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Abstract — Assembly lines are one of the frequently used 

mass production techniques for producing homogeneous 

parts in large quantities. An assembly line is called a mixed-

model line when there is more than one product model being 

assembled on the same line. This paper addresses to mixed-

model two-sided lines, on which two or more large-sized 

product models (like buses or trucks) are assembled on the 

same line in an intermixed sequence. An ant colony 

optimization algorithm is proposed for minimizing the cycle 

time of the line as well as the number of workstations. A real-

world problem is solved using the proposed approach and 

the efficiency of the line is improved.  

Keywords — assembly line balancing; mixed-model lines; 

two-sided lines; multi-objective optimization; ant colony 

optimization. 

I. INTRODUCTION 

An assembly line is composed of a sequence of 

workstations linked to each other through a conveyor or a 

moving belt. In each workstation (a physical space in 

which at least one operator works), a set of tasks are 

performed regarding the semi-product assembled on the 

line and the semi-product is forwarded to the subsequent 

workstation. The final product is departed from the last 

workstation and the time between the departures of two 

consecutive products is called cycle time. Thus, each 

workstation is allowed to perform all tasks assigned to it 

within the cycle time [1].  

The assembly line balancing problem is to determine 

the assignment configuration of tasks to workstations. The 

wide-spread objective is to maximize the efficiency of the 

line either by minimizing the number of workstations 

given the cycle time (referred to as the problem of type-I) 

or minimizing the cycle time given the number of 

workstations (referred to as the problem of type-II). There 

are certain constraints to be satisfied during the task 

assignment process: capacity constraint, precedence 

relationship constraint and task occurrence constraint. The 

capacity constraint ensures that the finishing times of all 

tasks assigned to a particular workstation do not exceed the 

cycle time. The precedence relationship constraint 

specifies the technological or organizational priorities 

between tasks; i.e. some tasks must have been completed 

before the initialization of another task. Finally, the 

occurrence constraint corresponds to the assignment of 

every task to exactly one workstation to obtain a feasible 

line balance [2]. 

The mixed-model production line was introduced by 

Thomopoulos [3] and has been studied extensively since 

then. A mixed-model line is a consecutive sequence of 

workstations in which more than one product model is 

produced simultaneously. On the contrary, a single model 

line is able to assemble a single product model at the same 

time. Therefore, the main advantage of mixed-model lines 

over single-model lines is that there is no need to construct 

a new line to produce each product model. Thus, 

customized customer demands can be fulfilled by the 

companies in a more economical way. Within this context, 

the mixed-model lines have been widely utilized in 

industry from electronics to automotive and home 

appliances.  

 Among various studies on assembly line balancing 

problems, the ones on mixed-model lines usually consider 

the lines with only one side. However, the two-sided lines 

[4], across which the product models are assembled 

through the workstations located in both left and right sides 

of the line, are usually applied to produce large-sized items 

(such as trucks, buses or even smaller products) with 

model variations. Although having a mixed-model two-

sided line is getting popular in today’s manufacturing 

industry, the number of studies on mixed-model two-sided 

lines is limited. An ant colony optimization (ACO) 

algorithm was developed by Simaria and Vilarinho [5] for 

solving the mixed-model two-sided assembly line 

balancing problem considering parallel workstations. The 

aim was to minimize the number of workstations. A 

mathematical model and a simulated annealing algorithm 

were proposed by Ozcan and Toklu [6] with the aim of 

minimizing the number of mated-stations and the number 

of workstations. In both studies (Simaria and Vilarinho [5]  
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Figure 1. A schematic configuration of tasks in mixed-model two-sided lines [7] 

 
and Ozcan and Toklu [6]) some additional constraints were 
also adopted, such as synchronous tasks and zoning 
constraints. Chutima and Chimklai [8] proposed a particle 
swarm optimization algorithm and aimed to maximize the 
work-relatedness and workload smoothness. Rabbani et al. 
[9] proposed a GA-based heuristic and a mixed-integer 
program to solve the mixed-model two-sided assembly line 
balancing problem considering the multiple U-shaped 
layout with the aim of minimizing the cycle time and the 
number of stations. Kucukkoc and Zhang [10-12] 
developed various agent-based ant colony algorithms and a 
mathematical model for balancing and 
balancing/sequencing the mixed-model parallel two-sided 
assembly lines.  

 As seen from this survey, there is no research which 

aims to simultaneously minimize the cycle time and the 

number of workstations for mixed-model two-sided lines 

(referred to as the problem of type-E). Therefore, to the 

best of author’s knowledge, this research contributes to 

knowledge by addressing the type-E mixed-model two-

sided assembly line balancing problem for the first time. 

An ant colony algorithm is proposed for solving the 

problem, due to its NP-hard nature. A real-world problem 

was taken from Zhang et al. [7] and solved using the 

proposed approach. The result of the case study indicates 

that the proposed approach helps improve the efficiency of 

the line. 

II. PROBLEM DEFINITION 

A mixed-model two-sided assembly line is comprised 
of serially linked workstations located in both left and right 
sides of the line. On the line, two or more product models 
are produced in an inter-mixed sequence. There is no need 
for set-up between the product model changes as the 
models are similar to each other. So, different models of a 
product can be assembled on the same line in any sequence 
that satisfies the customized product demands. Figure 1 
represents a typical configuration of the mixed-model two-
sided lines. The processing times of tasks belonging to two 
models (A and B) are represented by bars. The length of a 
particular bar corresponds to the processing time of the 
task given inside that bar. The gray shaded areas denote the 
unavoidable idle times usually caused by the precedence 
relationships and capacity constraints. As seen in Figure 1, 
there is a total of nine tasks performed in three 
workstations located in left and right sides of the line.   
 

Task 

Processing Time 

(time-unit) 
Operation

Side 

Immediate 

Predecessor(s) 
A B 

1* 29 29 E - 

2 16 16 R 7 

3 10 10 R 7 

4 4 4 E - 

5 18 18 E 4 

6 15 15 E - 

7 9 9 E - 

8 11 11 E 7 

9* 7 7 E 6 

10 4 4 E - 

11* 13 13 E 2,9,10 

12 6 6 E 5 

13 13 13 E 12 

14 8 8 E 13 

15* 65 69 E 14 

16 6 6 E 5 

17 5 5 E 12 

18 11 11 L 12,17 

19* 7 7 E 12,15 

20* 31 31 E 11,19 

21* 7 7 E 19 

22 22 22 E 12 

23* 24 24 E 22, 27 

24* 14 14 E 23 

25* 15 15 E 22,24,27 

26* 17 17 E 24 

27 4 4 L 12 

28 28 28 E 27 

29 7 10 E 28 

30 9 9 E 28 

31 17 17 E 29 

32 16 16 E 30 

33 15 15 E 10 

34 16 10 R 12 

35 17 17 R 12 

36 10 20 R 35 

37 10 30 R 36 

38 11 11 R 37 

39 8 8 L 10 

40 10 10 E 12 

41 11 17 E 12 

42* 10 10 E 40,41 

43* 8 8 E 40,41 

44* 9 9 E 43 

45* 5 10 E 44 

46* 11 11 E 2,3,11,15,43 

47* 4 4 E 42,45,46 

48 6 6 L 12 

49 18 27 E 47 

Table 1. Data for the case study 

WS-1 

WS-2 

WS-3 
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Figure 2. The assignment configuration of tasks in current situation 

WS-1 and WS-2 constitutes a ‘mated-station’ and each of 
these workstations call the other one as its ‘companion’. In 
mixed-model production, some tasks may not be needed 

for some models. For example, tasks 1 and 4 are not 
necessary for model B while tasks 3 and 8 are not 
necessary for producing model A (see WS-1 and WS-3 in 
the left side of the line).  

The data related to the case study is gathered from Zhang 
et al. [7] and presented in Table 1. The processing times, 
precedence relationships and operation sides of 49 tasks 
are presented in the table. The letters reported in the 
‘Operation Side’ column denote the side of the line in 
which the corresponding task must be performed; i.e. ‘L’ 
means left side, ‘R’ means right side and ‘E’ means either 
side. The tasks marked with asterisk (*) are in the same 
“incompatible task group [7]”, which means they cannot 
be performed on the same product, simultaneously. No 
detail information on incompatible task groups will be 
repeated here due to the page limit, please refer to Zhang et 
al. [7] for more information. The demands for models are 
assumed to be the same (𝐷𝐴 = 𝐷𝐵). The assignment 
configuration of tasks in its current form is presented in 
Figure 2. As seen from the figure, eight workstations are 
utilized while the companions of WS-3 and WS-4 are not 
employed. Also, it is seen that the workstation which 
determines the cycle time is WS-7 as it has the largest 
processing time of 120 time-units for model B. However, 
the idle times in the workstations occupy quite a lot of 
time. 

III. SOLUTION METHOD 

 An ACO approach is proposed for solving the mixed-
model two-sided assembly line balancing problem 
considered in this study. ACO algorithms are one of the 
most successful examples of swarm intelligent systems and 
have been successfully applied to a wide range of problem 
types. The behavior of each ant is inspired by the food 
searching mechanism of real ants [13] and their 
communication form with each other, in particular. Ants 
randomly walk on the path, at the beginning of the search 
process. After some time, the ant which finds a source of 
food walks back to the colony, leaving pheromone on the 
ground. This will attract other ants and they will follow the 
same path at a certain probability. By time, there will 
accumulate more pheromone on the shortest path from the 
nest to the food source [5, 14]. Please refer to Dorigo and 
Stützle [15, 16] for a comprehensive overview on advances 
and various applications of ACO algorithms. 

 The outline of the solution method proposed in this 
research is presented in Figure 3. As seen in the figure, 
after the initialization of the parameters, the theoretical 
minimum of cycle time (𝐶𝑚𝑖𝑛) is calculated using (1) and 
accepted as the cycle time (𝐶 ← 𝐶𝑚𝑖𝑛) [7].  

𝐶𝑚𝑖𝑛 = max
𝑗∈𝐽

{⌈
∑ 𝑡𝑖𝑗

𝑁
𝑖=1

𝐾
⌉

+

} 
(1) 

where 𝑁 is the total number of tasks, 𝑡𝑖𝑗 is the processing 

time of task 𝑖 for model 𝑗 (𝑗 ∈ 𝐽) and 𝐾 is the total number 

Left Right Left Right Left Right 
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of workstations. ⌈𝑋⌉+ denotes the least integer equals to or 
larger than X. 

 A new colony is released and a certain amount of 
pheromone (initial_pheromone) is deposited to all edges of 
the solution space. Please note that the pheromone is 
deposited between the task and the corresponding 
workstation in which it is assigned. A balancing solution is 
built by each ant in the colony considering 𝐶 (using the 
procedure given in Figure 4). The selection probability of 
task 𝑖 for the position 𝑘 is calculated using (2) [16]. The 
algorithm is enhanced with 10 heuristics commonly used 
in the line balancing domain, and by Kucukkoc and Zhang 
[12]. 

𝑝𝑖𝑘 =
[𝜏𝑖𝑘]𝛼[𝜂𝑖]

𝛽

∑ [𝜏𝑖𝑦]
𝛼

[𝜂𝑖]
𝛽

𝑦𝜖𝑍𝑖

 
(2) 

where 𝛼 and 𝛽 are weighting parameters which determine 
the influence of pheromone and heuristic information in 
the task selection process, respectively. 𝑍𝑖 is the list of 
candidate tasks when selecting task 𝑖. 𝜏𝑖𝑘 is the pheromone 
amount existing between task 𝑖 and workstation 𝑘, and 𝜂𝑖 
is the heuristic information of task 𝑖 that comes from the 
heuristic selected randomly [10].  

 The line efficiency values of the solutions obtained are 
calculated using (3) and pheromones are updated using (4) 
[16].  

𝐿𝐸% =
∑ ∑ 𝑑𝑗  𝑡𝑖𝑗

𝑁
𝑖=1𝑗𝜀𝐽

𝐾 × 𝐶
× 100 

(3) 

where 𝑑𝑗 is the proportional demand of model 𝑗 (𝑑𝑗 =

𝐷𝑗/ ∑ 𝐷𝑗𝑗∈𝐽 ), 𝑡𝑖𝑗 is the processing time of task 𝑖 for model 𝑗 

and 𝐾 is the total number of workstations. 

𝜏𝑖𝑘 ← (1 − 𝜌)𝜏𝑖𝑘 + ∆𝜏𝑖𝑘 
(4) 

where ∆𝜏𝑖𝑘 = 𝑄 𝐾⁄ ; 𝜌 and 𝑄 denote the evaporation rate 
and a user-determined parameter. 

𝐶 is increased by 𝐶𝑖𝑛𝑐 and new colonies are released to 
get new solutions and this cycle continues until 𝐶 exceeds 
𝐶𝑚𝑎𝑥. The best solution which gives the global best 𝐿𝐸% 
value is determined as the solution of the problem and the 
algorithm is terminated. 

 The algorithm was coded in Java and run on an Intel 
Celeron® CPU N2840 2.16 GHz 4GB platform to solve 
the problem with the parameter setting of 𝛼 = 𝛽 = 0.1, 
𝜌 = 0.1, 𝑄 = 50, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒 = 30,  
𝑀𝑎𝑥𝑁𝑏𝐶𝑜𝑙𝑜𝑛𝑖𝑒𝑠 = 100 and 𝐶𝑜𝑙𝑜𝑛𝑦𝑆𝑖𝑧𝑒 = 20. 

Figure 5 presents the best solution retrieved when the 
algorithm was terminated. The solution presented here 
fulfills all constraints explained in Section II as well as the 
incompatible task group constraints considered by Zhang 
et al. [7]. The length of each bar symbolizes the processing 
time of the task given in it. The finishing/starting times of  
 

Initialize the algorithm and all parameters 

Calculate the minimum value for cycle time (𝐶𝑚𝑖𝑛) 

Initialize the cycle time (𝐶 ← 𝐶𝑚𝑖𝑛)  

While 𝐶 < 𝐶𝑚𝑎𝑥 

While colony_number < MaxNbColonies 

Release a new colony (colony_number++) 

Deposit initial_pheromone to all edges 

While ant_number < ColonySize 

Release a new ant (ant_number++) 

Select a heuristic rule at random 

Build a balancing solution 

Calculate the line efficiency of the solution found 

Update pheromone values 

End while 

Determine the best solution (which has the maximum line 

efficiency) in the colony  

End while 

Determine the global best solution (which has the maximum 

line efficiency) among the colonies 

𝐶 ← 𝐶 + 𝐶𝑖𝑛𝑐  

End while 

Print the best solution 
Figure 3. The outline of the proposed algorithm 

Initialize parameters 
While unassigned tasks list is not empty (𝑈𝑇 ≠ ∅) { 

Select an operation side at random (left or right) 

Determine the available tasks for the current position 

If (there is at least one available task) { 
Calculate the selection probability of every available task 

Select a task (𝑖) based on the selection probabilities 

Assign task 𝑖 to the current position and remove from 𝑈𝑇 

Increase the station time for each model: 𝑠𝑡(𝑘)𝑗 ←
𝑠𝑡(𝑘)𝑗 + (𝑡𝑗𝑖) 

} else if (there is no available task due to interference) { 

Increase the station time of the current workstation: 

𝑠𝑡(𝑘)  ← 𝑠𝑡(𝑘), where 𝑘 is the companion of 

workstation 𝑘 [5] 
Select an operation side at random 

} else if (there is no available task due to insufficient 

capacity) { 

If (both sides of the current line reached full capacity) {  

Increase the station number (𝑘 + +) 

} else if { 
 Alternate the operation side 

} end if 
} end if 

} end while 
Figure 4. The outline of the procedure followed by each ant to build a 

balancing solution 

 

the tasks are also given over bars to enable a more 

comprehensible reading. The gray shaded areas denote the 

unavoidable idle times occurred either towards the end of 

the workstations (due to capacity constraint) or between 

tasks (due to precedence or incompatibility constraints). A 

total of seven workstations is needed to perform all tasks 

within the cycle time of 107 time-units/item. This gives a 

line efficiency value of almost 90% when calculated using 

(3) (𝐶 = 107, 𝐾 = 7). The efficiency of the line balance
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Figure 5. The assignment configuration of tasks according to the best 

solution obtained 

before balancing it using the proposed ACO approach was 
slightly higher than 70 % (where 𝐶 = 120, 𝐾 = 8). This 
corresponds to a significant improvement of over 28% in 
the line efficiency in comparison to the line balance before 
balancing it. Thus, both the cycle time and the number of 
workstations have been reduced from 120 time-units/item 
and eight workstations to 107 time-units/item and seven 
workstations, respectively. This improvement also resulted 
in a smoother workload distribution among the 
workstations across the line. As seen from the figure, WS-
3 has the largest workload with 106 time-units for both 
model A and model B. On the contrary, WS-6 has the 
smallest workload, i.e. 64 time-units for model A and 94 
time-units for model B. The difference in the total 
workload time between the two models is due to the 
differences in the processing times of tasks 36 and 37 for 
models A and B.  

 

 

Figure 6. The change in the number of workstations and the line 

efficiency while the cycle time increases 

 
Figure 6 shows the change in the number of workstations 
(K) and the line efficiency (𝐿𝐸%) while the cycle time 
increases up to 𝐶 = 135. As seen in the figure, the ACO 
algorithm found solutions with 10 workstations when 𝐶 =
85 and 𝐶 = 86 time-units/item. However, a solution with 
nine workstations (𝐿𝐸% = 85.9) was found when 𝐶 was 
increased to 87 time-units/item. Similar breakings have 
been observed when 𝐶 = 107 and 𝐶 = 134 time-
units/item and with 𝐿𝐸% = 89.8 and 𝐿𝐸% = 83.6, 
respectively. This confirms that the maximum line 
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efficiency of 89.8% was observed with seven workstations 
when 𝐶 = 107 time-units/item. 

IV. CONCLUSION 

An ACO algorithm, enhanced with commonly used 

heuristic rules, was proposed for solving the mixed-model 

two-sided assembly line balancing problem multi-

objectively. The aim was to minimize the cycle time of the 

line as well as the number of workstations (the problem of 

type-E). To the best of author’s knowledge, this is the first 

attempt in the literature to minimize those conflicting 

objectives for the mixed-model two-sided lines. The data 

belonging to an industrial case study was gathered from 

Zhang et al. [7] and solved using the proposed algorithm 

coded in JAVA. The cycle time of the line was decreased 

from 120 time-units/item to 107 time-units/item and the 

number of workstations was reduced from eight to seven. 

Eventually, a significant improvement of over 28% was 

gained in the line efficiency and a smoother workload 

distribution was obtained in comparison with the situation 

before balancing the line. The ITG constraint originally 

introduced by Zhang et al. [7] has also been considered 

along with other essential constraints (e.g. capacity and 

precedence relationship). In terms of the practical 

applications of the study, the line managers can easily 

apply the method proposed in this paper to other similar 

problems in industry. Also, the ITG concept can be 

applied to other problems (e.g. parallel lines and U-shaped 

lines) or it can be extended (such that there are more than 

one ITG for the same system) for making it adaptable to 

more sophisticated implementations in real life. The 

development of a mathematical model for the type-E 

mixed-model two-sided assembly line balancing problem 

has been left to future studies. 

 

REFERENCES 

[1]  Boysen N, Fliedner M, Scholl A. A classification of assembly line 

balancing problems. European Journal of Operational Research. 

2007;183(2):674-93. 

[2]  Battaïa O, Dolgui A. A taxonomy of line balancing problems and 

their solution approaches. International Journal of Production 

Economics. 2013;142(2):259-77. 
[3]  Thomopoulos NT. Line Balancing-Sequencing for Mixed-Model 

Assembly. Management Science. 1967;14(2):B-59-B-75. 

[4]  Bartholdi JJ. Balancing 2-Sided Assembly Lines - a Case-Study. 
International Journal of Production Research. 1993;31(10):2447-

61. 

[5]  Simaria AS, Vilarinho PM. 2-ANTBAL: An ant colony 
optimisation algorithm for balancing two-sided assembly lines. 

Computers & Industrial Engineering. 2009;56(2):489-506. 

[6]  Ozcan U, Toklu B. Balancing of mixed-model two-sided assembly 
lines. Computers & Industrial Engineering. 2009;57(1):217-27. 

[7]  Zhang DZ, Kucukkoc I, Karaoglan AD. Rebalancing of mixed-

model two-sided assembly lines with incompatible task groups: 
An industrial case study.  46th International Conference on 

Computers & Industrial Engineering (CIE46), 29-31 October 

2016, Tianjin, China2016. 
[8]  Chutima P, Chimklai P. Multi-objective two-sided mixed-model 

assembly line balancing using particle swarm optimisation with 

negative knowledge. Computers & Industrial Engineering. 
2012;62(1):39-55. 

[9]  Rabbani M, Moghaddam M, Manavizadeh N. Balancing of mixed-

model two-sided assembly lines with multiple U-shaped layout. 
International Journal of Advanced Manufacturing Technology. 

2012;59(9-12):1191-210. 

[10]  Kucukkoc I, Zhang DZ. Mixed-model parallel two-sided assembly 
line balancing problem: A flexible agent-based ant colony 

optimization approach. Computers & Industrial Engineering. 

2016;97:58-72. 
[11]  Kucukkoc I, Zhang DZ. Simultaneous balancing and sequencing 

of mixed-model parallel two-sided assembly lines. International 

Journal of Production Research. 2014;52(12):3665-87. 
[12]  Kucukkoc I, Zhang DZ. Mathematical Model and Agent Based 

Solution Approach for the Simultaneous Balancing and 

Sequencing of Mixed-Model Parallel Two-Sided Assembly Lines. 
International Journal of Production Economics. 2014;158, :314-

33. 

[13]  Dorigo M, Di Caro G. The Ant Colony Optimization meta-
heuristic. In: Corne D, (Ed.). New Ideas in Optimization. London, 

UK: McGraw Hill; 1999. p. 11-32. 
[14]  Dorigo M, Di Caro G, Gambardella LM. Ant Algorithms for 

Discrete Optimization. Artificial Life. 1999;5:137–72. 

[15]  Dorigo M, Stutzle T. Ant Colony Optimization: Bradford Books, 
MIT Press, Cambridge, MA; 2004. 

[16]  Dorigo M, Stutzle T. Ant Colony Optimization: Overview and 

Recent Advances. Handbook of Metaheuristics, Second Edition. 

2010;146:227-63. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


