - 7.6 - 7 - 6.048

12 9.9 - 9.7 - 9.1 - 9.068 - 8.784 - 7.94 - 7.791 - 7.75 - 7.7 - 7.6 - 7.2 - 6.9 - 6.806 - 6.75 - 6.485 - 6.4 - 5.5 - 5.24

13 9.5 - 9.3 - 9.142 - 9.068 - 8.574 - 8.248 - 8.242 - 8.006 - 8 - 8 - 7.516 - 6.626 - 6.6 - 6.55 - 5.8 - 5.5 - 5.298

14 9.65 - 9.5 - 9.3 - 9.2 - 9.15 - 8.95 - 8.6 - 8.4 - 8.25 - 8.15 - 8.149 - 8.05 - 7.76 - 7.7 - 6.832 - 6.1 - 5.342 - 5.084

15 9.4 - 9.316 - 9.3 - 9 - 8.8 - 8.3 - 8.24 - 8.2 - 8.2 - 8 - 7.98 - 7.944 - 7.6 - 7.572 - 7.362 - 7.2 - 7.064 - 7 - 6.9 - 6.8 -

6.5 - 5.624

16 8.951 - 8.867 - 8.7 - 8.619 - 8.58 - 8.532 - 8.4 - 8.385 - 8.316 - 8.3 - 8.25 - 8.2 - 8.052 - 8 - 7.7 - 7.65 - 7.4 - 7.1 -

6.9 - 6.46 - 6.3

17 9.674 - 9.6 - 9.4 - 9.4 - 9.362 - 9.178 - 9.048 - 9.042 - 9 - 8.9 - 8.8 - 8.8 - 8.74 - 8.6 - 8.434 - 8.384 - 8.306 - 8.3 -

7.9 - 7.6 - 7.206 - 6.68 - 6.344 - 5.7 - 3.36

18 9.698 - 9.3 - 9.2 - 9 - 9 - 8.8 - 8.7 - 8.6 - 8.517 - 8.496 - 8.478 - 7.926 - 7.9 - 7.878 - 7.85 - 7.75 - 7.719 - 7.6 -

7.583 - 7.47 - 6.85 - 6.6 - 6.45 - 6.424 - 6.251 - 4.9

19 9.9 - 9.6 - 9.6 - 9.3 - 9.2 - 8.8 - 8.736 - 8.7 - 8.7 - 8.632 - 8.5 - 8.5 - 8.4 - 8.4 - 8.4 - 8.3 - 8.218 - 8.2 - 8.106 - 8.1

- 8.016 - 7.9 - 7.766 - 7.7 - 7.666 - 7.5 - 7.5 - 7.4 - 7.2 - 7.18 - 7.162 - 7.064 - 7.042 - 6.848 - 6.8 - 6.7 - 6.7 - 6.7

- 6.6 - 6.526 - 6.4 - 5.8 - 5.14 - 5.058 - 4.64

20 9.6 - 9.6 - 9.5 - 9.3 - 9.25 - 9.231 - 9.2 - 9.1 - 8.985 - 8.94 - 8.817 - 8.8 - 8.7 - 8.633 - 8.516 - 8.5 - 8.5 - 8.45 - 8.4

- 8.4 - 8.4 - 8.4 - 8.383 - 8.3 - 8.2 - 8.15 - 8.1 - 8.1 - 8.051 - 8 - 8 - 7.984 - 7.958 - 7.92 - 7.9 - 7.551 - 7.4 - 7.15 -

6.797 - 6.5 - 4.35 - 4.02 - 3.85 - 3.5

Table A2. The weighted-workloads of workstations when the problems are solved using tabu search

algorithm

The Weighted-workloads of Workstations in Descending Order

1 7.858 - 7.5 - 7.259 - 6.458

2 7.825 - 6.15 - 4.69 - 4.02 - 3.9 - 3.652 - 3 - 1.7

3 8.7 - 8.4 - 6.584 - 6.26 - 5.6 - 5.223 - 3.696

4 10.134 - 9.79 - 9.6 - 8.917 - 8.33

5 9.7 - 9.7 - 9.6 - 8.936 - 8.5 - 8.038 - 7.738 - 7.7 - 6.682 - 6.6 - 6.474 - 6.4 - 4.998

6 8.35 - 8.17 - 7.498 - 7.3 - 7.25 - 7.034 - 7 - 6.85 - 6.653 - 5.9 - 5.87 - 5.76 - 5.217

7 9.4 - 8.8 - 8.788 - 8.46 - 8 - 7.7 - 7.5 - 7.458 - 7.146 - 7.1 - 6.774 - 5.9 - 5.5 - 5.276 - 5.146 - 3.868

8 9.9 - 8.7 - 8.687 - 8.583 - 8.266 - 8.14 - 7.8 - 7.8 - 7.7 - 7.45 - 7.317 - 7.2 - 6.8 - 6.7 - 6.299

9 10 - 9.858 - 9.8 - 9.732 - 9.2 - 9.162 - 8.9 - 8.8 - 8.7 - 8.2 - 8.1 - 7.7 - 7.6 - 7.6 - 7.3 - 6.348 - 6.2 - 5.22 - 5.22 -

4.158

10 10 - 9.9 - 9.585 - 9.3 - 9.25 - 9.2 - 9.048 - 8.972 - 8.6 - 8.6 - 8.6 - 8.4 - 8.217 - 8.203 - 8 - 7.968 - 6.03 - 5.5 - 1.53

11 9.9 - 9.5 - 9.1 - 8.7 - 8.7 - 8.568 - 8.53 - 8.5 - 8.3 - 8.3 - 7.8 - 7.716 - 7 - 6.758 - 6.616 - 6.4 - 3.832

12 9.9 - 9.7 - 9.251 - 9.1 - 7.734 - 7.7 - 7.64 - 7.535 - 7.518 - 7.44 - 7.2 - 7.04 - 6.9 - 6.806 - 6.75 - 6.7 - 6.4 - 5.3

13 9.5 - 9.3 - 9.142 - 9.068 - 9.048 - 8.574 - 8.242 - 8 - 8 - 7.516 - 7.206 - 6.626 - 6.6 - 6.55 - 5.8 - 5.5 - 5.298

14 9.65 - 9.5 - 9.3 - 9.2 - 9.15 - 8.95 - 8.6 - 8.4 - 8.25 - 8.166 - 8.15 - 7.76 - 7.742 - 7.7 - 6.749 - 6.1 - 5.65 - 5.15

15 9.3 - 9 - 8.7 - 8.3 - 8.2 - 8.2 - 7.944 - 7.756 - 7.6 - 7.58 - 7.572 - 7.5 - 7.5 - 7.4 - 7.362 - 7.2 - 7.064 - 6.9 - 6.8 -

6.5 - 6.5 - 6.126 - 5.298

16 8.7 - 8.7 - 8.385 - 8.369 - 8.332 - 8.316 - 8.3 - 8.28 - 8.25 - 8.2 - 8 - 7.95 - 7.703 - 7.7 - 7.6 - 7.4 - 7.1 - 6.9 - 6.3 -

5.917 - 5.9 - 5.36

17 9.668 - 9.6 - 9.4 - 9.4 - 9.362 - 9.178 - 9.048 - 8.9 - 8.824 - 8.8 - 8.8 - 8.706 - 8.6 - 8.442 - 8.384 - 8.314 - 8.306 -

8.3 - 8.2 - 7.9 - 7.5 - 7.4 - 6.26 - 5.106 - 3.36

18 9.3 - 9.2 - 9.2 - 9 - 8.909 - 8.8 - 8.7 - 8.5 - 8.498 - 8.3 - 7.9 - 7.85 - 7.75 - 7.719 - 7.6 - 7.574 - 7.5 - 7.5 - 7.5 -

7.47 - 7.128 - 6.51 - 6.424 - 6.191 - 6.017 - 4.9 - 3

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

31

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

19 9.9 - 9.6 - 9.6 - 9.3 - 9.2 - 8.9 - 8.862 - 8.8 - 8.758 - 8.736 - 8.7 - 8.6 - 8.516 - 8.5 - 8.5 - 8.402 - 8.4 - 8.316 -

8.216 - 8.2 - 8.148 - 8.1 - 8 - 7.9 - 7.666 - 7.58 - 7.5 - 7.5 - 7.5 - 7.48 - 7.4 - 7.366 - 7.042 - 6.864 - 6.8 - 6.8 - 6.7

- 6.606 - 6.6 - 6.526 - 6.316 - 5.8 - 5.8 - 5.3

20 9.6 - 9.5 - 9.25 - 9.2 - 8.9 - 8.9 - 8.9 - 8.9 - 8.885 - 8.808 - 8.8 - 8.751 - 8.516 - 8.4 - 8.4 - 8.4 - 8.383 - 8.25 - 8.2

- 8.2 - 8.173 - 8.15 - 8.1 - 8.051 - 8 - 7.9 - 7.8 - 7.6 - 7.554 - 7.4 - 7.4 - 7.221 - 7.15 - 6.797 - 6.75 - 6.7 - 6.5 - 6.5

- 6.05 - 6.03 - 5.917 - 5.8 - 5.3 - 5.2 - 4.35 - 3.85

References

Akpinar, S., & Bayhan, G. M. (2011). A hybrid genetic algorithm for mixed model assembly line balancing

problem with parallel workstations and zoning constraints. Engineering Applications of Artificial

Intelligence, 24, 449-457.

Akpinar, S., Bayhan, G. M., & Baykasoglu, A. (2013). Hybridizing ant colony optimization via genetic

algorithm for mixed-model assembly line balancing problem with sequence dependent setup times

between tasks. Applied Soft Computing, 13, 574-589.

Akpinar, S., & Baykasoglu, A. (2014). Modeling and solving mixed-model assembly line balancing

problem with setups. Part I: A mixed integer linear programming model. Journal of Manufacturing
Systems, 33, 177-187.

Battaïa, O., & Dolgui, A. (2013). A taxonomy of line balancing problems and their solution approaches.

International Journal of Production Economics, 142, 259-277.

Battini, D., Faccio, M., Ferrari, E., Persona, A., & Sgarbossa, F. (2007). Design configuration for a mixed-

model assembly system in case of low product demand. International Journal of Advanced
Manufacturing Technology, 34, 188-200.

Bicakci, S., Akdas, D., & Deniz Karaoglan, A. (2014). Optimizing Karnopp friction model parameters of a

pendulum using RSM. European Journal of Control, 20, 180-187.

Box, G. E. P., & Wilson, K. B. (1951). On the Experimental Attainment of Optimum Conditions. Journal of

the Royal Statistical Society Series B-Statistical Methodology, 13, 1-45.

Boysen, N., Fliedner, M., & Scholl, A. (2007). A classification of assembly line balancing problems.

European Journal of Operational Research, 183, 674-693.

Bryton, B. (1954). Balancing of a Continuous Production Line. M.S. Thesis, Northwestern University,

Evanston, IL.

Buyukozkan, K., Kucukkoc, I., & Zhang, D. Z. (2014). Lexicographic Bottleneck Mixed-model Assembly

Line Balancing Problem: an Artificial Bee Colony Approach. In Proceedings of the 44th

International Conference on Computers and Industrial Engineering (CIE44), October 14-16 (pp.

1213-1227). Istanbul.

Chutima, P., & Chimklai, P. (2012). Multi-objective two-sided mixed-model assembly line balancing using

particle swarm optimisation with negative knowledge. Computers & Industrial Engineering, 62,

39-55.

Demirtas, M., & Karaoglan, A. D. (2012). Optimization of PI parameters for DSP-based permanent magnet

brushless motor drive using response surface methodology. Energy Conversion and Management,
56, 104-111.

Esmaeilian, G. R., Sulaiman, S., Ismail, N., Hamedi, M., & Ahmad, M. M. H. M. (2011). A tabu search

approach for mixed-model parallel assembly line balancing problem (type II). International
Journal of Industrial and Systems Engineering, 8, 407.

Gendreau, M. (2003). An Introduction to Tabu Search: Kluwer Academic Publishers.

Glover, F. (1989). Tabu Search – Part I. ORSA Journal on Computing,, 1, 190-206.

Glover, F. (1990). Tabu Search – Part II. ORSA Journal on Computing, 2, 4-32.

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

32

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

Glover, F., & Laguna, M. (1993). “Tabu Search,” Modern Heuristic Techniques for Combinatorial

Problems. In C. Reeves (Ed.), (pp. 70-150). Oxford Blackwell Scientific Publishing.

Glover, F., & Laguna, M. (1997). Tabu Search. Boston: Kluwer Academic Publishers.

Glover, F., & Marti, R. (2006). Tabu Search. In E. Alba & R. Martí (Eds.), Metaheuristic Procedures for

Training Neutral Networks (Vol. 36, pp. 53-69): Springer US.

Goh, W. T., & Zhang, Z. (2003). An intelligent and adaptive modelling and configuration approach to

manufacturing systems control. Journal of Materials Processing Technology, 139, 103-109.

Gökçen, H., & Erel, E. (1998). Binary integer formulation for mixed-model assembly line balancing

problem. Computers & Industrial Engineering, 34, 451-461.

Hamzadayi, A., & Yildiz, G. (2012). A genetic algorithm based approach for simultaneously balancing and

sequencing of mixed-model U-lines with parallel workstations and zoning constraints. Computers

& Industrial Engineering, 62, 206-215.

Kara, Y., & Tekin, M. (2009). A mixed integer linear programming formulation for optimal balancing of

mixed-model U-lines. International Journal of ProductionResearch, 47, 4201-4233.

Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical Report

TR06. In. Computer Engineering Department, Engineering Faculty, Erciyes University, Turkey.

Karaboga, D., & Akay, B. (2009). A comparative study of Artificial Bee Colony algorithm. Applied

Mathematics and Computation, 214, 108-132.

Kucukkoc, I., Buyukozkan, K., Satoglu, S. I., & Zhang, D. Z. (2015). A mathematical model and artificial

bee colony algorithm for the lexicographic bottleneck mixed-model assembly line balancing

problem. Journal of Intelligent Manufacturing.

Kucukkoc, I., Karaoglan, A. D., & Yaman, R. (2013). Using response surface design to determine the

optimal parameters of genetic algorithm and a case study. International Journal of Production
Research, 51, 5039-5054, doi: http://dx.doi.org/5010.1080/00207543.00202013.00784411.

Kucukkoc, I., & Yaman, R. (2013). A New Hybrid Genetic Algorithm to Solve More Realistic Mixed-

Model Assembly Line Balancing Problem. International Journal of Logistics Systems and

Management, 14, 405-425.

Kucukkoc, I., & Zhang, D. Z. (2013). Balancing Parallel Two-Sided Assembly Lines via a Genetic

Algorithm Based Approach. In Proceedings of the 43rd International Conference on Computers

and Industrial Engineering (CIE43) (pp. 1-16). The University of Hong Kong, Hong Kong.

Kucukkoc, I., & Zhang, D. Z. (2014). An Agent Based Ant Colony Optimisation Approach for Mixed-

Model Parallel Two-Sided Assembly Line Balancing Problem. In R. W. Grubbström & H. H.

Hinterhuber (Eds.), Pre-Prints of the Eighteenth International Working Seminar on Production
Economics (Vol. 3, pp. 313-328). Innsbruck, Austria: Congress Innsbruck.

Kucukkoc, I., & Zhang, D. Z. (2014a). Mathematical Model and Agent Based Solution Approach for the

Simultaneous Balancing and Sequencing of Mixed-Model Parallel Two-Sided Assembly Lines.

International Journal of Production Economics, 158, 314-333, doi:

http://dx.doi.org/310.1016/j.ijpe.2014.1008.1010.

Kucukkoc, I., & Zhang, D. Z. (2014b). Simultaneous balancing and sequencing of mixed-model parallel

two-sided assembly lines. International Journal of Production Research, 52, 3665-3687, doi:

http://dx.doi.org/3610.1080/00207543.00202013.00879618.

Kucukkoc, I., & Zhang, D. Z. (2015). A Mathematical Model and Genetic Algorithm based Approach for

Parallel Two-Sided Assembly Line Balancing Problem. Production Planning & Control, DOI:

10.1080/09537287.2014.994685.

Kucukkoc, I., & Zhang, D. Z. (2015). Type-E Parallel Two-Sided Assembly Line Balancing Problem:

Mathematical Model and Ant Colony Optimisation based Approach with Optimised Parameters.

Computers & Industrial Engineering.

Kucukkoc, I., Zhang, D. Z., & Keedwell, E. C. (2013). Balancing Parallel Two-Sided Assembly Lines with

Ant Colony Optimisation Algorithm. In Proceedings of the 2nd Symposium on Nature-Inspired

http://dx.doi.org/10.1016/j.eswa.2015.12.018
http://dx.doi.org/5010.1080/00207543.00202013.00784411
http://dx.doi.org/310.1016/j.ijpe.2014.1008.1010
http://dx.doi.org/3610.1080/00207543.00202013.00879618

Expert Systems with Applications

33

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

Computing and Applications (NICA) at Artificial Intelligence and the Simulation of Behaviour

(AISB) 2013 Convention (pp. 21-28). University of Exeter, Exeter, UK.

Lapierre, S. D., Ruiz, A., & Soriano, P. (2006). Balancing assembly lines with tabu search. European

Journal of Operational Research, 168, 826-837.

Liao, L. M., Huang, C. J., & Huang, J. H. (2012). Applying Multi-agent Approach to Mixed-model

Assembly Line Balancing. In Proceedings of the IEEE ICMIT.

Manavizadeh, N., Hosseini, N. S., Rabbani, M., & Jolai, F. (2013). A Simulated Annealing algorithm for a

mixed model assembly U-line balancing type-I problem considering human efficiency and Just-In-

Time approach. Computers & Industrial Engineering, 64, 669-685.

Manavizadeh, N., Rabbani, M., Moshtaghi, D., & Jolai, F. (2012). Mixed-model assembly line balancing in

the make-to-order and stochastic environment using multi-objective evolutionary algorithms.

Expert Systems with Applications, 39, 12026-12031.

Montgomery, D. C. (2001). Design and Analysis of Experiments, 5th ed. . New York: John Wiley.

Ozbakir, L., & Tapkan, P. (2011). Bee colony intelligence in zone constrained two-sided assembly line

balancing problem. Expert Systems with Applications, 38, 11947-11957.

Ozcan, U., Cercioglu, H., Gokcen, H., & Toklu, B. (2009). A Tabu Search Algorithm for the Parallel

Assembly Line Balancing Problem. Gazi University Journal of Science, 22, 313-323.

Ozcan, U., Cercioglu, H., Gokcen, H., & Toklu, B. (2010). Balancing and sequencing of parallel mixed-

model assembly lines. International Journal of Production Research, 48, 5089-5113.

Ozcan, U., Kellegoz, T., & Toklu, B. (2011). A genetic algorithm for the stochastic mixed-model U-line

balancing and sequencing problem. International Journal of Production Research, 49, 1605-1626.

Ozcan, U., & Toklu, B. (2009). Balancing of mixed-model two-sided assembly lines. Computers &

Industrial Engineering, 57, 217-227.

Özcan, U., Gökçen, H., & Toklu, B. (2010). Balancing parallel two-sided assembly lines. International

Journal of Production Research, 48, 4767-4784.

Özcan, U., & Toklu, B. (2008). A tabu search algorithm for two-sided assembly line balancing. The

International Journal of Advanced Manufacturing Technology, 43, 822-829.

Pastor, R. (2011). LB-ALBP: the lexicographic bottleneck assembly line balancing problem. International
Journal of Production Research, 49, 2425-2442.

Pastor, R., Chueca, I., & García-Villoria, A. (2012). A heuristic procedure for solving the Lexicographic

Bottleneck Assembly Line Balancing Problem (LB-ALBP). International Journal of Production
Research, 50, 1862-1876.

Pham, D. T., Koc, E., Ghanbarzadeh, A., Otri, S., Rahim, S., & Zaidi, M. (2006). The bees algorithm – a

novel tool for complex optimisation problems. In Proceedings of Innovative Production Machines

and Systems Virtual Conference (pp. 454-461).

Rabbani, M., Moghaddam, M., & Manavizadeh, N. (2012). Balancing of mixed-model two-sided assembly

lines with multiple U-shaped layout. International Journal of Advanced Manufacturing

Technology, 59, 1191-1210.

Salveson, M. E. (1955). The assembly line balancing problem. Journal of Industrial Engineering, 6, 18-25.

Simaria, A. S. (2006). Assembly Line Balancing - New Perspectives and Procedures. Universidade de

Aveiro.

Simaria, A. S., & Vilarinho, P. M. (2004). A genetic algorithm based approach to the mixed-model

assembly line balancing problem of type II. Computers & Industrial Engineering, 47, 391-407.

Simaria, A. S., & Vilarinho, P. M. (2009). 2-ANTBAL: An ant colony optimisation algorithm for balancing

two-sided assembly lines. Computers & Industrial Engineering, 56, 489-506.

Tapkan, P., Ozbakir, L., & Baykasoglu, A. (2012a). Bees Algorithm for constrained fuzzy multi-objective

two-sided assembly line balancing problem. Optimization Letters, 6, 1039-1049.

http://dx.doi.org/10.1016/j.eswa.2015.12.018

Expert Systems with Applications

34

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018

Tapkan, P., Ozbakir, L., & Baykasoglu, A. (2012b). Modeling and solving constrained two-sided assembly

line balancing problem via bee algorithms. Applied Soft Computing, 12, 3343-3355.

Thomopoulos, N. T. (1967). Line Balancing-Sequencing for Mixed-Model Assembly. Management Science,

14, 59-75.

Thomopoulos, N. T. (1970). Mixed Model Line Balancing with Smoothed Station Assignments.

Management Science, 16, 593-603.

Vilarinho, P. M., & Simaria, A. S. (2002). A two-stage heuristic method for balancing mixed-model

assembly lines with parallel workstations. International Journal of Production Research, 40, 1405-

1420.

Xu, W., & Xiao, T. (2011). Strategic Robust Mixed Model Assembly Line Balancing Based on Scenario

Planning. Tsinghua Science and Technology, 16, 308-314.

Yagmahan, B. (2011). Mixed-model assembly line balancing using a multi-objective ant colony

optimization approach. Expert Systems with Applications, 38, 12453-12461.

Yalcinkaya, O., & Bayhan, G. M. (2009). Modelling and optimization of average travel time for a metro

line by simulation and response surface methodology. European Journal of Operational Research,
196, 225-233.

Zhang, D. Z., & Kucukkoc, I. (2013). Balancing Mixed-Model Parallel Two-Sided Assembly Lines. In L.

Amodeo, A. Dolgui & F. Yalaoui (Eds.), Proceedings of the International Conference on Industrial
Engineering and Systems Management (IEEE-IESM’2013) (pp. 391-401). Rabat, Morocco.

http://dx.doi.org/10.1016/j.eswa.2015.12.018

