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Abstract: The lexicographic bottleneck assembly line balancing problem is a recently introduced problem which aims 

at obtaining a smooth workload distribution among workstations. This is achieved hierarchically. The workload of the 

most heavily loaded workstation is minimised, followed by the workload of the second most heavily loaded 

workstation and so on. This study contributes to knowledge by examining the application of the lexicographic 

bottleneck objective on mixed-model lines, where more than one product model is produced in an inter-mixed 

sequence. The main characteristics of the lexicographic bottleneck mixed-model assembly line balancing problem are 

described with numerical examples. Another contribution of the study is the methodology used to deal with the 

complex structure of the problem. Two effective meta-heuristic approaches, namely artificial bee colony and tabu 

search, are proposed. The parameters of the proposed meta-heuristics are optimised using response surface 

methodology, which is a well-known design of experiments technique, as a unique contribution to the expert and 

intelligent systems literature. Different from the common tendency in the literature (which aims to optimise one 

parameter at a time), all parameters are optimised simultaneously. Therefore, it is shown how a complex production 

planning problem can be solved using sophisticated artificial intelligence techniques with optimised parameters. The 

methodology used for parameter setting can be applied to other metaheuristics for solving complex problems in 

practice. The performances of both algorithms are assessed using well-known test problems and it is observed that both 

algorithms find promising solutions. Artificial bee colony algorithm outperforms tabu search in minimising the number 
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Abstract 

The lexicographic bottleneck assembly line balancing problem is a recently introduced problem which 

aims at obtaining a smooth workload distribution among workstations. This is achieved hierarchically. 

The workload of the most heavily loaded workstation is minimised, followed by the workload of the 

second most heavily loaded workstation and so on. This study contributes to knowledge by examining 

the application of the lexicographic bottleneck objective on mixed-model lines, where more than one 

product model is produced in an inter-mixed sequence. The main characteristics of the lexicographic 

bottleneck mixed-model assembly line balancing problem are described with numerical examples. 

Another contribution of the study is the methodology used to deal with the complex structure of the 

problem. Two effective meta-heuristic approaches, namely artificial bee colony and tabu search, are 

proposed. The parameters of the proposed meta-heuristics are optimised using response surface 

methodology, which is a well-known design of experiments technique, as a unique contribution to the 

expert and intelligent systems literature. Different from the common tendency in the literature (which 

aims to optimise one parameter at a time), all parameters are optimised simultaneously. Therefore, it is 

shown how a complex production planning problem can be solved using sophisticated artificial 

intelligence techniques with optimised parameters. The methodology used for parameter setting can be 

applied to other metaheuristics for solving complex problems in practice. The performances of both 

algorithms are assessed using well-known test problems and it is observed that both algorithms find 

promising solutions. Artificial bee colony algorithm outperforms tabu search in minimising the number 

of workstations while tabu search shows a better performance in minimising the value of lexicographic 

bottleneck objective function.  
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1. Introduction 

Six decades have passed since the idea of balancing assembly lines has been introduced by 

Bryton (1954). This idea was described systematically and formulated mathematically by 

Salveson (1955) and has received a great deal of attention from both academia and industry. 

With the change of the global market, product diversity has become one of the key parameters 

in attracting customers. Mass customisation has been adopted by companies as a flexible 

manufacturing tool to meet diversified customer demands in a timely manner (Goh & Zhang, 

2003; I. Kucukkoc & D.Z. Zhang, 2014). In this context, companies converted existing single-

model lines into mixed-model lines to enable producing more than one product model on the 

same line where set-up times between model changes are small enough (Zhang & Kucukkoc, 

2013). Thus, similar product models could be produced on the same line, avoiding the cost of 

utilising a new line for each product model.  

Battaïa and Dolgui (2013) presented a taxonomy of line balancing problems and their solution 

approaches, recently. In its traditional and simplest form, which is called simple assembly line 

balancing problem, the assembly line balancing problem is assigning tasks into a serially 

linked set of workstations by ensuring that capacity constraints and precedence relationship 

constraints are satisfied. The tasks belonging to a single commodity (or product model) are 

performed on the line and a decision is made to determine which task will be accommodated 

in which workstation (I. Kucukkoc & Zhang, 2013; I. Kucukkoc & D. Z. Zhang, 2015). 

Obtaining a smooth workload distribution among the workstations is very important to have a 

well-balanced and reliable assembly line which has strengths against unforeseeable 

circumstances such as breakdowns and other tolerable small extra works that can be performed 

while the line is running. For this aim, Pastor et al. (2011; 2012) proposed a new approach to 

systematically distribute the total workload among the workstations utilised across the line. 

Also, they showed the advantage of the lexicographic bottleneck objective function 

(Buyukozkan, Kucukkoc, & Zhang, 2014). The main aim of this paper is to experiment the 

lexicographic bottleneck objective on mixed-model assembly line balancing problem and to 

address the lexicographic bottleneck mixed-model assembly line balancing problem. Two 

powerful solution approaches, namely artificial bee colony and tabu search, are also developed 

to solve the addressed problem efficiently. The parameters of the proposed algorithms are 

optimised using a robust methodology that can be applied to other metaheuristics. 
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The remainder of the paper is organised as follows. Section 2 provides a comprehensive 

review of the literature on mixed-model assembly line balancing problem as well as the 

applications of proposed techniques on various line balancing configurations. Section 3 

describes the main characteristics of the lexicographic bottleneck mixed-model assembly line 

balancing problem and briefly presents its differences from the existing problems. Section 4 

presents the artificial bee colony and tabu search algorithms developed to solve the addressed 

problem and gives numerical examples to describe their solution procedures stepwise. Section 

5 explains the response surface methodology (called RSM hereafter) used for parameter 

setting, and reports the experimental test results. After a brief discussion on the strengths and 

weaknesses of the proposed research method in Section 6, Section 7 draws conclusions along 

with the future research directions. 

2. Literature Review 

The mixed-model assembly line balancing problem, which aims at finding an optimal 

assignment of tasks belonging to more than one product model produced on the same line, has 

been introduced by Thomopoulos (1967, 1970). Since then, the mixed-model assembly line 

balancing problem has attracted a vast number of researchers from both academia and 

industry. Minimising the number of workstations, which could also help reduce cost, has been 

considered as an ultimate goal in the majority of studies, e.g. Simaria and Vilarinho (2009), 

Kara and Tekin (2009), Ozcan and Toklu (2009), Xu and Xiao (2011), Yagmahan (2011), 

Akpinar and Bayhan (2011), Hamzadayi and Yildiz (2012), Rabbani et al. (2012), Chutima 

and Chimklai (2012), Liao et al. (2012), Akpinar et al. (2013), Kucukkoc et al. (2013), 

Manavizadeh et al. (2013), Kucukkoc et al. (2013) and Kucukkoc and Zhang (2014b). This 

problem is called type-1, as the number of workstations is minimised for a predefined cycle 

time value.  

Minimising cycle time for the given number of workstations is another type of line balancing 

problem, called type-2. This problem has been studied by Simaria and Vilarinho (2004), 

Battini et al. (2007) and Ozcan et al. (2011) recently. Some studies considered both objectives 

(the minimisation of cycle time and the number of workstations) at the same time, such as 

Manavizadeh et al. (2012) and Kucukkoc and Zhang (2015). Manavizadeh et al. (2012) 

proposed a multi-objective genetic algorithm based approach to optimise both the number of 

workstations and the cycle time (called type-E) in a stochastic make-to-order environment. 

Kucukkoc and Zhang (2015) addressed the type-E problem on parallel two-sided assembly 

lines and proposed an ant colony optimisation algorithm where the parameters of ant colony 

http://dx.doi.org/10.1016/j.eswa.2015.12.018
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optimisation algorithm are calibrated through RSM, which is a well-known design of 

experiment method proposed by Box and Wilson (1951).  

Workload smoothness is an important criterion which also needs to be taken into account: (i) 

to maintain an even workload distribution among workstations and so workers, (ii) to improve 

the quality of product(s) assembled on the line, and (iii) to reduce the risk of incomplete tasks 

exceeding the cycle time due to some unforeseeable circumstances. This criterion has been 

taken into account as an additional performance measure in many researches, such as Simaria 

and Vilarinho (2009), Ozcan and Toklu (2009), Ozcan et al. (2010), Akpinar and Bayhan 

(2011), Yagmahan (2011), Hamzadayi and Yildiz (2012), Liao et al. (2012), Chutima and 

Chimklai (2012), Manavizadeh et al. (2013) and Kucukkoc et al. (2013). 

In terms of the applied solution techniques, there is an increasing interest in the applications of 

population (or swarm intelligence) based and neighbourhood search based optimisation 

algorithms on a variety of line balancing problems. Specifically, Simaria and Vilarinho (2009), 

Yagmahan (2011), Kucukkoc et al. (2013) and Kucukkoc and Zhang (2014a, 2014b) 

developed different ant colony optimisation based approaches; Ozcan et al. (2011), Xu and 

Xiao (2011), Akpinar and Bayhan (2011), Hamzadayi and Yildiz (2012), Rabbani et al. 

(2012), Manavizadeh et al. (2012) and Kucukkoc et al. (2013) developed different genetic 

algorithm based techniques and Chutima and Chimklai (2012) proposed a particle swarm 

optimisation approach for the solution of mixed-model assembly line balancing problem. 

However, the applications of bee colony optimisation (D. Karaboga, 2005) and bees algorithm 

(Pham, et al., 2006) are quite scarce in the entire line balancing domain. Akpinar and 

Baykasoğlu (2014) applied the bee colony algorithm for solving the mixed-model assembly 

line balancing problem. Özbakir and Tapkan (2011) and Tapkan et al. (2012a, 2012b) used 

bee colony intelligence and bees algorithms, respectively, to solve zone constrained two-sided 

assembly line balancing problem. 

Lapierre et al. (2006) applied tabu search algorithm for solving the simple assembly line 

balancing problem (with the aim of minimising the number of workstations) and non-standard 

versions of this problem coming from real life. Computational tests showed that the proposed 

tabu search method had advantages over existing priority based procedures. Ozcan and Toklu 

(2008) presented a tabu search algorithm for two-sided assembly line balancing problem, 

where workstations are located on both sides (left and right) of a straight line. The 

performance of the proposed method was compared to the existing methods and it was 

observed that the proposed method performed well. Özcan et al. (2009) used the tabu search to 

http://dx.doi.org/10.1016/j.eswa.2015.12.018
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balance the parallel lines, where resources between two adjacent lines are shared, with the aim 

of maximising line efficiency. The proposed method was illustrated through a numerical 

example and its performance was tested through existing test problems. Özcan et al. (2010) 

introduced the parallel two-sided assembly line configuration, which is referred to as 

advantageous for producing large-sized items (such as buses and trucks) and developed a tabu 

search based approach. Two numerical examples were given and computational tests were 

performed to explain the solution building mechanism of the algorithm and to prove its 

performance. Esmaeilian et al. (2011) presented a tabu search approach, which incorporates a 

heuristic procedure to provide an initial solution, for solving the parallel assembly line 

balancing problem in a mixed-model production environment. The computational experiments 

showed that the proposed approach produces promising solutions.  

The lexicographic bottleneck objective has been recently introduced for assembly line 

balancing domain. Pastor et al. (2011) presented and formalised the lexicographic bottleneck 

assembly line balancing problem; which aims at hierarchically minimising the workload of the 

most heavily loaded workstation, followed by the workload of the second most heavily loaded 

workstation and so on. Two mixed-integer linear programming models and three heuristic 

procedures were proposed for solving the problem. Pastor et al. (2011) have proven that the 

lexicographic bottleneck objective has advantages over traditional smoothness index 

objectives to obtain a more smoothly distributed workload across the workstations. In their 

latter study, Pastor et al. (2012) proposed and tested new algorithms, which were different 

combinations of a heuristic procedure and several local search procedures derived from the 

literature. The computational experiments showed that the heuristic procedure developed by 

Pastor et al. (2012) was an improvement upon the heuristic procedures (three heuristic 

procedures based on two mixed-integer linear programming models) published by Pastor et al. 

(2011). 

The lexicographic bottleneck assembly line balancing problem, which is different from type-2 

line balancing problem as it was exposed by Pastor et al. (2011; 2012), has not been studied 

properly for mixed-model lines in the literature. Based on this motivation, we apply the 

lexicographic bottleneck objective on mixed-model assembly line balancing problem and 

propose new solution techniques, namely an artificial bee colony algorithm and a tabu search 

algorithm, for the possible solution of the addressed problem. This paper is original in terms of 

both the addressed problem and the proposed solution methods. This paper addresses the 

lexicographic bottleneck mixed-model assembly line balancing problem, whose primitive 

http://dx.doi.org/10.1016/j.eswa.2015.12.018
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version was introduced by Pastor et al. (2011) for the simple assembly line balancing problem, 

by building work on Kucukkoc et al. (2015). In addition to the developed artificial bee colony 

algorithm, the tabu search algorithm is applied for any type of lexicographic bottleneck 

assembly line balancing problem for the first time in the literature. Also, the parameters of 

both proposed techniques are optimised using RSM as a pioneering research in expert and 

intelligent systems domain. Therefore, this paper contributes to knowledge by not only 

addressing a newly introduced assembly line balancing problem type but also developing 

novel artificial bee colony and tabu search algorithms (with optimised parameters through 

RSM) for solving this problem.  

3. Problem Statement 

The workload time of a workstation is constituted by the summation of processing times of all 

tasks assigned to that workstation. In traditional type-2 assembly line balancing problems, the 

workload of the most heavily loaded workstation is minimised as it determines the cycle time 

of the entire production system in synchronised assembly lines. As only the workload of the 

workstation which has the largest workload time is minimised, the remaining workload times 

are ignored in type-2 assembly line balancing problems. However, as indicated by Pastor et al. 

(2012) and Boysen et al. (2007), there are some important factors that tightly depend on the 

workload distribution among all workstations: the reliability of the line, uniform (or equitable) 

distribution of the total workload among all operators, quality defects caused by stations with 

disproportionately large station times, etc. Therefore, it is important to consider the second-

largest workload, the third-largest workload, etc., as the criticalness of the workstations and 

the reliability of the line are tightly interrelated to each other. The larger the difference 

between the total workload of a workstation and cycle time, the less critical becomes the 

workstation. That means the reliability of the entire system could be increased by reducing the 

criticalness (R. Pastor, 2011). 

Pastor et al. (2011) have already proven with an example that the optimal solution based on 

the lexicographic bottleneck objective may be different from the optimal solution based on the 

‘Smoothness Index’ objective, which was considered as an additional objective in many 

researchers. Although this situation has been proven for only a simple assembly line balancing 

problem, it is highly possible to observe the same situation for mixed-model assembly lines, as 

well.  

The main aim of the introduced problem in this research, which is called lexicographic 

http://dx.doi.org/10.1016/j.eswa.2015.12.018
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bottleneck mixed-model assembly line balancing problem, is to hierarchically minimise the 

weighted-workload of the most heavily loaded workstation, followed by the weighted-

workload of the second most heavily loaded workstation and so on. More details on how to 

calculate the weighted-workload of a workstation will be specified below. 

Let us consider the graph given in Figure 1 as the combined precedence relationships diagram 

of three models (𝑚1, 𝑚2, and 𝑚3 ), where a model is symbolised with 𝑚𝑗  (𝑗 = 1, … , 𝑀) , 

assembled on a mixed-model assembly line. Table 1 presents the processing times (𝑝𝑡𝑗𝑖) of 

tasks, where a task is represented by 𝑡𝑗𝑖  (𝑖 = 1, … , 𝑇𝑗) , belonging to the product models. 

Demands (𝐷𝑗) are considered 16, 24 and 8 for models 𝑚1, 𝑚2, and 𝑚3 , respectively (𝐷1 =

16, 𝐷2 = 24  and 𝐷3 = 8) . The task processing times given in this table are taken from 

Simaria (2006) except that of task-10. As cycle time (𝐶𝑇) is assumed 12.5 time units, in such 

an environment where parallel workstations or feeding lines are not allowed, the processing 

times of all tasks must be smaller than the cycle time. For that reason, the processing time of 

task-10 is assumed 8.6 time units rather than its original value of 13.6  time units, which 

exceeds the cycle time. 

 

Figure 1. Combined precedence relationships diagram of the instance, adapted from Gökçen and Erel 

(1998) 

Table 1. Task processing times of the models for the given instance 

Task No / Model 𝒎𝟏 𝒎𝟐 𝒎𝟑 

1 8.3 8.6 8.3 

2 0.0 2.0 2.0 

3 9.6 9.6 9.6 

4 1.8 1.8 1.8 

5 2.4 2.4 2.5 

6 2.3 2.3 2.3 

7 2.3 2.3 2.5 

8 4.7 4.7 4.7 

9 0.0 9.0 9.0 

10 8.6 8.6 8.6 

11 1.0 1.0 1.0 

1 

4 5 6 7 

3 

2 

11 

8 9 10 
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The two possible line balancing assignments of the example problem are given in Table 2 

where upper bound of 𝐶𝑇 is set to 12.5 time units. The table presents the task assignments to 

the workstations, symbolised with 𝑘 (𝑘 = 1, … , 𝐾), and the workloads of workstations based 

on these assignments. Each workstation’s workload time for individual models and also the 

total weighted-workloads (𝑊𝑊) of the workstations are calculated and presented in the table. 

Table 2. Two alternative assignment solutions of the given instance 

Alternative Assignment 1  Alternative Assignment 2 

Station 
Assigned 

Tasks 

Workloads  

(Time Units) 
Weighted-

workload 

(WW) 

 
Station 

Assigned 

Tasks 

Workloads  

(Time Units) 
Weighted-

workload 

(WW) 𝑚1 𝑚2 𝑚3  𝑚1 𝑚2 𝑚3 

1 1,2,4 10.10 12.40 12.10 11.58  1 1,4 10.10 10.40 10.10 10.25 

2 3,5 12.00 12.00 12.10 12.02  2 2,3 9.60 11.60 11.60 10.93 

3 6,8 7.00 7.00 7.00 7.00  3 5,6,8 9.40 9.40 9.50 9.42 

4 9,7 2.30 11.30 11.50 8.33  4 7,9 2.30 11.30 11.50 8.33 

5 10,11 9.60 9.60 9.60 9.60  5 10,11 9.60 9.60 9.60 9.60 

 

The weighted-workload (𝑊𝑊)  of a workstation corresponds to the sum of weighted 

processing times of all tasks assigned to this workstation. The weighted processing time of a 

task is obtained by summing the multiplications of processing times belonging to different 

models by proportional demands of these models. Also, proportional demand of a model 

corresponds to division of this model’s demand by the total demand of the models produced 

on the same line (𝐷𝑗 ∑ 𝐷𝑗
𝑀
𝑗=1⁄ ). Thus, the weighted-workload of station 𝑘 , represented by 

𝑊𝑊𝑘, could be calculated as in Equation (1). 

𝑊𝑊𝑘 = ∑ (
𝐷𝑗

∑ 𝐷𝑗
𝑀
𝑗=1

∙ ∑ 𝑝𝑡𝑗𝑖

𝑡𝑗𝑖∈𝑆𝑘

)

𝑀

𝑗=1

,                                                           (1) 

where 𝑆𝑘 denotes the set of tasks assigned to workstation 𝑘. 𝐷𝑗  and 𝑝𝑡𝑗𝑖 are demand for model 

𝑚𝑗 and processing time of task 𝑡𝑗𝑖, respectively. 

As seen from Table 2, five workstations are needed to perform a total of 11 tasks for both 

situations. However, there are differences in the workloads and weighted-workload columns of 

these two alternative solutions. Figure 2 comparatively depicts the workload distributions 

among workstations for both solutions. Apparently, the second solution has a more uniform 

workload distribution than the first solution. It should be noted here that there could be more 

fluctuation in the distribution of workloads between workstations if there were tens of tasks 

(not five) to be assigned. However, even this small-sized numerical example shows the 

http://dx.doi.org/10.1016/j.eswa.2015.12.018


Expert Systems with Applications 

9 

Final version available online at: http://dx.doi.org/10.1016/j.eswa.2015.12.018  

dependency of workload times to model types. For example, the workload of workstation 4 

equals to 2.30 time units when model 1 is being operated in this workstation. However, this 

will change when model 2 and model 3 will be assembled in workstation 4. Specifically, the 

workload will dramatically increase from 2.30 time units to 11.30 and 11.50 time units when 

model 2 and model 3 are assembled, respectively. On one hand, huge idle times will occur 

when producing model 1 in workstation 4. On the other hand, the workstation will be loaded 

almost full when producing model 2 and model 3. This clearly shows the importance of having 

a smooth workload across workstations on mixed-model assembly lines. 

 
                                         (a)                                                                             (b) 

Figure 2. Workload distributions among workstations: (a) Solution-1, (b) Solution-2 

Figure 3 exhibits the weighted-workload of each workstation for both alternative solutions. As 

seen from the figure, distributing the weighted-workload among five workstations as 11.58, 

12.02, 7.00, 8.33 and 9.60 is not equivalent to distributing it as 10.25, 10.93, 9.42, 8.33 and 

9.60. Although both solutions are obtained under the same upper bound for the cycle time 

(𝐶𝑇 = 12.5), the second solution has less critical workstations and it is more reliable.  

 

Figure 3. Weighted-workload of each workstation for both alternative solutions 

Following assumptions are made for the solution of the lexicographic bottleneck mixed-model 

assembly line balancing problem: 

 Two or more models of a product are assembled on a paced (synchronous) mixed-
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model assembly line. 

 Model demands are deterministic and known for a pre-defined planning horizon. 

 Task processing times are deterministic and known for each product model produced 

on the line. When a specific task is not necessary for a certain model, then its 

processing time is considered zero. 

 A common (or joint) precedence diagram, which satisfies all precedence relationships 

between tasks belonging to different product models, is used in order to maximise the 

resource utilisation by assigning common tasks between similar models to the same 

workstation. 

 Each task for each product model must be assigned to exactly one workstation. Tasks 

cannot be split into two or more workstations. 

 A task can only be assigned if all of its predecessors have been assigned and 

completed. 

 Operators are multi-skilled and any task can be performed at any workstation with no 

change in its processing time. 

 Parallel workstations and buffers between workstations (or work in progress inventory) 

are not allowed. 

 Setup operations are not required between model changes. 

 Operator travel times are ignored. 

4. Proposed Algorithms 

This section presents the artificial bee colony and tabu search algorithms proposed for solving 

the lexicographic bottleneck assembly line balancing problem. Both artificial bee colony and 

tabu search approaches have been recognised as powerful and flexible optimisation 

algorithms, which have the capability of robustly solving global optimisation problems with 

linear and nonlinear objective functions. As shown by Karaboga and Akay (2009) through a 

set of comprehensive experimental tests, artificial bee colony is better than or similar to those 

of other population-based algorithms with the advantage of employing fewer control 

parameters. It is flexible and has strengths in both local and global searches. This reduces the 

possibility of being trapped at a local optimum. In comparison with evolutionary algorithms, 

the fast convergence feature of artificial bee colony algorithm – which can be considered an 
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advantage in a timely manner – may result in premature convergence as a possible 

disadvantage of the algorithm.  

Different from most metaheuristics, including tabu search, the basic artificial bee colony 

approach employs multiple random starting points for initialisation. This attribute helps to 

explore the search space more effectively. On the other hand, as emphasised by Glover and 

Marti (2006) a bad strategic choice may often yield better results than a good random choice. 

Therefore, by taking the advantage of keeping search history, this strategic choice builds a 

base point for the progressive improvement of tabu search. Both tabu search and artificial bee 

colony algorithms can be easily implemented for a wide range of optimisation problems. 

Although some promising areas of the search space may be missed when only one solution is 

used and the algorithm is purely progressed from its neighbourhood solutions, tabu search still 

produces promising results as will be shown in the following subsections. Tabu search needs 

relatively less number of parameters in comparison with most of the metaheuristics, including 

ant colony, genetic and artificial bee colony algorithms. However, as in the majority of other 

metaheuristics, both algorithms need parameter tuning. For this reason, a novel RSM based 

parameter optimisation approach is adopted, as will be explained in Section 5. 

 Artificial bee colony algorithm 

Artificial bee colony algorithm, which is proposed by Karaboga (2005), is a swarm 

intelligence method. It was inspired from the foraging behaviour of bees in nature. In social 

life, foraging begins with random food search. The scout bees find new food sources in their 

neighbourhood and perform waggle-dance in front of the hive. This dance movement gives 

information about (i) the distance from the food source to the hive, (ii) the nectar quality of the 

source and (iii) the nectar quantity of the source. The onlooker bees in the hive watch this 

dance movement and choose the scout bees to follow. When an onlooker bee follows a scout 

bee, it starts foraging and is called a follower bee. Each bee, which collects food, performs 

waggle-dance to give information about the food source. By this way, the bees meet the food 

need of the hive. When a food source is exhausted, this source is abandoned and scout bees 

continue to seek new sources.  

When the behaviour of bees is adapted to an optimisation problem, each bee represents a 

solution and the algorithm starts with randomly generated initial solutions. These solutions are 

considered as scout bees and the algorithm continues with the neighbourhood search with the 

help of the follower bees around these solutions. The general structure of the proposed 

artificial bee colony algorithm is presented in Figure 4.  
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Figure 4. Flow chart of the proposed artificial bee colony algorithm 

The parameters of the algorithm (namely, the number of scout bees (𝑆) , the number of 

follower bees (𝐹), the maximum number of iterations (𝑀𝑎𝑥𝐼𝑡𝑒𝑟), life time (𝐿𝐹), cycle time 

(𝐶𝑇)  and hierarchy parameter (𝛽) ) are initialised. Afterwards, 𝑆  number of solutions are 

generated considering the precedence relationships. While generating these solutions, the tasks 

are sequenced in random orders ensuring that the precedence relations are not violated. The 

workstations are formed by splitting the ordered tasks into groups (which is equivalent to 

allocating the tasks into the workstations) considering the 𝐶𝑇 value. Hence, it is ensured that 

the initial solutions (scout bees) are produced very quickly. Each scout bee is assigned an 𝐿𝐹 

value, which corresponds to the maximum number of trials that can be passed without 

improvement. 𝐹 number of follower bees are directed to each scout bee for the neighbourhood 

search mechanism.  

The neighbourhoods are searched using insert method. In doing so, two random numbers, i.e. 

𝑟1 and 𝑟2, are generated and the task located at 𝑟1
th position is relocated to 𝑟2

th position by 

checking the precedence relationships to ensure feasibility. If this move is considered to 

violate the precedence relationships, a new point ( 𝑟2 ), which satisfies the precedence 

relationships is determined and the task is allocated to this position. After completing 

neighbourhood searches for all followers in such a way, the performance values (δ) of scout 
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bees and their followers are calculated using Equation (2), which is modified from Pastor 

(2011). This is equivalent to using Equation (3) when comparing two different solutions. By 

this way, it is endeavoured to hierarchically minimise the weighted-workload of the most 

heavily loaded workstation. 

𝛿 =
∑ (𝛽𝐾−𝑘+1 ∙ 𝑊𝑊𝑘)𝐾

𝑘=1

𝐶𝑇 ∙ 𝛽𝐾−1
.                                                                  (2) 

𝛿𝑑𝑖𝑓𝑓 =
∑ (𝛽𝐾−𝑘+1 ∙ ∑ 𝑑𝑗 ∙ ∆𝑘𝑗

𝐽
𝑗=1 )𝐾

𝑘=1

𝐶𝑇𝑏𝑒𝑠𝑡 ∙ 𝛽𝐾−1
,                                                       (3) 

where ∆𝑘𝑗 is the positive, null, or negative workload difference in terms of model 𝑚𝑗 in the 

𝑘𝑡ℎ most heavily loaded workstation between the worst and best solutions compared. 𝐶𝑇𝑏𝑒𝑠𝑡 is 

the best cycle time of the two solutions compared. 𝛽  is a parameter whose value must 

guarantee the hierarchy of the objectives (𝛽 > max (∆𝑘𝑗 − ∆(𝑘+1)𝑗) and 𝑑𝑗 is the proportional 

demand of model 𝑚𝑗, (𝑑𝑗 =
𝐷𝑗

∑ 𝐷𝑗
𝑀
𝑗=1

). Please refer to Pastor (2011) for more details about 𝛽 

parameter. 

The best performance value among the followers is compared with the performance value of 

its scout bee and the scout bee is replaced with that follower if the follower is better. If not, 𝐿𝐹 

value of the scout bee is decreased by one. When the 𝐿𝐹 value gets zero, scout bee is replaced 

with a randomly generated feasible solution. The global best solution is updated if any of the 

scout bees has a better performance value than the global best. The same procedures are 

carried out for all scout bees and this cycle continues until all iterations are completed. Note 

that better performance values could be obtained with solutions which require larger numbers 

of workstations. However, in practice, designs which require fewer number of workstations 

are preferred by line managers. For that reason, when two solutions which require different 

numbers of workstations are subject to comparison, the solution which requires the fewer 

number of workstations is favoured regardless of its performance value.  

For a better understanding of the steps of the algorithm, a numerical example is given below. 

The precedence relationships and task processing times are given in Figure 1 and Table 1, 

respectively. The parameters considered are as follows: 𝑆 = 5, 𝐹 = 10, 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = 25, 𝐿𝐹 =

5, 𝐶𝑇 = 12.5 and 𝛽 = 100.  

Table 3 shows the initial solutions (scout bees) generated randomly. Let us consider the first 

scout bee in Table 3. Three follower bees generated from this scout bee are given in Table 4. 

The follower bees search neighbourhood solutions around the scout bee using the randomly 
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determined two numbers. It could be seen that the random numbers are 2 and 5 for the first 

follower (𝑟1 = 2, 𝑟2 = 5). So the job located in the 2𝑛𝑑 position is relocated to the 5𝑡ℎ position 

for this follower. The random numbers for the second and the third followers are 3 and 9, and 

7 and 5, respectively. The performance values of the followers are also given in Table 4. To 

calculate the performance value of a solution, the tasks are assigned to the workstations as in 

the same order they are sequenced by bees and Equation (2) is used for calculation. 

Table 3. Initial solutions generated by the algorithm 

# Sequence of Tasks  
Workstations 

1 2 3 4 5 6 

1 1 2 3 4 8 9 5 10 6 7 11 

Assignments 1,2 3,4 8 9,5 10,6 7,11 

Weighted Stat. 

Workloads 

9.790 11.400 4.700 8.450 10.900 3.340 

2 1 2 4 3 5 6 7 8 9 10 11 

Assignments 1,2,4 3,5 6,7,8 9 10,11 - 

Weighted Stat. 

Workloads 

11.590 12.070 9.330 6.030 9.600 - 

3 1 2 3 4 8 5 6 9 10 7 11 

Assignments 1,2 3,4 8,5,6 9 10,7,11 - 

Weighted Stat. 

Workloads 

9.790 11.400 9.420 6.030 11.930 - 

4 1 4 5 6 8 3 9 2 10 7 11 

Assignments 1,4 5,6,8 3 9,2 10,7,11 - 

Weighted Stat. 

Workloads 

10,250 9,417 9,600 7,370 11,934 - 

5 1 4 8 5 6 2 9 3 7 10 11 

Assignments 1,4 8,5,6 2,9 3,7 10,11 - 

Weighted Stat. 

Workloads 

10,250 9,417 6,030 11,934 9,600 - 

 

Table 4. Followers of the first scout bee 

 Task Sequence 
Weighted-workload Times (𝑾𝑾) Performance Value 

(𝛿) 1 2 3 4 5 6 

Scout Bee 1 2 3 4 8 9 5 10 6 7 11 9.79 11.40 4.70 8.45 10.90 3.34 92.080 

Follower-1 1 3 4 8 2 9 5 10 6 7 11 8.45 11.39 6.04 8.45 10.90 3.34 91.999 

Follower-2 1 2 4 8 9 5 10 6 3 7 11 11.59 4.70 8.45 10.90 11.93 1.00 96.376 

Follower-3 1 2 3 4 5 8 9 10 6 7 11 9.79 11.39 7.12 6.03 10.90 3.34 92.000 

 

The overall survival of this scout bee through 25 iterations is presented in Table 5. As could be 

seen from the table, the scout bee is regenerated randomly in the tenth and twentieth iterations 

to avoid local minima. Better solutions are sought by local search procedures within the 

neighbourhoods of all scout bees at different locations of the global search space. Figure 5 

presents the movements of five scout bees. As seen, these five scouts find solutions with 
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different performance values, which prove the algorithm’s effective search capability.  

Table 5. Survival of the first scout bee through 25 iterations 

Iteration Task Sequence  Iteration Task Sequence 

Scout Bee 1 2 3 4 8 9 5 10 6 7 11  Iteration 13 1 8 2 3 9 10 4 5 6 7 11 

Iteration-1 1 3 4 8 9 5 2 10 6 7 11  Iteration-14 1 8 2 3 9 10 4 5 6 7 11 

Iteration-2 1 4 8 9 5 2 3 10 6 7 11  Iteration-15 1 8 2 3 9 4 5 6 7 10 11 

Iteration-3 1 4 8 9 5 3 10 2 6 7 11  Iteration-16 1 8 2 3 9 4 5 6 7 10 11 

Iteration-4 1 8 4 9 5 3 10 2 6 7 11  Iteration-17 1 8 2 3 9 4 5 6 7 10 11 

Iteration-5 1 8 4 9 3 10 2 5 6 7 11  Iteration-18 1 8 2 3 9 4 5 6 7 10 11 

Iteration-6 1 8 4 9 3 10 2 5 6 7 11  Iteration-19 1 8 2 3 9 4 5 6 7 10 11 

Iteration-7 1 8 4 9 3 10 2 5 6 7 11  Iteration-20 1 8 4 2 5 9 3 10 6 7 11 

Iteration-8 1 8 4 9 3 10 2 5 6 7 11  Iteration-21 1 8 4 2 9 5 3 10 6 7 11 

Iteration-9 1 8 4 9 3 10 2 5 6 7 11  Iteration-22 1 8 4 2 9 5 3 6 7 10 11 

Iteration-10 1 2 8 3 4 9 10 5 6 7 11  Iteration-23 1 8 4 2 5 3 6 7 9 10 11 

Iteration-11 1 2 8 3 9 10 4 5 6 7 11  Iteration-24 1 4 8 2 5 3 6 7 9 10 11 

Iteration-12 1 8 3 9 2 10 4 5 6 7 11  Iteration-25 1 4 8 2 5 3 6 7 9 10 11 

 

 

Figure 5. The movements of the scout bees 

The convergence of the artificial bee colony algorithm for solving the given instance is also 

depicted in Figure 5 (please see ‘Solution’ curve). As could be seen from the figure, the 

algorithm finds the best solution in only three iterations consuming a CPU time of 0.1976 s. 

Please note that the solution curve does not follow the minimum values for all iterations. This 

is why scouts find solutions with larger number of workstations, which yield lower 

performance values (see the shaded area in the figure). However, such solutions are discarded 

by the algorithm as the solutions with fewer number of workstations are favourable in real 

world implementations. The task assignments, the weighted-workload times, the number of 

workstations and the performance value (calculated using Equation (2)) of the best balancing 
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solution are given in Table 6 along with the CPU time consumed. Five workstations are 

needed to perform 11 tasks under the predefined cycle time constraint. 

Table 6. Best balancing solution obtained using artificial bee colony algorithm 

Task Assignment 
 Number of  

Stations 

Performance   

Value 
CPU (s) 

Workstations Station-1 Station-2 Station-3 Station-4 Station-5  

5 86.883 0.1976 Assigned Tasks 1,4 5,6,2,8 3 9,7 10,11  

Weighted-workloads 10.25 10.76 9.60 8.36 9.60  

 

 Tabu search algorithm 

Tabu search, defined and developed primarily by Glover (1989, 1990), is a neighbourhood 

search algorithm which uses effective local search procedures. It uses some taboos in 

neighbourhood search process to escape local optimality and has been used widely for solving 

complex combinatorial optimisation problems (Özcan, et al., 2010). Please refer to Glover and 

Laguna (1993, 1997) and Gendreau (2003) for more details on tabu search. 

With motivation from successful applications of tabu search in assembly line balancing 

domain, a tabu search algorithm is also developed in this research as well as the artificial bee 

colony algorithm proposed. The steps of tabu search procedure proposed in this research are 

explained below through a numerical example. 

Step 1.  The algorithm starts by determining the algorithmic parameters and initialising the 

tabu lists. The tabu size and the maximum number of iterations are determined as 

10 and 300, respectively, for this example. 

Step 2.  An initial solution is generated randomly using the same procedure to produce 

scout bees for artificial bee colony algorithm in the previous subsection (please see 

Section 0). To give an example, let us assume that the initial solution has the same 

task sequence (1-2-3-4-8-9-5-10-6-7-11) given in the first row of Table 3. 

Step 3.  A neighbourhood solution is generated. To do this, as in artificial bee colony 

algorithm, two random numbers ( 𝑟1  and 𝑟2 ) are generated and a new 

neighbourhood solution is built by moving the task located at 𝑟1
th position to 𝑟2

th 

position. For example, let 𝑟1  and 𝑟2  be 2 and 5, respectively. Then, the new 

neighbourhood solution will have the task sequence of 1-3-4-8-2-9-5-10-6-7-11. 

Step 4.  The feasibility of newly generated neighbourhood solution is ensured by checking 

the precedence relationships matrix of the problem as well as the tabu tables used 

by the algorithm. The proposed tabu search algorithm incorporates two tabu tables, 

which are given in Table 7. The first table, given in Table 7a, is used to hold the 
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number of iteration values during which the tasks cannot be moved to the same 

position again. The second table, given in Table 7b, forbids moving the tasks into 

their previous locations until a predefined iteration number. 

Step 5.  If the newly generated neighbourhood solution is not feasible, new random values 

are determined for 𝑟1  and 𝑟2  until the feasibility is maintained. An unfeasible 

solution becomes feasible upon the sequence of tasks in this solution satisfy the 

precedence relationships matrix.  

Step 6.  The values in the tabu tables are updated based on the move performed. In our 

example, the neighbourhood solution is built by moving the task placed in the 

second position to fifth position.  

 In tabu table-1, the value of cell corresponding to the second row of fifth 

column is updated as 𝐶𝑒𝑙𝑙_𝑉𝑎𝑙𝑢𝑒 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑁𝑢𝑚𝑏𝑒𝑟 +

𝑇𝑎𝑏𝑢_𝑆𝑖𝑧𝑒 = 1 + 10 = 11. The cell that will be updated is determined based 

on the task’s number (in our case it is task 2 as it is located at the second 

position in the task sequence) and its new location (it is five as the task is 

relocated to fifth position in the task sequence). Thus, it is not allowed to 

move task 2 into fifth position again until iteration 11.  

 In tabu table-2, the value of cell on fifth row and second column is updated as 

𝐶𝑒𝑙𝑙_𝑉𝑎𝑙𝑢𝑒 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑁𝑢𝑚𝑏𝑒𝑟 + 2 = 3 . By this way, it is 

prohibited to relocate task 2 in its previous position in the next iteration. Thus, 

the algorithm avoids getting stuck in local optima. Table 7 depicts the tabu 

tables after these operations. 

Table 7. Tabu tables employed by the tabu search algorithm 

a) Tabu table-1  b) Tabu table-2 

Task  

No 

Position 

 
Position 

Position 

1 2 3 4 5 6 7 8 9 10 11 

 

1 2 3 4 5 6 7 8 9 10 11 

1 0 0 0 0 0 0 0 0 0 0 0 

 

1 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 11 0 0 0 0 0 0 

 

2 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 

 

3 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 

 

4 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 

 

5 0 3 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 

 

6 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 0 

 

7 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 

 

8 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 

 

9 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 

 

10 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 

 

11 0 0 0 0 0 0 0 0 0 0 0 
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Step 7.  The current solution and the new neighbourhood solution are compared to each 

other based on their performance values, which are computed as in the artificial 

bee colony algorithm. If the neighbourhood solution has a better performance 

value than the current solution, the neighbourhood solution replaces the current 

solution. 

Step 8.  This cycle continues until the maximum iteration number and the best solution is 

taken. Table 8 shows the best solution found by tabu search algorithm.  

Table 8. The best balancing solution obtained by the tabu search algorithm 

Task Assignment 
 Number of  

Stations 

Performance   

Value 
CPU (s) 

Workstations Station-1 Station-2 Station-3 Station-4 Station-5  

5 82.818 0.0175 Assigned Tasks 1, 4 3 8,2,5 9,6 7,10,11 
 

Weighted-workloads 10.250 9.600 8.457 8.330 10.134 
 

 

As can be seen from the table, a total of five workstations are required to perform 11 tasks, 

which is the same as the artificial bee colony algorithm. However, tabu search finds a better 

configuration of tasks, which has a better performance value (82.818) than the performance 

value of the solution (86.883) obtained by the artificial bee colony algorithm. 

5. Experimental Study 

 Test data 

Twenty test problems, whose main characteristics are given in Table 9, are taken from Simaria 

and Vilarinho (2002) and solved using the proposed artificial bee colony algorithm and tabu 

search algorithm. Information regarding the precedence diagrams used for the problem set is 

shown in the second column. 𝑇𝑗 and 𝐶𝑇 columns denote the number of tasks of the combined 

precedence diagram and the cycle time of the assembly line, respectively. Models demands are 

given in 𝐷𝑗  column. The minimum, maximum and average processing times of tasks for the 

considered test problems are also presented in columns 𝑝𝑡𝑚𝑖𝑛, 𝑝𝑡𝑚𝑎𝑥 and 𝑝𝑡𝑎𝑣𝑔.  

Please note that if the processing time of a task belonging to any product model exceeds the 

cycle time, processing times of that task are divided into two for all product models. The 

reason for this modification is that parallel workstations are not allowed in the current work, 

different from the original study belonging to Simaria and Vilarinho (2002). 
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Table 9. Data for computational tests 

# Test Problem 𝑻𝒋 𝑪𝑻 𝒎𝒋 𝑫𝒋 𝒑𝒕𝒎𝒊𝒏 𝒑𝒕𝒎𝒂𝒙 𝒑𝒕𝒂𝒗𝒈 

1 Bowman 8 10 A 20 1.8 7.8 3.73 
B 28 1.8 7.9 3.57 

2 Bowman 8 10 
A 16 0 10 3.54 
B 24 0 7 4.40 
C 8 0 10 5.87 

3 Gökçen and Erel (1998) 11 10 A 20 1.9 8.8 4.97 
B 28 0 8.7 3.37 

4 Gökçen and Erel (1998) 11 12.5 
A 16 0 9.6 3.56 
B 24 1 9.6 4.59 
C 8 1 9.6 4.59 

5 Mitchel 21 10 A 20 0 9.6 5.29 
B 28 0 9.6 4.46 

6 Mitchel 21 10 
A 16 0 7.5 4.06 
B 24 0 7.5 4.19 
C 8 0 10 4.68 

7 Simaria and Vilarinho 25 10 A 20 0 9.6 4.74 
B 28 0 9.4 4.35 

8 Simaria and Vilarinho 25 10 
A 16 0 9.9 4.37 
B 24 1 10 4.85 
C 8 1 10 4.87 

9 Heskiaoff 28 10 A 20 0 10 5.46 
B 28 0 10 5.75 

10 Heskiaoff 28 10 
A 16 0 10 5.39 
B 24 0 10 5.53 
C 8 0 10 5.78 

11 Sawyer 30 10 A 20 0 9.9 4.49 
B 28 0 9.9 4.46 

12 Sawyer 30 10 
A 16 0 9.9 4.65 
B 24 0 9.9 4.40 
C 8 0 9.9 4.79 

13 Lutz1 32 10 A 20 0 9.5 3.85 
B 28 0 10 4.21 

14 Lutz1 32 10 
A 16 0 9.7 4.60 
B 24 0 9.5 4.40 
C 8 0 9.7 4.61 

15 Gunther 35 10 A 20 0 8.2 4.97 
B 28 0 9 4.88 

16 Gunther 35 10 
A 16 0 8.7 4.66 
B 24 0 8.7 4.84 
C 8 0 8.8 4.90 

17 Kilbridge and Wester 45 10 A 20 0 10 4.63 
B 28 0 10 4.53 

18 Kilbridge and Wester 45 10 
A 16 0 9.3 4.64 
B 24 0 9.3 4.61 
C 8 0 9.3 4.24 

19 Tonge 70 10 A 20 0 9.9 4.85 
B 28 0 10 4.99 

20 Tonge 70 10 
A 16 0 9.7 5.02 
B 24 0 9.7 5.02 
C 8 0 9.6 5.03 

 

 Parameter setting 

The proposed artificial bee colony algorithm and tabu search algorithm have been coded in C# 

environment and run on a workstation with the specifications of Intel Xeon CPU E5-2643 

3.30GHz (2 processors) with 128GB RAM. The parameters of the algorithm were determined 

through a well-known design of experiments method, response surface methodology (RSM) to 

get high quality solutions (where 𝛽 = 100 for all test problems). 
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RSM is a combination of statistical and mathematical techniques and has been used 

extensively to examine and characterise problems and/or processes in which the input 

variables (called factors) influence the outputs (called response) of the process (Bicakci, 

Akdas, & Deniz Karaoglan, 2014). It was proposed by Box and Wilson (1951) to determine 

the best combination of input parameters that minimise the output of a real non-simulated 

system. The main advantage of RSM is its capability to provide process optimisation by 

simultaneous testing of numerous factors in a limited number of experiments. This consumes 

less time and effort in comparison to experimenting all possible combinations of parameters 

one-by-one. Another advantage of RSM is that RSM provides a mathematical relation between 

the inputs and outputs of the system, including the interactions between the factors. Equation 

(4) shows the general second-order polynomial response surface model (full quadratic model) 

used for the experimental design (Demirtas & Karaoglan, 2012). 

𝑌𝑢 = 𝛽0 + ∑ 𝛽𝑖𝑋𝑖𝑢
𝑛
𝑖=1 + ∑ 𝛽𝑖𝑖𝑋𝑖𝑢

2𝑛
𝑖=1 + ∑ 𝛽𝑖𝑗𝑋𝑖𝑢𝑋𝑗𝑢

𝑛
𝑖<𝑗 + 𝑒𝑢                             (4)  

where 𝑌𝑢  is the corresponding response; 𝛽0,  𝛽𝑖,  𝛽𝑖𝑖  and 𝛽𝑖𝑗  represent the regression 

coefficients; 𝑋𝑖𝑢  and 𝑋𝑗𝑢  are coded values of the 𝑖𝑡ℎ  and 𝑗𝑡ℎ  input parameters (𝑖 < 𝑗) 

respectively, and 𝑒𝑢 is the residual experimental error of the 𝑢𝑡ℎ observation.  

The model in terms of the observations may be written in matrix notation as 𝑌 = 𝛽𝑋 + 𝜀, 

where 𝑋  and 𝑌  represent input and output matrices, respectively; and 𝜀  is the matrix of 

residuals (error term) (Montgomery, 2001). The least square estimator of 𝛽  matrix that is 

composed of coefficients of the regression equation is calculated as 𝛽 = (𝑋′𝑋)−1𝑋′𝑌  (I. 

Kucukkoc, Karaoglan, et al., 2013; Yalcinkaya & Bayhan, 2009). The fitted regression models 

with the fitness value coefficients are formulated in the next section. 

5.2.1. Optimisation of artificial bee colony algorithm parameters 

Experiments have been conducted on a randomly selected large-sized test problem (#15) given 

in Section 5.1. The factor levels of artificial bee colony parameters for the experiments are 

listed in Table 10.  

Table 10. Levels and values of parameters belonging to artificial bee colony algorithm 

Parameter Symbol 
Level 

-1 0 1 

The number of scout bees S 5 20 35 

The number of follower bees F 5 15 25 

The maximum number of iterations Maxiter 50 175 300 

Life time LF 10 25 40 
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Table 11 shows the experimental design, detailing the experiment run order and un-coded 

values of the algorithm parameters. To have a more consistent analysis, the artificial bee 

colony algorithm was run for 5 times with the designated factor levels for each experiment. 

The average values of the responses (Number of Stations and LB Fitness, where LB means 

lexicographic bottleneck) are reported in Table 11. 

A commercial statistical software package (Minitab-17) was used to find the coefficients 

matrix and establish the mathematical models for predicting the responses (namely, Number of 

Stations and LB Fitness). The regression equations, which depict the RSM based mathematical 

models representing the relations between the responses and the factors based on the results 

observed, are given in Equations (5) and (6) in un-coded units. Please see Figure A1 (in 

Appendices) for residual plots. 

Table 11. Design of experiments matrix showing un-coded values and observed responses  

Experiment  

No 

Run  

Order 

 Factors (Un-coded Values)  Responses (Average) 

 S F Maxiter LF  Number of Stations LB Fitness 

1 1  5 5 50 10  22.90 95.96 
2 2  35 5 50 10  22.20 96.95 
3 3  5 25 50 10  22.40 95.93 
4 4  35 25 50 10  21.90 95.95 
5 5  5 5 300 10  22.30 97.14 
6 6  35 5 300 10  22.00 95.04 
7 7  5 25 300 10  22.10 94.94 
8 8  35 25 300 10  22.00 94.86 
9 9  5 5 50 40  23.20 95.05 
10 10  35 5 50 40  22.50 95.83 
11 11  5 25 50 40  23.20 93.42 
12 12  35 25 50 40  22.10 96.26 
13 13  5 5 300 40  22.80 94.42 
14 14  35 5 300 40  21.80 96.66 
15 15  5 25 300 40  22.30 95.46 
16 16  35 25 300 40  22.00 94.94 
17 17  5 15 175 25  22.40 95.64 
18 18  35 15 175 25  21.90 95.55 
19 19  20 5 175 25  22.10 96.14 
20 20  20 25 175 25  21.90 96.07 
21 21  20 15 50 25  22.30 95.35 
22 22  20 15 300 25  22.00 94.94 
23 23  20 15 175 10  21.90 95.65 
24 24  20 15 175 40  22.10 95.94 
25 25  20 15 175 25  22.00 95.34 
26 26  20 15 175 25  22.10 95.84 
27 27  20 15 175 25  22.10 94.94 
28 28  20 15 175 25  22.10 95.64 
29 29  20 15 175 25  22.00 95.05 
30 30  20 15 175 25  22.00 94.94 
31 31  20 15 175 25  22.00 95.86 
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𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠
= 23.258 − 00490 ∗ 𝑆 − 0.0282 ∗ 𝐹 − 0.00553 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 + 0.0195 ∗ 𝐿𝐹
+ 0.000704 ∗ 𝑆2 + 0.000084 ∗ 𝐹2 + 0.000010 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟2 + 0.000037 ∗ 𝐿𝐹2

+ 0.000292 ∗ 𝑆 ∗ 𝐹 + 0.000043 ∗ 𝑆 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 − 0.000417 ∗ 𝑆 ∗ 𝐿𝐹 + 0.000035
∗ 𝐹 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 + 0.000125 ∗ 𝐹 ∗ 𝐿𝐹 − 0.000037 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 ∗ 𝐿𝐹 

(5) 

𝐿𝐵 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 97.68 + 0.0061 ∗ 𝑆 − 0.180 ∗ 𝐹 + 0.01096 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 − 0.1182 ∗ 𝐿𝐹 − 0.00022
∗ 𝑆2 + 0.00462 ∗ 𝐹2 − 0.000032 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟2 + 0.00068 ∗ 𝐿𝐹2 + 0.00015 ∗ 𝑆 ∗ 𝐹
− 0.000170 ∗ 𝑆 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 + 0.001812 ∗ 𝑆 ∗ 𝐿𝐹 − 0.000041 ∗ 𝐹 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟
+ 0.00065 ∗ 𝐹 ∗ 𝐿𝐹 + 0.000124 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 ∗ 𝐿𝐹 

(6) 

The parameter optimisation was performed with the aim of minimising Number of Stations 

and LB Fitness values, where the importance of responses were set to 2 and 1, respectively. 

The optimal un-coded process parameter setting of artificial bee colony algorithm was found 

as 𝑆 = 28.03, 𝐹 = 23.18, 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 = 277.27 and 𝐿𝐹 = 10 with a composite desirability of 

𝑑 = 0.80. The optimisation plot is given in Figure 6. 

 

Figure 6. Optimisation results for the parameters of artificial bee colony algorithm 

5.2.2. Optimisation of the tabu search algorithm parameters 

The optimised parameters of tabu search algorithm were the number of iterations (Maxiter) 

and tabu size. Experiments have been conducted on the same test problem (#15) used for 
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optimising artificial bee colony parameters. Table 12 presents the factor levels for Maxiter and 

tabu size while Table 13 provides experimental design, detailing the experiment run order and 

un-coded values of the algorithm parameters, as well as observed responses.  

Table 12. Levels and values of parameters belonging to tabu search algorithm  

Parameter Symbol 
Level 

-1 0 1 

The maximum number of iterations Maxiter 100 550 1000 

Tabu size Tabu size 10 20 30 

 

As in the previous subsection, the tabu search algorithm was run for 5 times for each 

experiment using the designated factor values and the average values of the observed 

responses are reported. The regression equations, which depict the RSM based mathematical 

models that represent the relations between the responses and the factors based on the 

observed results, are given in Equations (7) and (8) in un-coded units. Please see Figure A2 (in 

Appendices) for residual plots. 

Table 13. Design of experiments matrix showing un-coded values and observed responses  

Experiment  

No 

Run  

Order 

 Factors (Un-coded Units)  Responses (Average) 

 Maxiter Tabu size  Number of Stations LB Fitness 

1 1  100 10  23.40 97.74 
2 2  1000 10  23.00 94.71 
3 3  100 30  23.80 94.72 
4 4  1000 30  23.00 94.10 
5 5  100 20  24.00 94.18 
6 6  1000 20  22.80 97.36 
7 7  550 10  24.20 89.74 
8 8  550 30  23.80 89.50 
9 9  550 20  23.00 94.52 
10 10  550 20  23.00 93.90 
11 11  550 20  23.00 95.52 
12 12  550 20  22.60 94.52 
13 13  550 20  23.40 94.49 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠
= 25.08 + 0.00027 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 − 0.175 ∗ 𝑇𝑎𝑏𝑢𝑆𝑖𝑧𝑒 − 0.000001 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟2

+ 0.00469 ∗ 𝑇𝑎𝑏𝑢𝑆𝑖𝑧𝑒2 − 0.000022 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 ∗ 𝑇𝑎𝑏𝑢𝑆𝑖𝑧𝑒 
(7) 

𝐿𝐵𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 90.68 − 0.02111 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 + 0.978 ∗ 𝑇𝑎𝑏𝑢𝑆𝑖𝑧𝑒 + 0.000017 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟2 − 0.0279
∗ 𝑇𝑎𝑏𝑢𝑆𝑖𝑧𝑒2 + 0.000134 ∗ 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 ∗ 𝑇𝑎𝑏𝑢𝑆𝑖𝑧𝑒 

(8) 

A multi-objective optimisation analysis was performed to minimise the Number of Stations 

and LB Fitness value based on the developed mathematical formulation in Equations (7) and 
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(8). The Minitab-17 software was utilised for multi-objective optimisation with the weights of 

2 and 1 for Number of Stations and LB Fitness, respectively. The optimum parameter setting 

was obtained as 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 = 881.81 and 𝑇𝑎𝑏𝑢 𝑆𝑖𝑧𝑒 = 24.54 with a composite desirability of 

𝑑 = 0.54 (see Figure 7). 

 

Figure 7. Optimisation results for tabu search parameters 

 Experimental test results 

This section presents the experimental tests, which were conducted using the optimised values 

of the algorithm parameters for each solution method, namely artificial bee colony algorithm 

and tabu search algorithm. The decimals obtained from the RSM for the artificial bee colony 

and tabu search parameters have been rounded to the nearest integer value. Thus, optimum 

parameters were considered as 𝑆 = 28, 𝐹 = 23, 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 = 277 and 𝐿𝐹 = 10 for artificial 

bee colony algorithm and 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 = 882 and 𝑇𝑎𝑏𝑢 𝑆𝑖𝑧𝑒 = 25 for tabu search algorithm and 

the test problems have been solved.  

As mentioned earlier, a tabu search algorithm, as well as artificial bee colony algorithm, was 

also developed to provide a comprehensive experimental study. Table 14 reports the best 

results obtained for each test problem using artificial bee colony and tabu search algorithms. 

The columns K and IT provide the total number of workstations and the iteration number in 
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which the best solution is found, respectively. Furthermore, the CPU time consumed to solve 

the relevant test problem by each algorithm is presented in the CPU column. The overall 

performance measures (𝜹)  of the best solutions are also provided in Table 14 to provide 

comparable results for future studies.  

Table 14. Computational test results 

Problem # 
 Artificial Bee Colony  Tabu Search 

 K 𝜹 IT CPU  K 𝜹 IT CPU 

1  4 79.34 1 39.92  4 79.34 17 0.01 

2  8 78.87 1 45.83  8 78.87 32 0.01 

3  7 87.85 1 44.21  7 87.85 50 0.01 

4  5 81.86 1 44.45  5 81.86 118 0.00 

5  13 97.98 4 45.86  13 97.98 232 0.01 

6  13 82.52 5 53.09  13 84.32 49 0.01 

7  15 94.89 38 53.09  16 94.89 258 0.01 

8  14 99.98 8 62.89  15 99.88 353 0.01 

9  19 100.99 30 52.80  20 101.00 171 0.01 

10  19 101.00 92 57.62  19 101.00 106 0.01 

11  16 99.96 39 65.11  17 99.96 487 0.01 

12  18 99.98 62 47.92  18 99.98 153 0.02 

13  17 95.94 8 48.15  17 95.94 496 0.02 

14  18 97.46 7 47.53  18 97.46 89 0.02 

15  22 94.94 9 47.24  23 93.91 281 0.02 

16  21 90.41 24 47.27  22 87.88 487 0.02 

17  25 97.71 79 47.22  25 97.65 483 0.02 

18  26 97.92 96 46.80  27 93.93 400 0.02 

19  45 99.97 66 56.36  44 99.97 476 0.03 

20  44 96.97 80 74.51  46 96.96 413 0.04 

 

As can be seen from Table 14, artificial bee colony algorithm found solutions with fewer 

numbers of workstations for test problems 7-9, 11, 15, 16, 18 and 20. That is why tabu search 

algorithm found solutions with lower 𝛿 values for the same instances, except test problem 9. 

In this particular case, artificial bee colony algorithm outperformed tabu search in terms of the 

number of workstations value as well as the 𝛿 value. In only one test problem (test problem 

19), tabu search obtained a solution with one lower workstation than the one found by 

artificial bee colony algorithm (where 𝛿 values were the same). For test problems 7 and 11, the 

solution gathered by artificial bee colony algorithm requires one lower workstation than the 

one gathered by tabu search (while 𝛿 values were the same for both methods). It can be said 

that the artificial bee colony algorithm provided more promising results in comparison with 

tabu search in terms of the number of workstations. On the other hand, tabu search performed 

better in obtaining smoother workload distributions with better 𝛿 values. Therefore, it can be 
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concluded that neither of the algorithms outperformed the other one in terms of the sought 

performance measures. 

The weighted-workloads of workstations for the solutions obtained are given in descending 

order in the Appendices section for both methods. As seen from the table, the weighted-

workloads of workstations are quite close to each other in both solution strategies. Please note 

that the difference between the weighted-workloads of workstations is a bit higher in some 

solutions. This situation occurs if there are tasks, which require zero processing time for some 

product models. Another reason could be the processing times of tasks, which exceed the 

cycle time were divided into “two” to make the dataset suitable for the experimental study. 

Therefore, the compatibility of the total workload of the test problems for predefined cycle 

times may have been impaired.  

6. Discussion 

The methodology used in this research adopted an RSM based parameter optimisation strategy 

for the proposed artificial bee colony and tabu search algorithms. The variants of both artificial 

bee colony and tabu search algorithms have been applied successfully in solving many 

assembly line balancing problems in the literature. However, as known, there is no algorithm, 

which works perfectly for all optimisation problems.  

Although artificial bee colony and tabu search algorithms are recognised with employing 

fewer control parameters (Dervis Karaboga & Akay, 2009), both algorithms need some 

preliminary work to determine the values of control parameters, as in the majority of heuristic 

and meta-heuristic approaches. The proposed RSM based parameter optimisation technique 

aims to overcome this issue and determine the best combinations of different parameter values 

for both algorithms. As it concurrently determines all input parameters (or factors) of the 

system for an optimised output (or response), RSM is more economical than conventional 

experimental or optimisation methods in which one input parameter at a time is optimised. 

Also, the regression equation produced by the RSM represents the effects for binary 

combinations of input parameters on the output. Furthermore, in comparison to other design of 

experiments techniques (including Taguchi and 2k factorial design), RSM has the strength of 

providing optimised parameter values between the parameter levels determined by the user.  

One could argue that the artificial bee colony and tabu search parameters could be optimised 

for each test problem individually. However, due to the page limit, the parameters have been 

optimised for a large-sized test problem (i.e. #15) and the same parameter sets have been used 

for solving all test problems. The truth lying behind this idea was that the parameters used for 
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solving the large-sized problems will have the ability to solve smaller sized ones. Although 

this may yield extra computational time in terms of solving the small and medium-sized test 

problems, the CPU times reported together with the experimental results are quite desirable 

due to the efficient and compact structure of the developed algorithms. 

 

7. Conclusions and Future Work 

Different from existing traditional mostly studied types of line balancing problems in the 

literature, a new type of problem, called lexicographic bottleneck assembly line balancing 

problem, has been defined for the simple (straight) assembly line configuration, recently. 

Moving from that base point, the lexicographic bottleneck assembly line balancing problem 

has been handled in a mixed-model production environment, which is a more flexible but 

complicated version of the simple assembly line balancing system tackled in the former study.  

One of the major contributions of this paper is addressing the lexicographic bottleneck mixed-

model assembly line balancing problem. The weighted-workloads of workstations have been 

minimised hierarchically starting from the most heavily loaded workstation, followed by the 

second heavily loaded workstation and so on. Illustrative examples were given to describe the 

problem and explore its main characteristics. The artificial bee colony and tabu search 

algorithms developed for efficiently solving the problem by dealing with the variations in 

processing times of tasks among different product models are of major contributions of this 

research. The solution procedures of the algorithms were depicted using numerical examples. 

Furthermore, RSM has been applied to systematically optimise the parameters of the proposed 

algorithms for the first time in the literature. In accordance with the experimental test results, 

artificial bee colony algorithm found slightly better solutions than tabu search in terms of the 

number of workstations. However, tabu search performed better in obtaining smoother 

workload distributions in terms of the lexicographic bottleneck objective. It was observed that 

CPU times consumed by the algorithms were quite reasonable especially for the large-sized 

test problems.  

The lexicographic bottleneck model has a wide range of application area in the assembly line 

balancing domain. Therefore, the proposed lexicographic bottleneck model can be applied to 

other types of line configurations, e.g. two-sided lines, U-shaped lines, parallel lines, etc. in 

future studies. New solution methods can also be developed and their performances can be 

compared to the performances of the algorithms developed in the current work. Developing 

robust models considering dynamic model demands in a lexicographic bottleneck environment 
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may also be of interest for researchers. 

 

Appendices 

Figure A1. Residual plots for artificial bee colony parameter optimisation 
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Figure A2. Residual plots for tabu search parameter optimisation 

 

 

 

Table A1. The weighted-workloads of workstations when the problems are solved using artificial bee 

colony algorithm 

# The Weighted-workloads of Workstations in Descending Order 

1 7.858 - 7.5 - 7.259 - 6.458 

2 7.825 - 6.15 - 4.69 - 4.02 - 3.9 - 3.652 - 3 - 1.7 

3 8.7 - 8.4 - 6.584 - 6.26 - 5.6 - 5.223 - 3.696 

4 10.134 - 9.79 - 9.6 - 8.917 - 8.33 

5 9.7 - 9.7 - 9.6 - 8.936 - 8.5 - 8.038 - 7.7 - 7.482 - 7.438 - 6.474 - 6.4 - 6.1 - 4.998  

6 8.17 - 8.083 - 8 - 7.65 - 7.3 - 7 - 6.85 - 6.653 - 6.599 - 5.9 - 5.76 - 5.67 - 5.217  

7 9.4 - 8.8 - 8.788 - 8.568 - 8.46 - 8.4 - 7.858 - 7.7 - 7.5 - 7.5 - 7.32 - 6.66 - 6.6 - 5.146 - 4.116  

8 9.9 - 9.75 - 9.566 - 9.383 - 9.14 - 8.8 - 8.7 - 8.687 - 8.617 - 7.8 - 7.2 - 6.8 - 6.7 - 6.299  

9 10 - 9.8 - 9.8 - 9.732 - 9.7 - 9.6 - 9.2 - 9.162 - 9.158 - 9.1 - 8.8 - 8.6 - 7.9 - 7.7 - 7.6 - 7.348 - 5.22 - 5.22 - 4.158  
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10 10 - 9.9 - 9.585 - 9.3 - 9.25 - 9.2 - 8.972 - 8.6 - 8.6 - 8.6 - 8.4 - 8.398 - 8 - 8 - 7 - 6.685 - 6.03 - 5.45 - 4.933  

11 9.9 - 9.5 - 9.1 - 8.96 - 8.77 - 8.7 - 8.7 - 8.6 - 8.5 - 8.374 - 8.3 - 8.3 - 7.868 - 7.6 - 7 - 6.048  

12 9.9 - 9.7 - 9.1 - 9.068 - 8.784 - 7.94 - 7.791 - 7.75 - 7.7 - 7.6 - 7.2 - 6.9 - 6.806 - 6.75 - 6.485 - 6.4 - 5.5 - 5.24  

13 9.5 - 9.3 - 9.142 - 9.068 - 8.574 - 8.248 - 8.242 - 8.006 - 8 - 8 - 7.516 - 6.626 - 6.6 - 6.55 - 5.8 - 5.5 - 5.298  

14 9.65 - 9.5 - 9.3 - 9.2 - 9.15 - 8.95 - 8.6 - 8.4 - 8.25 - 8.15 - 8.149 - 8.05 - 7.76 - 7.7 - 6.832 - 6.1 - 5.342 - 5.084  

15 9.4 - 9.316 - 9.3 - 9 - 8.8 - 8.3 - 8.24 - 8.2 - 8.2 - 8 - 7.98 - 7.944 - 7.6 - 7.572 - 7.362 - 7.2 - 7.064 - 7 - 6.9 - 6.8 - 

6.5 - 5.624  

16 8.951 - 8.867 - 8.7 - 8.619 - 8.58 - 8.532 - 8.4 - 8.385 - 8.316 - 8.3 - 8.25 - 8.2 - 8.052 - 8 - 7.7 - 7.65 - 7.4 - 7.1 - 

6.9 - 6.46 - 6.3  

17 9.674 - 9.6 - 9.4 - 9.4 - 9.362 - 9.178 - 9.048 - 9.042 - 9 - 8.9 - 8.8 - 8.8 - 8.74 - 8.6 - 8.434 - 8.384 - 8.306 - 8.3 - 

7.9 - 7.6 - 7.206 - 6.68 - 6.344 - 5.7 - 3.36  

18 9.698 - 9.3 - 9.2 - 9 - 9 - 8.8 - 8.7 - 8.6 - 8.517 - 8.496 - 8.478 - 7.926 - 7.9 - 7.878 - 7.85 - 7.75 - 7.719 - 7.6 - 

7.583 - 7.47 - 6.85 - 6.6 - 6.45 - 6.424 - 6.251 - 4.9  

19 9.9 - 9.6 - 9.6 - 9.3 - 9.2 - 8.8 - 8.736 - 8.7 - 8.7 - 8.632 - 8.5 - 8.5 - 8.4 - 8.4 - 8.4 - 8.3 - 8.218 - 8.2 - 8.106 - 8.1 

- 8.016 - 7.9 - 7.766 - 7.7 - 7.666 - 7.5 - 7.5 - 7.4 - 7.2 - 7.18 - 7.162 - 7.064 - 7.042 - 6.848 - 6.8 - 6.7 - 6.7 - 6.7 

- 6.6 - 6.526 - 6.4 - 5.8 - 5.14 - 5.058 - 4.64  

20 9.6 - 9.6 - 9.5 - 9.3 - 9.25 - 9.231 - 9.2 - 9.1 - 8.985 - 8.94 - 8.817 - 8.8 - 8.7 - 8.633 - 8.516 - 8.5 - 8.5 - 8.45 - 8.4 

- 8.4 - 8.4 - 8.4 - 8.383 - 8.3 - 8.2 - 8.15 - 8.1 - 8.1 - 8.051 - 8 - 8 - 7.984 - 7.958 - 7.92 - 7.9 - 7.551 - 7.4 - 7.15 - 

6.797 - 6.5 - 4.35 - 4.02 - 3.85 - 3.5  

 

Table A2. The weighted-workloads of workstations when the problems are solved using tabu search 

algorithm 

# The Weighted-workloads of Workstations in Descending Order 

1 7.858 - 7.5 - 7.259 - 6.458  

2 7.825 - 6.15 - 4.69 - 4.02 - 3.9 - 3.652 - 3 - 1.7  

3 8.7 - 8.4 - 6.584 - 6.26 - 5.6 - 5.223 - 3.696  

4 10.134 - 9.79 - 9.6 - 8.917 - 8.33  

5 9.7 - 9.7 - 9.6 - 8.936 - 8.5 - 8.038 - 7.738 - 7.7 - 6.682 - 6.6 - 6.474 - 6.4 - 4.998  

6 8.35 - 8.17 - 7.498 - 7.3 - 7.25 - 7.034 - 7 - 6.85 - 6.653 - 5.9 - 5.87 - 5.76 - 5.217   

7 9.4 - 8.8 - 8.788 - 8.46 - 8 - 7.7 - 7.5 - 7.458 - 7.146 - 7.1 - 6.774 - 5.9 - 5.5 - 5.276 - 5.146 - 3.868  

8 9.9 - 8.7 - 8.687 - 8.583 - 8.266 - 8.14 - 7.8 - 7.8 - 7.7 - 7.45 - 7.317 - 7.2 - 6.8 - 6.7 - 6.299  

9 10 - 9.858 - 9.8 - 9.732 - 9.2 - 9.162 - 8.9 - 8.8 - 8.7 - 8.2 - 8.1 - 7.7 - 7.6 - 7.6 - 7.3 - 6.348 - 6.2 - 5.22 - 5.22 - 

4.158  

10 10 - 9.9 - 9.585 - 9.3 - 9.25 - 9.2 - 9.048 - 8.972 - 8.6 - 8.6 - 8.6 - 8.4 - 8.217 - 8.203 - 8 - 7.968 - 6.03 - 5.5 - 1.53 

11 9.9 - 9.5 - 9.1 - 8.7 - 8.7 - 8.568 - 8.53 - 8.5 - 8.3 - 8.3 - 7.8 - 7.716 - 7 - 6.758 - 6.616 - 6.4 - 3.832  

12 9.9 - 9.7 - 9.251 - 9.1 - 7.734 - 7.7 - 7.64 - 7.535 - 7.518 - 7.44 - 7.2 - 7.04 - 6.9 - 6.806 - 6.75 - 6.7 - 6.4 - 5.3  

13 9.5 - 9.3 - 9.142 - 9.068 - 9.048 - 8.574 - 8.242 - 8 - 8 - 7.516 - 7.206 - 6.626 - 6.6 - 6.55 - 5.8 - 5.5 - 5.298  

14 9.65 - 9.5 - 9.3 - 9.2 - 9.15 - 8.95 - 8.6 - 8.4 - 8.25 - 8.166 - 8.15 - 7.76 - 7.742 - 7.7 - 6.749 - 6.1 - 5.65 - 5.15  

15 9.3 - 9 - 8.7 - 8.3 - 8.2 - 8.2 - 7.944 - 7.756 - 7.6 - 7.58 - 7.572 - 7.5 - 7.5 - 7.4 - 7.362 - 7.2 - 7.064 - 6.9 - 6.8 - 

6.5 - 6.5 - 6.126 - 5.298  

16 8.7 - 8.7 - 8.385 - 8.369 - 8.332 - 8.316 - 8.3 - 8.28 - 8.25 - 8.2 - 8 - 7.95 - 7.703 - 7.7 - 7.6 - 7.4 - 7.1 - 6.9 - 6.3 - 

5.917 - 5.9 - 5.36  

17 9.668 - 9.6 - 9.4 - 9.4 - 9.362 - 9.178 - 9.048 - 8.9 - 8.824 - 8.8 - 8.8 - 8.706 - 8.6 - 8.442 - 8.384 - 8.314 - 8.306 - 

8.3 - 8.2 - 7.9 - 7.5 - 7.4 - 6.26 - 5.106 - 3.36  

18 9.3 - 9.2 - 9.2 - 9 - 8.909 - 8.8 - 8.7 - 8.5 - 8.498 - 8.3 - 7.9 - 7.85 - 7.75 - 7.719 - 7.6 - 7.574 - 7.5 - 7.5 - 7.5 - 

7.47 - 7.128 - 6.51 - 6.424 - 6.191 - 6.017 - 4.9 - 3  
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19 9.9 - 9.6 - 9.6 - 9.3 - 9.2 - 8.9 - 8.862 - 8.8 - 8.758 - 8.736 - 8.7 - 8.6 - 8.516 - 8.5 - 8.5 - 8.402 - 8.4 - 8.316 - 

8.216 - 8.2 - 8.148 - 8.1 - 8 - 7.9 - 7.666 - 7.58 - 7.5 - 7.5 - 7.5 - 7.48 - 7.4 - 7.366 - 7.042 - 6.864 - 6.8 - 6.8 - 6.7 

- 6.606 - 6.6 - 6.526 - 6.316 - 5.8 - 5.8 - 5.3  

20 9.6 - 9.5 - 9.25 - 9.2 - 8.9 - 8.9 - 8.9 - 8.9 - 8.885 - 8.808 - 8.8 - 8.751 - 8.516 - 8.4 - 8.4 - 8.4 - 8.383 - 8.25 - 8.2 

- 8.2 - 8.173 - 8.15 - 8.1 - 8.051 - 8 - 7.9 - 7.8 - 7.6 - 7.554 - 7.4 - 7.4 - 7.221 - 7.15 - 6.797 - 6.75 - 6.7 - 6.5 - 6.5 

- 6.05 - 6.03 - 5.917 - 5.8 - 5.3 - 5.2 - 4.35 - 3.85   
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