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Highlights: 

 

 Heuristics and meta-heuristics proposed for TALBP-II are 

comprehensively reviewed.  

 A set of encoding schemes and decoding procedures is 

summarized.  

 New objective functions and an iterative search 

mechanism are developed.  

 Eighteen meta-heuristics are evaluated on a set of 

benchmark problems.  

 New best and optimum solutions of TALBP-II test 

problems are also achieved.  
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Abstract: This paper presents a comprehensive review and evaluation of heuristics and meta-heuristics 

for the two-sided assembly line balancing problem. Though a few reviews have been presented, some 

latest methods are not included and there is no comparison of the meta-heuristics in terms of their 

performances. Furthermore, since various kinds of encoding schemes, decoding procedures and 

objective functions have been applied, the results cannot be generalized and the published comparison 

might be unfair. This paper contributes to knowledge by comparing the published methods, ranging 

from well-known simulated annealing to recent published iterated local search, and evaluating the six 

encoding schemes, 30 decoding procedures and five objective functions on the performances of the 

meta-heuristics meanwhile. The experimental design approach is applied to obtain valid and 

convincing results by testing algorithms under four termination criteria. Computational results 

demonstrate that the proper selection of encoding scheme, decoding procedure and objective function 

improves the performance of the algorithms by a significant margin. Another unique contribution of 

this paper is that 15 new best solutions are obtained for the large-sized type-II two-sided assembly line 

balancing problem during the re-implementation and evaluation of the meta-heuristics tested. 

                                                           

1 Corresponding author 
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1. Introduction 

As a flow oriented production system, assembly lines have great ramifications in various industries, 

including the automotive and consumer electronics, among others. In an assembly line, a set of tasks is 

divided to and processed on a set of workstations. Each workstation operates the allocated tasks within 

a pre-determined and fixed time, referred to as cycle time. The assembly line balancing problem 

(ALBP) is to determine the allocation of tasks to workstations considering one or more optimization 

criteria [1].  

On the basis of the layout of the assembly line, the assembly line balancing problems can be classified 

one-sided assembly line balancing problem and two-sided assembly line balancing problem (TALBP). 

The two-sided assembly line has great applications in assembling large-sized products such as cars, 

buses and trucks [2]. Different from one-sided assembly lines, the TALBPs can be characterized by a 

set of tasks that must be divided to and processed on a set of mated-stations, each containing two facing 

and opposite workstations. Two cooperative workers on each mated-station operate the tasks in parallel 

at both left and right sides. Due to the utilization of both sides, the tasks are portioned into three types: 

L-type tasks, R-type tasks and E-type tasks. L-type/R-type tasks must be allocated to the left/right side 

whereas E-type tasks are allocated to either left or right side. As far as the optimization criterion is 

concerned, the TALBP can be divided into three categories: TALBP-I with the workstation number 

minimization criterion, TALBP-II with the cycle time minimization criterion and TALBP-E with the 

line efficiency maximization criterion. For TALBP-I, the minimization of the number of mated-stations 

is also considered as an ultimate or additional goal in some studies. 

Regarding the TALBP-I, there are Nt! possible task permutations if utilizing the task permutation 

oriented encoding, where Nt is the number of tasks. Nevertheless, there are a total number of 2 !Ne Nt

possible solutions since the E-type tasks can be allocated to either side, where Ne is the number of 

E-type tasks [3]. Obviously, the search space for TALBP is larger than that of one-sided ALBP and, 

consequently, TALBP is much more complex than one-sided ALBP. Since the simple ALBP with 
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workstation number minimization is already NP-hard [1], the more complex TALBP-I and TALBP-II 

also belong to the NP-hard category.  

There are four certain constraints in TALBP: precedence constraint, cycle time constraint, assignment 

constraint and direction constraint. The first three (namely, precedence, cycle time and assignment 

constraints) are general for all assembly line balancing problems, whereas direction constraint is the 

particular constraint in TALBP. Notice that the TALBP is different from the ALBP with parallel 

multi-manned workstations [4] due to the existence of L-type and R-type tasks. For ALBP with parallel 

multi-manned workstations, tasks can be allocated to either side while L-type/R-type tasks in TALBP 

must be assigned to the left/right side. Due to the utilization of both sides and the precedence 

constraint, some idle times in the middle of workstations emerge, donated as sequence-dependent idle 

time. To illustrate the above statements, a small numerical example adapted from Purnomo, Wee [5] is 

provided. The input data (precedence relationships, task times and operation directions) of the TALBP 

consisting of 9 tasks are depicted in Figure 1. In this figure, nodes denote tasks, and the labels over 

them refer to operation times and preferred directions. The directed arrows correspond to the 

precedence relationships between tasks, i.e. the pointed task is an immediate successor of the starting 

task, where each task may have more than one immediate successor. During the task allocation process, 

the precedence constraint and operation direction constraint must be satisfied as well as the capacity 

constraint. Figure 2 presents the detailed balancing configuration of tasks after balancing. As seen, all 

the L-type/R-type tasks are allocated to the left/right side and the starting time of each task is bigger 

than or equal to the ending times of its predecessors. For instance, tasks 2 and 3 are immediate 

predecessors of task 6. Therefore, task 6 can only be initialized after the completion of tasks 2 and 3, 

resulting in one-unit sequence-dependent idle time (see mated-station 2). The sequence-dependent idle 

time can be eliminated or reduced by optimizing the task sequence on workstations [3]. All in all, 

TALBP needs to determine the task assignment to mated-stations, the allocated sides of E-type tasks 

and the task sequence on workstations.  
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Figure 1 Input data for the 9-task problem  

 

 

Figure 2 The balancing configuration of tasks for the 9-task problem 

The applied methods to TALBP can be divided into three categories: exact methods, heuristic methods 

and meta-heuristic methods. This paper reviews all these methods, but mainly evaluates the 

meta-heuristics for simplicity. The main reason is that the re-implementation of exact methods or 

heuristic methods might not be necessary since re-implemented exact methods or heuristic methods 

always obtain the same results as the published ones. Regarding the meta-heuristic methods, they 

comprise the majority of the published methods, and they are the state-of-the-art methods, to our best 

knowledge, for both TALBP-I and TALBP-II [3, 6]. In the literature, several papers have presented 

algorithm comparisons whereas these evaluations have one main shortcoming. This is the possible 

unfairness caused by comparing the obtained results with the published ones. These comparisons 

ignore the different performances of the algorithms caused by the different encoding schemes, 

decoding procedures and objective functions. For instance, the study of Li, Tang [3] shows that the 

proper decoding scheme and objective enhance the performance of an algorithm by a significant 

margin, which might throw some published comparisons on algorithms into doubt. Apart from the 

above factor, the improper parameter setting and termination criterion might also cause possible 

unfairness. The authors hold that the parameters of all tested algorithms need to be calibrated carefully, 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

6 9

R
IG

H
T

52

3 81 4

7

Conveyor Conveyor 

L
E

F
T

Mated-station 1 Mated-station 2

1 

2 

3 

4 

5 

6 

7 

8 

9 

(4,L) (6,L) (3,E) 

(6,R) (3,R) (4,L) 

(4,E) (3,E) (3,E) 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

and testing algorithms from short to very large computational times is a good method to avoid biased 

results and prejudiced comparison.  

The primary purpose of this paper is to present an up-to-date review and evaluation of existing 

heuristics and meta-heuristics on TALBP-II. This paper evaluates a total number of 18 recent 

meta-heuristics, which cover most of the published ones. Considering the existence of many encoding 

schemes, decoding procedures and objective functions, the second purpose of this research is testing 

the impacts of these factors on the algorithms’ performances, and subsequently providing guidelines 

for proper selection of encoding schemes, decoding procedures and objective functions. Specifically, 

six encoding schemes, 30 decoding procedures and five objective functions are reviewed and 

compared. These reviewed methods cover most of the published effective ones, and some of them are 

first developed and compared. For simplicity, these re-implemented algorithms mainly solve the 

TALBP-II since TALBP-II is less studied and TALBP-I has been studied well in Li, Tang [3] where all 

optimum solutions for large-sized problems are achieved. Notice that TALBP-II is more complex than 

TALBP-I, and TALBP-II has great applications for reconfiguration of the installed two-sided assembly 

lines [6, 7]. All the algorithms are carefully calibrated using an experimental design approach and 

tested under four termination criteria of four elapsed CPU times on the TALBP benchmark problems, 

ranging from the P9 with nine tasks to P205 with 205 tasks. 

The rest of this paper is structured as follows. Section 2 deals with applied objective functions, and 

Section 3 reviews the encoding schemes and decoding procedures. Later on, Section 4 introduces the 

heuristics as well as meta-heuristics applied to TALBP. A comprehensive evaluation of various 

meta-heuristics is presented in Section 5. Finally, the conclusions are drawn in the last section together 

with the future research directions.  

2. Objective function 

Objective functions serve as the guide for the algorithm evolution, and they affect the performance of 

the algorithms to a great extent. The criteria of minimizing the number of workstations and minimizing 

the cycle time are the most applied objective functions, but they become ineffective when solving 

large-sized problems (consisting high-numbers of tasks). In fact, many achieved solutions have the 

same number of workstations or cycle time, and the general objectives cannot determine a better one. 
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As a consequence, some new objective functions turn up to differentiate these solutions and guide the 

search direction while preserving the ability to optimize the general objectives. These new objective 

functions are always blended with problem-specific knowledge. As the TALBP-I and TALBP-II are 

the two most studied problems in the literature, the objective functions applied for those will be 

presented in the following subsections, together with a newly introduced station-oriented function. 

However, it should also be noted here that Kucukkoc and Zhang [8] maximized the efficiency of 

parallel two-sided lines (type-E) minimizing the product of two conflicting objectives, i.e. cycle time 

and the number of workstations. The objective function used in their study can simply be represented 

with            , where    simplifies the second term -which corresponds to the total number 

of opened workstations- in the original formulation. 

2.1 Objective functions for TALBP-I 

The most applied objective function for TALBP-I is minimizing the weighted summation of the 

number of mated-stations and the number of workstations [9] as in Equation (1). In this expression, 

    and    are the number of mated-stations and the number of workstations, and w1 and w2 are 

weighting parameters.  

                                                                         (1) 

Another objective function is to balance the workloads in between workstations and minimize the 

workstation number [10] simultaneously as in Equation (2). In this expression, index   refers to a 

mated-station belonging to the mated-station set  , and index   denotes a side which is equal to 1 for 

the left side and 2 for the right side.    is the given cycle time and    is the operation time of task  . 

The term      indicates the allocation of task  , where      is equal to 1 when task   is allocated to 

workstation       or equal to 0 when task   is allocated to another workstation. Another relative 

objective function refers to Özcan and Toklu [11] where the workstation number and workload balance 

are also simultaneously optimized.  

          √∑ ∑ (   ∑         )
 

          ⁄  ∑ ∑ (   ∑         )          ⁄        (2) 

Since there are many solutions having the same workstation number, Özcan, Gökçen [12] developed a 

new objective function, given in Equation (3). This expression makes some workstations endure more 
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workload and others take less workload. Maximizing this objective function helps optimize the 

workstation number, but it can provide more information to differentiate solutions.  

          ∑ ∑ (   ∑         )
 

                                                   (3) 

The fourth objective function, given in Equation (4), is a new station-oriented objective function [3] , 

where      is the sum of task times on workstation      . This expression preserves the solutions 

with more workload on the former mated-stations. The former part in this expression is the general 

objective, and the second part inherits the feature of the objective in expression (3) to differentiate 

solutions. The basic idea behind this objective is that if more workload is allocated to the former 

mated-station, much fewer mated-stations to be needed to endure the remaining workload. 

                      ∑ ∑          (       )               ⁄       (4) 

Considering the sequence-dependent idle times, this research develops a new station-oriented objective 

function, given in Equation (5), where      is the completion time of the last task on workstation 

     . Notice that      is larger than or equal to      due to the existence of sequence-dependent idle 

times. The term           aims at reducing sequence-dependent idle times.  

          

            ∑ ∑          ((       )  (         ))               ⁄                     

(5) 

The latter four objectives are developed to further differentiate the solutions and guide the search 

direction. Still, they also share the purpose of optimizing the workstation number. In summary, these 

five objective functions propose different evolutionary ways to achieve the same goal of optimizing the 

workstation number. 

2.2 Objective functions for TALBP-II 

The general objective function for TALBP-II is minimizing the cycle time [13] expressed with 

Equation (6).  

                                                                               (6) 
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In a recent study, Tang, Li [6] developed a new function, given in Equation (7), by constraining the 

operation time on stations within [           ⁄             ⁄ ], where Cm is the ideal 

average workload on workstations (   ∑            ⁄ ).  

           

   ∑ ∑        (   (       
     

 
 )     (     

     

 
     ))          ⁄           

(7)    

Subsequently, Li, Tang [14] developed a new one to minimize the cycle time and smoothen workload 

distribution, which is described in Equation (8). In this expression,   ,   ,    and    are four 

coefficients. This expression constitutes four parts where the first two parts aim at reducing idle times 

and the last two parts optimize the workload balance. One main feature of this objective is that it takes 

the sequence-dependent idle time reduction into account. Li, Tang [14] set the values of these 

coefficients to 10, 5, 1 and 1 respectively which makes the reduction of the cycle time have the highest 

priority.  

              ∑ ∑ (       )           ⁄     ∑ ∑ (         )           ⁄     

√∑ ∑ (       )
 

           ⁄     √∑ ∑ (         )
 

           ⁄                   (8) 

The two station-oriented evaluation functions in Section 2.1 are also modified to guide the search 

direction for TALBP-II using Equations (9) and (10). Be aware of that the second parts in Equations 

(9) and (10) are set to be much less 1.0, and thus the second part takes effect only when the solutions 

have the same cycle time values.  

              ∑ ∑          (       )               ⁄                     (9) 

              ∑ ∑          ((       )  (         ))               ⁄         (10) 

The latter four objectives aim at guiding the search to the right direction, but they also share the 

purpose of minimizing the cycle time. In summary, all of the five algorithms have the same purpose of 

optimizing the cycle times but through different ways.  
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3. Encoding and decoding procedures 

Encoding and decoding procedures are typically designed to characterize the nature of the TALBP. 

They are basic components of optimization algorithms and introduced in sequence. This section 

summarizes six encoding schemes and 30 decoding procedures.   

3.1 Encoding schemes 

Generally speaking, there are three types of encoding schemes: sequence-oriented encoding, 

workstation-oriented encoding and partition-oriented encoding. For the TALBP, there are two options 

for applying each of the above three encoding schemes: (i) utilizing a side vector to determine the 

directions of E-type tasks [15] or (ii) utilizing the heuristic methods to determine the directions of 

E-type tasks in the decoding procedures [6, 11], resulting in a total number of six encoding schemes. 

These encoding schemes are summarized as follows.  

 Sequence-oriented encoding (SOE): The code is the task sequence which determines the priority or 

the assignment sequence of tasks. All tasks are sequentially allocated to mated-stations based on 

the task sequence [6, 11].  

 Sequence-oriented and direction-oriented encoding (SDOE): A new direction vector is introduced 

in sequence-oriented encoding to describe the allocated directions of tasks [15].  

 Workstation-oriented encoding (WOE): The code is mated-station string which corresponds to the 

allocated mated-stations of tasks. If task   is allocated to mated-station  , the  th component in 

the string is   [5, 13].  

 Workstation-oriented and direction-oriented encoding (WDOE): A new direction vector is 

introduced in workstation-oriented encoding to describe the allocated directions of tasks.  

 Partition-oriented encoding (POE): Separators are introduced in sequence-oriented encoding for 

partitioning tasks into mated-stations. There are two vectors: task sequence vector and separator 

vector [16]. 

 Partition-oriented and direction-oriented encoding (PDOE): A new direction vector is introduced 

in partition-oriented encoding to describe the allocated directions of tasks.  

For TALBP-I, the researches on sequence-oriented encoding constitute the majority of the published 

papers whereas the only applied method among the remained five ones is workstation-oriented 
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encoding by Kim, Kim [17]. This reason lies in that the number of mated-station remains to be 

optimized for TALBP-I. Kim, Kim [17] embedded the workstation-oriented encoding into a genetic 

algorithm to solve small-sized problems. The large-sized problems are not solved and the genetic 

algorithm with workstation-oriented encoding is declared to be outperformed by a tabu search 

algorithm [11].  

Regarding TALBP-II, there are four encoding schemes applied: sequence-oriented encoding [6], 

sequence-oriented and direction-oriented encoding [15], and workstation-oriented encoding [5, 13] and 

partition-oriented encoding [16]. There is a variant of the partition-oriented encoding in Li, Tang [18], 

where workstation vector and task sequence vector are employed to determine the task assignment. 

Notice that each pair of task sequence and separator vector in partition-oriented encoding corresponds 

to a pair of workstation vector and task sequence vector, and thus the encoding in Li, Tang [18] is 

emerged into partition-oriented encoding as a special case. These encoding schemes exhibit diverse 

performances, and Tang, Li [6] indicate that the sequence-oriented encoding outperforms the 

workstation-oriented encoding in Kim, Song [13]. In addition, Lei and Guo [15] demonstrate that 

variable neighborhood search algorithm with sequence-oriented and direction-oriented encoding 

outperforms the genetic algorithms with workstation-oriented encoding [13]. Apart from the 

comparison on sequence-oriented encoding and workstation-oriented encoding in Tang, Li [6], no 

research presents detailed comparison on decoding schemes.  

3.2 Decoding procedures 

Once encoding scheme is determined, the decoding procedure is applied to obtain a feasible solution. 

Since decoding methods for TALBP-I have been summarized in Li, Tang [3], this paper mainly 

presents the decoding procedures for TALBP-II. For clarity, the general idea of decoding procedure is 

simplified as follows.  

Step 1: Open a new mated-station and go to Step 3.  

Step 2: If all tasks have been allocated, terminate. Otherwise, open a new mated-station.  

Step 3: Execute the following steps.  
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Step 3.1: Determine whether assignable tasks exist. If no tasks are assignable, go to Step 2. 

Otherwise, go to Step 3.2.  

Step 3.2: Select an assignable task and determine the allocated side of the current mated-station as 

the current workstation. 

Step 3.3: Allocate this task to the selected workstation.  

Step 3.4: Update the remained capacities for both sides and go to Step 3.1.  

Notice that the methods to determine the assignable tasks depend on the applied decoding schemes. If 

any of the WOE, WDOE, POE or PDOE is applied, a task is assignable when the corresponding 

mated-station in the decoding is equal to the current mated-station, ignoring the cycle time constraint in 

the decoding scheme. For SOE or SDOE, a task is considered to be assignable when all of its 

predecessors have been allocated and it can be finished within the cycle time for the former      

mated-station. When the last mated-station is involved, a task is considered to be assignable when all of 

its predecessors have been allocated and the cycle time constraint is ignored to obtain a feasible 

solution [3].  

After the assignable task set is determined, the next step is selecting a task and a side of the current 

mated-station. Nevertheless, there are many different methods. The possible task assignment 

procedures are listed as follows, of which eight are summarized by Li, Tang [3]:  

 Task-to-workstation procedure-1 (TS1): An assignable task in the former position of the task 

sequence is selected. If it is an L-type or an R-type task, it is allocated to the left side or right side. 

If the selected task can be allocated to either side, a random side is selected.  

 Task-to-workstation procedure-2 (TS2): This procedure differs from TS1 when the selected task 

can be allocated to either side. For TS2, the left (right) side is selected by default when the 

selected task can be allocated to either side.  

 Task-to-workstation procedure-3 (TS3): This procedure differs from TS1 when the selected task 

can be allocated to either side. For TS3, the side with a larger remained capacity is selected as the 

current workstation or a side is randomly selected when both sides contain the same remained 

capacity.  
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 Task-to-workstation procedure-4 (TS4): This procedure differs from TS1 when the selected task 

can be allocated to either side. For TS4, the side with a larger remained capacity is selected as the 

current workstation or the left (right) side is selected by default when both sides contain the same 

remained capacity.  

 Workstation-to-task procedure-1 (ST1): Both sides of the current mated-station are checked 

whether to be available to allocate tasks. If only one side is able to allocate tasks, this side is 

definitely selected. If both sides are able to allocate tasks, the side with the larger remained 

capacity is selected or a side is randomly selected when both sides have the same remained 

capacity. An assignable task in the former position of the task sequence is selected and allocated 

to the above select side.  

 Workstation-to-task procedure-2 (ST2): This procedure differs from ST1 when both of the two 

sides are available to allocate tasks and they have the same remained capacities. For ST2, the left 

(right) side is selected by default when both sides have the same remained capacity.  

 Workstation-to-task procedure-3 (ST3): This procedure differs from ST1 in the method of 

selecting an assignable task. For ST3, all of the assignable tasks are checked at first whether tasks 

which can be operated at the earliest possible time of the selected side exist among them. If this 

kind of tasks exist, the assignable tasks cannot be operated at the earliest possible time are 

removed from the assignable tasks set. Finally, the task in the former position of task sequence is 

selected and allocated to the selected side.  

 Workstation-to-task procedure-4 (ST4): This procedure differs from ST1 in two aspects. For ST4, 

the left (right) side is selected by default when both sides are available to allocate tasks and they 

have the same remained capacity. Later on, all of the assignable tasks are checked at first whether 

tasks which can be operated at the earliest possible time of the selected side exist among them. If 

this kind of tasks exist, the assignable tasks cannot be operated at the earliest possible time are 

removed from the assignable task set. Finally, the task in the former position of task sequence is 

selected and allocated to the selected side.  

 Workstation-to-task procedure-5 (ST5): This procedure differs from ST4 in the task selection 

process. Apart from the features of ST4 in the task selection process, ST5 gives priorities to tasks 

whose possible finishing times are larger than the ideal average workload on each station or Cm. 

If there are assignable tasks whose possible finishing times are larger than or equal to Cm, those 
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tasks whose finishing times are smaller than Cm is deleted from the assignable tasks set. 

Subsequently, the task in the former position of task sequence is selected and allocated to the 

selected side.  

 Two vector procedure (TVP): This procedure differs from TS1 in employing direction vector to 

determine the sides of E-type tasks. 

Among the 10 task assignment procedures, the former eight ones are taken from Li, Tang [3] and the 

ninth one is taken from Tang, Li [6], and the tenth is taken from Lei and Guo [15]. The former nine are 

applied when direction-oriented encoding is not applied, whereas the last one is applied only when 

direction-oriented encoding is applied. Table 1 summarizes the encoding schemes and the 

corresponding task assignment procedures. Specifically, there are 9, 1, 9, 1, 9, 1 task assignment 

procedures corresponding to SOE, SDOE, WOE, WDOE, POE and PDOE, respectively. Since the 

method to obtain feasible solutions in an encoding scheme is different from the others, there is a total 

of 30 decoding methods. It is worthwhile to point out that a task sequence is also necessary for WOE 

and WDOE in the decoding procedure, and it is determined based on the ranked positional weight that 

is the sum of the processing times for a task and all of its successors [13].  

Table 1 Summary of encoding schemes and task assignment procedures 

Encoding scheme Task assignment procedure 

SOE [6] TS1, TS2, TS3, TS4, ST1, ST2, ST3, ST4, ST5 

SDOE [15] TVP 

WOE [13] TS1, TS2, TS3, TS4, ST1, ST2, ST3, ST4, ST5 

WDOE TVP 

POE [16] TS1, TS2, TS3, TS4, ST1, ST2, ST3, ST4, ST5 

PDOE TVP 

 

The detailed description of encoding and decoding schemes can be found in the references cited in this 

section. All the detailed descriptions along with the codes in C++ programming language are available 

upon request. Depending on the comprehensive computational experiments to be presented in Section 

5, these methods have a great impact on the performances of the algorithms.  
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4. Solution methods for TALBP 

The methods applied to TALBP can be divided into three groups: exact methods, heuristic methods and 

meta-heuristic methods. This section first reviews the exact methods and heuristic methods, followed 

by the review on meta-heuristics published in the literature.  

4.1 Exact and heuristic methods  

Regarding exact methods, there are only three studies reported to solve TALBP-I [19-21]. Hu, Wu [20] 

developed a station-oriented enumerative algorithm and they addressed small-sized problems. Later on, 

Wu, Jin [19] and Xiaofeng, Erfei [21] proposed branch-and-bound algorithms to address large-sized 

problems.  

Though many heuristic methods have been applied to simple ALBP [1], the applications of heuristic 

methods to TALBP are relatively small. Bartholdi [22] first developed a first-fit heuristic to minimize 

the workstation number, and this was the first method applied to TALBP. Later on, Lee, Kim [2] 

proposed a group assignment procedure, where a group of tasks is assigned at a time. This method was 

demonstrated to outperform the first-fit heuristic in Bartholdi [22]. Özcan and Toklu [23] utilized a 

heuristic approach, referred to as 2-COMSOAL/S, based on the computer method of sequencing 

operations for assembly lines. This heuristic method was able to find the optimum solutions for 

small-sized problems. Another relevant research was applying the first-fit rule in Bartholdi [22] to 

address TALBP-II, but the results by this heuristic methods were outperformed by a genetic algorithm 

in Kim, Song [13]. Heuristic methods have very fast speed to obtain a feasible solution, but the 

performances of them are not satisfying when solving large-sized problems. Notice that this section 

only reviews the heuristics applied to TALBP, please refer to Scholl and Becker [1] for more heuristic 

methods applied to simple ALBP.  

4.2 Meta-heuristic methods 

Meta-heuristic methods comprise the majority of the researches on TALBP, and they are of good 

choice to obtain satisfying results within acceptable computational time. These methods start with an 

initial solution or an initial population, and they evolve until a termination criterion is met. This section 

reviews the application of meta-heuristics to TALBP.    
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Kim, Kim [17] developed a genetic algorithm to address TALBP-I with positional constraints, which 

was the first application of a meta-heuristic to TALBP. The workstation-oriented encoding scheme and 

genetic operators were first presented. Nevertheless, this method was only tested by small-sized 

problems. Taha, El-Kharbotly [24] developed a new genetic algorithm with sequence-oriented 

encoding to address TALBP-I utilizing a hybrid crossover and a modified scramble mutation operator. 

This new genetic algorithm outperforms several other meta-heuristic methods in the experimental 

study. Kim, Song [13] developed a genetic algorithm with workstation-oriented encoding to address 

TALBP-II. They also introduced localized evolution and steady-state reproduction to enhance the 

performance of the genetic algorithm. This algorithm was proven to outperform the first-fit heuristic in 

Bartholdi [22] and the original genetic algorithm. Subsequently, Purnomo, Wee [5] extended this 

genetic algorithm to address TALBP-II with assignment restrictions. Kucukkoc and Zhang [25] utilized 

the genetic algorithm for parallel two-sided assembly line balancing and verified its performance 

through computational tests. Rabbani, Moghaddam [26] considered the mixed-model line configuration 

in a multiple U-shaped line concept and proposed a mixed-integer program for modelling the balancing 

problem of such a line. A genetic algorithm based approach was also proposed for solving large-sized 

instances with the aim of minimizing both cycle time and the number of stations. 

Another application of the genetic algorithm was solving stochastic two-sided U-type assembly line 

balancing [27], where a heuristic priority rule-based procedure was embedded into this method.  

Baykasoglu and Dereli [28] proposed an ant colony optimization algorithm to address TALBP-I with 

zoning constraints, and this paper introduced a pheromone quantity update mechanism. This algorithm 

outperformed genetic algorithm in Kim, Kim [17] and group assignment procedure in Lee, Kim [2]. 

Simaria and Vilarinho [29] improved the ant colony algorithm by employing two ants on both sides to 

simultaneously build a solution for TALBP-I and mixed-model TALBP-I. This improved ant colony 

algorithm outperformed the group assignment procedure in Lee, Kim [2]. Subsequently, Kucukkoc and 

Zhang [30] developed ant colony algorithm to address mixed-model parallel two-sided assembly line 

balancing and sequencing problems. Kucukkoc and Zhang [31] further tested the proposed ant colony 

algorithm by comparing three heuristic methods, and they blended it with the genetic algorithms to 

solve this problem [32]. In a latter work, Kucukkoc and Zhang [33] utilized this method to address 

Type-E parallel two-sided assembly line balancing problem and response surface methodology was 
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applied to parameter calibration. This algorithm outperformed three heuristic methods in the 

computational study. The algorithm was further extended to solve mixed-model parallel two-sided 

assembly line balancing problem [34] and outperformed six heuristics used commonly in the line 

balancing domain.  

Özcan and Toklu [11] constructed a tabu search algorithm for the TALBP-I with sequence-oriented 

encoding. Tabu search algorithm utilized a tabu list to avoid repeated local searches, and this method 

obtained better results than an ant colony algorithm in Baykasoglu and Dereli [28], which was the best 

performer until then. Özcan, Gökçen [12] later extended tabu search algorithm to address parallel 

TALBP-I with the sequence-oriented encoding. The results obtained by tabu search algorithm were 

reported but no comparative study was carried out.  

Özcan and Toklu [35] developed a simulated annealing algorithm to tackle mixed-model TALBP-I 

using the sequence-oriented encoding. Simulated annealing algorithm was able to find the optimum 

solutions for small-sized problems, but the reported results were outperformed by hybrid honey bee 

mating optimization algorithm in Yuan, Zhang [36]. Simulated annealing could be regarded as a simple 

method, and it was extended to address stochastic TALBP-I by Özcan [37] and cost-oriented TALBP-I 

by Roshani, Fattahi [38]. Khorasanian, Hejazi [39] improved simulated annealing algorithm to address 

TALBP-I considering the relationship between tasks using a modified form of the insert method to 

generate a neighbor solution. Khorasanian, Hejazi [39] indicated that results by the improved simulated 

annealing algorithm outperformed the published ones by several other algorithms. Aghajani, Ghodsi 

[16] utilized simulated annealing algorithm to address robotic mixed-model TALBP-II and introduced 

new encoding to determine both the task assignment and robot allocation. Simulated annealing 

algorithm was shown to be able to find the optimum solution for small-sized problems. Recently, Li, 

Tang [18] developed a multi-objective edition to tackle robotic TALBP-II, and this algorithm 

outperformed the fast non-dominated sorting genetic algorithm. Jawahar, Ponnambalam [40] proposed 

a simulated annealing algorithm and a heuristic algorithm, called enumerative heuristic algorithm, for 

minimizing number of stations as well as unbalanced workload in a pareto-front notion. 

Özbakır and Tapkan [41] proposed a bee algorithm, which belongs to swarm intelligence based 

meta-heuristics, to solve the fuzzy multi-objective TALBP-I. It was later extended to zone constrained 
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TALBP-I by Özbakır and Tapkan [10]. Özbakır and Tapkan [10] verified the performance of the 

proposed algorithm by comparing their results against those existing in the literature. Tapkan, Ozbakir 

[42] proposed bee algorithm and artificial bee colony algorithm to further address constrained 

TALBP-I, and their study showed that bee algorithm outperformed artificial bee colony algorithm. The 

bee algorithm was later used to solve constrained fuzzy multi-objective TALBP by Tapkan, Özbakır 

[43], where both fuzzy multi-objective and multiple constraints were studied. Recently, Tapkan, 

Özbakır [44] utilized bee algorithm and artificial bee colony algorithm to tackle parallel TALBP-I with 

walking times and the results by these two algorithms outperformed the reported ones by tabu search 

algorithm in Özcan, Gökçen [12]. Another relevant study was carried out by Tang, Li [6] to address 

TALBP-II using improved artificial bee colony algorithm. The improved algorithm was demonstrated 

to outperform nine other algorithms, including tabu search in Özcan and Toklu [11] and simulated 

annealing algorithm in Khorasanian, Hejazi [39]. This algorithm also updated 22 best solutions for 

TALBP-II benefiting from a sequence-oriented encoding and a new decoding procedure.  

Chutima and Chimklai [45] introduced modified particle swarm optimization to tackle multi-objective 

mixed-model TALBP-I and this new meta-heuristic outperformed four other multi-objective 

optimization algorithms. Later, Delice, Kızılkaya Aydoğan [46] improved this particle swarm 

optimization by utilizing a new task selection mechanism for mixed-model TALBP-I, and the 

improved edition was proven to surpass the simulated annealing algorithm in Özcan and Toklu [35]. 

Subsequently, Delice, Aydoğan [47] extended the particle swarm optimization to address two-sided 

U-type assembly lines. All the above modified particle swarm optimization algorithms utilized task 

probability matrix to obtain feasible solutions and updated this probability matrix based on the global 

best or local best solutions. This mechanism was similar to that proposed by ant colony algorithm in 

Baykasoglu and Dereli [28]. Chiang, Urban [48] utilized a discrete particle swarm optimization 

algorithm to address stochastic TALBP-I, but no comparative study was carried out to compare this 

method with other algorithms. Another application of particle swarm optimization was applying a 

co-evolutionary particle swarm optimization algorithm to address robotic two-sided assembly line by 

Li, Janardhanan [49]. The mechanism for this co-evolutionary particle swarm optimization algorithm 

was different from the above modified particle swarm optimization algorithms. The research utilized 

crossover operator to move the particle to the global best and local best individuals, and the 
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co-evolutionary edition contained two sub-swarms to tackle task assignment and robot allocation, 

respectively. The co-evolutionary method outperformed another five meta-heuristics proven in the 

research.  

Tuncel and Aydin [50] presented a teaching-learning-based optimization algorithm to tackle TALBP-I 

with multiple constraints, but this algorithm was not compared with other published ones. Tang, Li [51] 

improved this algorithm by hybridizing variable neighborhood search to enhance local search capacity. 

The improved algorithm was shown to outperform the late acceptance hill-climbing algorithm in Yuan, 

Zhang [9]. Subsequently, Li, Zhang [52] improved the teaching-learning-based optimization algorithms 

by introducing a self-learning phase achieved by the late acceptance hill-climbing algorithm in Yuan, 

Zhang [9], where a multi-objective TALBP-I with multiple constraints was considered. The 

multi-objective edition was demonstrated to surpass the fast non-dominated sorting genetic algorithm. 

The hybrid teaching-learning based optimization algorithm was then applied to solving stochastic 

two-sided assembly line balancing problem by Tang, Li [53] embedding a new priority-based decoding 

approach.  

Li, Tang [14] implemented an iterated greedy search algorithm to address TALBP-II with assignment 

restrictions, where heuristic initialization and strong local search method were developed. Li, Tang [14] 

stated that iterated greedy search was an effective and simple algorithm with few parameters. The 

computational study demonstrated that the iterated greedy search algorithm outperformed eight recent 

algorithms, including tabu search algorithm in Özcan and Toklu [11], teaching-learning-based 

optimization algorithm in Tang, Li [51] and modified particle swarm optimization in Chutima and 

Chimklai [45]. In a later research, Li, Tang [3] extended this method to TALBP-I by employing a new 

local search method, which outperformed nine algorithms and achieved the optimum solutions for all 

the large-sized problems. The TALBP-II was handled allowing parallel performance of tasks by Sepahi 

and Naini [54]. The problem was formulated as a linear programing model and a robust heuristic 

procedure was proposed. 

Apart from the above algorithms, Yuan, Zhang [9] proposed a late acceptance hill-climbing algorithm 

for TALBP-I with multiple constraints, and this algorithm was able to find the optimum solutions for 

small-sized problems. Wang, Guan [55] implemented a hybrid imperialist competitive algorithm to 
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solve TALBP-I with multiple constraints, and this algorithm outperformed the late acceptance 

hill-climbing algorithm in Yuan, Zhang [9]. Li, Zhang [56] adopted the multi-objective imperialist 

competitive algorithm to tackle the mixed-model TALBP-I. Yang, Zhang [57] introduced 

multi-neighborhood-based path relinking for TALBP-I, and the results obtained by this path relinking 

were better than the published ones of several compared meta-heuristics. Lei and Guo [15] conducted a 

variable neighborhood search for TALBP-II and the main feature of this algorithm was the application 

of sequence-oriented and direction-oriented encoding. The results of this variable neighborhood search 

updated many reported results for TALBP-II achieved by genetic algorithm in Kim, Song [13]. 

Purnomo and Wee [7] implemented a multi-objective harmony search algorithm to address bi-objective 

TALBP-II and this algorithm outperformed the fast non-dominated sorting genetic algorithm proven in 

the computational study. A modified discrete cuckoo search algorithm, enhanced with a new individual 

generation procedure, was proposed by Li, Dey [58] for balancing two-sided robotic assembly lines. As 

the proposed algorithm deals with two sub-problems, it employs two sub-swarms, each addressing a 

sub-problem. The performance of the proposed approach was verified by with the results of 

computational tests and their statistical analysis. Recently, Abdullah Make, Ab. Rashid [59] presented a 

survey on two-sided assembly line balancing problems. The objective functions and constraints 

considered in various studies have been investigated including the optimization methods employed, but 

no computational evaluation of those methods has been conducted. 

5. Comparative evaluation of meta-heuristics  

This section mainly presents the comparative study of the meta-heuristics on solving TALBP-II. 

Nevertheless, the evaluation of meta-heuristics is far from simple due to so many encoding schemes, 

decoding procedures and objective functions. In fact, there are 150 different configurations for each 

algorithm if employing all 30 decoding procedures and 5 objective functions, leading to extremely 

large scale experiments. However, the researches mainly care about the effective ones, and not all the 

configurations are needed to be tested. For that reason, this section first evaluates the objective 

functions, encoding schemes and decoding procedures by embedding them into a simulated annealing 

algorithm as an example. One of the effective combination is selected and embedded into the other 

algorithms. Later on, 18 algorithms selected from the meta-heuristics reviewed in Section 4.2 are 
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evaluated with statistical analysis. For some algorithms, several variants of them are also included to 

further analyze the features of the algorithms.  

Selecting the tested benchmark problems and the termination criterion are also important. This paper 

utilizes widely applied benchmarks for TALBP, which is summarized by Tang, Li [6] for TALBP-II. 

These benchmark problems are divided into two portions: small-sized problems (variants of P9, P12, 

P16 and P24) and large-sized problems (variants of P65, P148 and P205). There is a total of 39 cases 

studied, please refer to Tang, Li [6] regarding the detailed mated-station numbers for TALBP-II. The 

remaining problem is determining a proper termination criterion, and this paper employs the 

termination criterion utilized by Tang, Li [6] and Li, Tang [14] which is a pre-determined elapsed CPU 

time limit of         milliseconds, where   is an input parameter. To examine the performance 

of the algorithms from small to very large computational times, all the algorithms are tested under four 

termination criteria, namely   is set to be equal to 5, 10, 15 and 20 respectively. All the methods are 

coded in C++ language on Microsoft Visual Studio 2012 platform and all the experiments are carried 

out on a set of computers equipped with Intel(R) Core2(TM) CPU 2.33 GHZ, 3GB of RAM. All the 

pseudocodes and the programming in C++ language of all the tested algorithms are available upon 

request.  

Note that the decoding procedures need an initial cycle time when utilizing encoding scheme SOE and 

SDOE. This paper set the initial cycle time for decoding as      following Tang, Li [6]. The initial 

cycle time for decoding is updated with         , where        is the best cycle time among all 

individuals during the evolution process. This expression makes sure that the best cycle time reduces 

gradually. However, when a new best cycle time is achieved, the solutions achieved using the current 

encoding codes usually obtain much larger cycle times observed in preliminary experiments. The main 

reason lies behind is that a mated-station is allocated with as more workload as possible and the current 

task assignment suits the current best cycle time. This situation leads to the poor performance of the 

algorithm using greedy acceptance, where the original cycle times achieved using the original best 

cycle time are compared with the new cycle times achieved using the current best cycle time. To 

overcome this possible drawback, this paper introduces a new method, referred to as iterative 

mechanism, where the current function values of the individuals are replaced with the new function 

values achieved using         . This method guarantees that the incumbent individuals and the new 
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individuals are compared using the same initial cycle time         . The performance of the 

iterative mechanism will be tested in the following subsection. 

5.1 Evaluation of encoding, decoding and objective function 

This section presents the evaluation of the summarized objective functions, encoding schemes, 

decoding procedures and introduced iterative mechanism. There are 150 different configurations for 

each algorithm when employing different encoding and decoding schemes and objective functions, and 

this number increases to 200 if it is considered whether the iterative mechanism is applied. Specifically, 

iterative mechanism only takes effect on encoding schemes SOE and SDOE, and thus the increased 

number is calculated with           , where 9 and 1 are the numbers of decoding methods for 

encoding scheme SOE and SDOE, respectively and 5 is the number of objective functions. For 

simplicity, this section mainly presents the comparative study on these factors utilizing simulated 

annealing algorithm. Each configuration solves ten cases of the largest problem, P205, and where each 

case is solved for 10 times. The termination criterion is a pre-determined elapsed CPU time of 

        milliseconds. Since the cycle times for different cases are different, this research utilizes 

the Relative Percentage Deviation (RPD), calculated using Equation (11), to transfer the achieved cycle 

times.  

                        ⁄                                                   (11) 

where       is the cycle time achieved by a configuration for one case and      is the lower bound of 

the cycle time calculated by Tang, Li [6] using Equation (12) for the same case. In Equation (12), 

     ,       and       are the sum of the operation times of all tasks, L-type tasks and R-type tasks. 

The term      denotes the maximum of the operations times of all tasks.  

     ⌈               ⁄         ⁄         ⁄       ⌉                           (12) 

After achieving all of the RPD values, the average RPD value of all the solved cases in one run is 

utilized for comparison. Thus, 10 average RPD values are obtained for each configuration since each 

case is solved for 10 times, repeatedly (please see results provided as supplementary material). Since so 

many configurations are considered, a large body of experimental results are achieved. Due to page 
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limit, this section mainly presents four sets of comparative studies, each studying a factor while fixing 

other factors to very effective values, listed as follows:  

 Comparison of objective functions: Five objective functions are evaluated while utilizing SOE, 

ST5 and iterative mechanism.  

 Comparison of utilizing the iterative mechanism: The results achieved by iterative mechanism are 

compared with and without iterative mechanism while utilizing SOE, ST5 and       . 

 Comparison of task assignment procedures: A total of 10 task assignment procedures is evaluated 

while utilizing SOE or SDOE,        and iterative mechanism.  

 Comparison of encoding schemes: Six encoding schemes are evaluated while utilizing ST5 or 

TVP,        and iterative mechanism.  

Notice that SOE corresponds to nine task assignment procedures and SDOE corresponds to only one 

task assignment procedure. SOE is utilized for the first nine task assignment procedures and SDOE is 

utilized for the tenth task assignment procedure in the comparison on task assignment procedures. 

Similarly, SOE, WOE and POE utilize ST5; and SDOE, WDOE and PDOE utilize TVP in comparison 

on encoding schemes.   

To check whether there is a statistically significant difference between the levels of a factor, this paper 

utilizes parametric analysis of variance (ANOVA) method and the non-parametric Friedman 

rank-based analysis following Tang, Li [6] and Li, Tang [3]. The ANOVA method is employed when 

fulfilling independence of the residuals, homogeneity of the variance, and normality of the residuals. 

Otherwise, both the ANOVA method and Friedman test are proposed to detect the differences in the 

levels, where Friedman test is proposed to ascertain the results by ANOVA test. More description of 

the ANOVA test and Friedman test refers to the aforementioned cited papers. For both methods, the 

p-value is an important parameter to determine whether there is a significant difference among the 

levels. There is a significant difference when the p-value is smaller than a pre-determined number   

(  is set to 0.05). The means plots for the four factors along with 95% confidence intervals are 

illustrated in Figure 3.  
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Figure 3 Means plot and 95% Tukey HSD confidence intervals for the four tested factors 

ANOVA test or Friedman test shows that there is a statistically significant difference among the levels 

for any tested factor. The statistical results demonstrate that the encoding scheme, decoding procedure 

and objective functions have statistically significant impact on the performance of an algorithm. This 

proves the necessity of studying encoding scheme, decoding procedure and objective functions. 

Regarding the objective functions, FitII1 and FitII5 are the two best performers. FitII1 outperforms 

FitII2, FitII3 and FitII4 with the assistance of the iterative mechanism. This finding seems to be 

conflicting with that in Tang, Li [6] and Li, Tang [14], but as a matter of fact this is not the case. 

Different from that the published ones, this research utilizes the iterative mechanism and thus the 

applied objectives in this paper show different performances from the published ones. The utilization of 

the iterative mechanism helps obtaining better results than that of not utilizing it. As for the task 

assignment procedures, the results coincide with that in Li, Tang [3], where TS4, ST2, ST4 and ST5 

are the best performers. TVP, which is first compared in this paper, outperforms the TS1, TS2, TS3 and 

ST1 whereas it is outperformed by TS4, ST2, ST3, ST4 and ST5. This finding suggests that the 

utilization of an effective heuristic to decide on selected side of E-type tasks is more efficient than the 

utilization of the direction vector. However, the utilization of direction vector outperforms random 

selection of E-type tasks. Regarding the encoding schemes, the difference is the largest among the four 
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factors. The smallest average RPD value of SOE is about 1.0 whereas the largest average RPD value of 

WOE is over 30.0. The reason lying behind this consequence is that WOE and WDOE utilize heuristics 

to determine the task sequence, which cannot reduce the sequence-dependent idle times effectively. All 

in all, the computational results suggest that the proposed iterative mechanism is very effective, and the 

encoding scheme of SOE and the task assignment procedure of ST5 are the good performers. These 

results also demonstrate that it is mandatory to select an effective objective function and task 

assignment procedure in the implementation of the algorithms.  

Since so many combinations of the factor levels exist, one effective combination of SOE, ST5,        

and the iterative mechanism is embedded into the tested algorithms for simplicity in the subsequent 

sections. Note that the comparison via utilizing other algorithms is omitted due to page limit, but the 

above combination is quite effective for all the tested algorithms.  

5.2 Compared algorithms 

This section presents the compared meta-heuristics which are selected from that stated in Section 4.2. 

The applied methods are summarized in Table 2. The selected algorithms include the well-known 

algorithms and the recent and effective ones. During the re-implementation process, some 

modifications are necessary and they are executed under two principles: the effectiveness and 

simplicity. Some reported algorithms are ineffective in our preliminary experiments, and thus they are 

improved, such as utilizing a new neighborhood structure. Others might be intricate where many 

improvements are introduced and many parameters need to be calibrated, and thus these methods are 

simplified while preserving high efficiency. Specifically, the two-point crossover operator [6] is 

utilized for crossover after testing one- point crossover operator and two-point crossover operator. The 

insert operator and swap operator are both applied and randomly selected in the neighborhood 

structure, which shows superior performance than only utilizing one neighborhood operator when 

computational time increases. Apart from these, this table also contains the important information in 

re-implementing the algorithms, which have great impact on the performances of the tested algorithms. 

Notice that the operators are designed based on the recent paper by Li, Tang [3], where a 

comprehensive evaluation of meta-heuristics is presented. 
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Apart from the operators, the other parameters also play an important role in the performances of the 

tested algorithms. The parameter values for some re-implemented algorithms are taken from Tang, Li 

[6] and Li, Tang [3] where the full factorial design is utilized for parameter calibration. The parameter 

values for other algorithms are determined utilizing the full factorial design following Tang, Li [6] and 

Li, Tang [3]. Please see Table A1 for the list of parameters used. For a specific algorithm, all the 

combinations of the parameter values are tested by solving ten cases of the largest-size problem P205. 

Each configuration solves these cases for ten times and the termination criterion is an elapsed CPU 

time limited to         milliseconds. 

Table 2 Summary of the tested algorithms 

Algorithm Abbreviation Information 

Simulated annealing algorithm [39] SA - 

Tabu search algorithm [11] TS - 

Late acceptance hill-climbing algorithm [9] LAHC - 

Iterated greedy algorithm [14] IG1 - 

Iterated greedy algorithm [3] IG2 - 

Iterated greedy algorithm [3] IG3 IG3 differs from the published one in that insert 

operator and swap operator are both applied and 

randomly selected in the local search procedure.  

Genetic algorithm [13] GA The elitism strategy is applied, which clones the 

best individual to the offspring. 

Teaching-learning-based optimization 

algorithm [51] 

TLBO - 

Bee optimization algorithm [42] BA - 

Artificial bee colony algorithm [42] ABC A scout is applied to replace the worst 

individual or one of the same individual with a 

randomly generated solution in current swarm 

when no improvement on the best solution is 

achieved. 

Discrete artificial bee colony algorithm [6] DABC Crossover operator is applied in employed bee 

phase, and swap operator and insert operator are 

utilized in the onlooker phase. Tournament 

selection is applied in onlooker phase for 

selecting an individual. A scout was applied to 

replace the worst individual or one of the same 

individual with a randomly generated solution 

in the current swarm when no improvement on 

the best solution is achieved. 
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Particle swarm optimization [60] PSO1 Random-keys method is utilized for encoding, 

and the elitism strategy is applied, which clones 

the best individual to the offspring.  

Particle swarm optimization [49] PSO2 Crossover operator, insert operator and swap 

operator are utilized for population evolution. 

Ant colony optimization algorithm [28] ACO - 

Two-ant colony optimization algorithm [29] 2ACO - 

Modified particle swarm optimization 

algorithm [45] 

PSONG1 - 

Modified particle swarm optimization 

algorithm [45] 

PSONG2 Selection probability of task   is set to be 

     
[    ]

 
[  ]

 

∑ [    ]
 
[  ]

 
    

, where      is the 

selection probabilities of the task   

immediately after the task  ,   is the ranked 

positional weight heuristic and    is the set of 

assignable tasks after allocating task i.  

Modified particle swarm optimization 

algorithm[45] 

PSONG3 PSONG inherits the features of 2ACO and 

PSONG, and two particles work simultaneously 

in left and right sides.  

 

The RPD is also utilized to transfer the achieved cycle times. The average RPD value of the ten solved 

cases after one run is utilized for comparison, and eventually, 10 average RPD values for each 

combination of parameter values are obtained. After achieving all the average RPD values, ANOVA 

method is applied to analyze the results and select the best combination of the parameters following Li, 

Tang [14] and Li, Janardhanan [49]. The readers might refer to the papers cited above for the detailed 

calibration process.  

5.3 Comparative evaluation of the algorithms 

This section analyzes the performances of different meta-heuristics. The RPD is again applied to 

transfer the achieved cycle times when solving different cases. Since the optimum cycle times for 

small-sized problems are already known, the RPD for small-sized problems is modified and calculated 

using Equation (12), where       is the optimum cycle time for a case which has been reported by 

Tang, Li [6].  

                          ⁄                                               (12) 

A total number of 39 cases summarized in Tang, Li [6] are solved, and each case is solved for 10 

independent times by each algorithm. The average RPD values of tested algorithms are exhibited in 
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Table 3, where only the results of 13 best performers are presented (note that the detailed results are 

provided as supplementary material). Each cell in the table contains the average RPD value of several 

cases after ten times of independent run. For instance, each cell for P205 is the average value of 

      data, where 11 is the number of tested cases and 10 is the number of independent runs. 

Under the first termination criterion (   ), the IG3 is the most effective with an overall RPD value of 

0.25, and SA is the second best performer with an overall RPD value of 0.34. The other algorithms are 

ranked in an increasing order of the overall RPD values as follows: ABC, IG2, LAHC, TS, DABC, 

GA, BA, PSO1, PSONG2, IG1 and ACO. Regarding other three termination criteria (    ,      

and     ), IG3 is also the best performer with overall RPD values of 0.21, 0.19 and 0.18, 

respectively. ABC is the second best performer with overall RPD values of 0.26. 0.23 and 0.21, 

respectively. IG2 is the third best performer with overall RPD values of 0.28. 0.25 and 0.22, 

respectively. For other algorithms, the ranking orders of the overall RPD values under three other 

termination criteria have some variation. Still, it is observed that they are similar to that under the first 

termination criterion. The computational results also suggest that the local search methods, IG2, IG3, 

SA, LAHC and TS outperform the population-based algorithms, including GA, BA, PSO1, ACO and 

PSONG2. It seems that the experimental results conflict with that reported in Tang, Li [6], which is 

attributed to the application of the iterative mechanism and the new objective function. In the iterative 

mechanism, the current function values of the individuals are updated when a new best cycle time is 

achieved. The iterative mechanism makes sure that the incumbent individual and the new individuals 

are compared using the same initial cycle time for decoding. 

Table 3 Average RPD values of compared algorithms 

Problem SA TS LAHC IG1 IG2 IG3 GA BA ABC DABC PSO1 ACO PSONG2 

    

             

P9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

P12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

P16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

P24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

P65 0.35 0.38 0.44 0.58 0.34 0.26 0.57 0.68 0.34 0.49 0.84 0.74 0.72 

P148 0.02 0.17 0.15 0.55 0.14 0.10 0.38 0.16 0.13 0.32 0.19 0.17 0.17 
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P205 1.02 1.03 1.01 1.47 1.00 0.69 1.06 1.41 0.95 0.92 1.40 1.74 1.63 

Avg 0.34 0.38 0.38 0.62 0.36 0.25 0.46 0.52 0.34 0.40 0.55 0.62 0.59 

     

             

P9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

P12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

P16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

P24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

P65 0.32 0.37 0.43 0.46 0.30 0.22 0.45 0.53 0.28 0.42 0.84 0.69 0.65 

P148 0.01 0.14 0.12 0.44 0.09 0.06 0.33 0.13 0.08 0.24 0.19 0.14 0.15 

P205 0.91 0.93 0.83 1.16 0.78 0.59 0.90 1.11 0.72 0.70 1.37 1.64 1.52 

Avg 0.30 0.34 0.32 0.49 0.28 0.21 0.39 0.41 0.26 0.31 0.54 0.58 0.55 

     

             

P9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

P12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

P16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

P24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

P65 0.32 0.36 0.41 0.41 0.27 0.20 0.38 0.45 0.27 0.38 0.84 0.67 0.60 

P148 0.01 0.12 0.10 0.37 0.07 0.05 0.29 0.11 0.06 0.20 0.18 0.12 0.13 

P205 0.87 0.91 0.76 1.04 0.69 0.53 0.82 0.95 0.63 0.65 1.37 1.59 1.47 

Avg 0.29 0.33 0.29 0.43 0.25 0.19 0.35 0.35 0.23 0.28 0.54 0.56 0.52 

     

             

P9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

P12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

P16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

P24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

P65 0.32 0.35 0.40 0.37 0.23 0.19 0.33 0.39 0.26 0.37 0.84 0.66 0.59 

P148 0.01 0.12 0.10 0.31 0.07 0.05 0.27 0.09 0.05 0.18 0.18 0.11 0.12 

P205 0.85 0.89 0.72 0.94 0.63 0.51 0.76 0.85 0.58 0.61 1.37 1.55 1.44 

Avg 0.28 0.32 0.28 0.38 0.22 0.18 0.32 0.31 0.21 0.26 0.54 0.55 0.51 

* Best average RPD for each problem is given in bold. 

 

Though the observed difference among the algorithms in Table 3 is quite clear, it is still suggested to 

check whether this difference is statistically significant using a statistical technique. Again, multifactor 
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ANOVA is employed where algorithm type and computational time are selected as two factors. Since 

the performance of algorithms on different problems is quite large, the average RPD value of 39 cases 

in one run is employed in the ANOVA test. Since each case is solved for ten independent times, there 

are 10 average RPD values for each combination of the two factors. Nevertheless, an initial ANOVA 

test shows that the normality of the residuals is violated which is attributed to the big difference in the 

performances of eighteen algorithms. The non-parametric Friedman test might be a good choice, but it 

cannot analyze the interactions between the algorithm type and computational time. For the above 

reasons, this research utilizes both the ANOVA test and Friedman test, where Friedman test is 

employed to check and strengthen the findings of the ANOVA test.  

ANOVA analysis suggests that there are statistically significant differences between the algorithms, 

computational time and interaction of two tested factors. Detailed ANOVA results are omitted here 

(provided as supplementary material instead), and the means plot of the interaction of two tested 

factors is depicted in Figure 4. To have a better picture of the results, only the best seven algorithms are 

depicted in Figure 4. This figure provides a direct and clear observation into the performances of the 

algorithms.  
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Figure 4 Means plot and 95% Tukey HSD confidence intervals for the interactions tested algorithms and 

maximum elapsed CPU time 

It is clear that IG3 is the best performer from the beginning to the end, and the results slightly improve 

with increasing CPU time after CPU time reaches          milliseconds. This situation is 

attributed to that the results by IG3 are very close to the lower bounds and improvements become much 
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more difficult. Regarding the ABC method, the achieved results improve by a significant margin with 

CPU time increasing, and it becomes the second best performer after CPU time reaches       

   milliseconds. As for SA, LAHC and TS, the improvements are quite clear before reaching 

         milliseconds whereas little improvements are achieved after that. Regarding the ABC, 

IG2 and DABC method, the improvement in the obtained cycle times with the increasing CPU time is 

seen clearly. 

Let us focus on the variants of PSONG and ACO (ACO, 2ACO, PSONG1, PSONG2 and PSONG3). 

These five algorithms are different from the others in that they select a task based on probabilities 

rather than encoding scheme. The means plot of the interaction of the five algorithms and 

computational times is depicted in Figure 5. It is observed that PSONG2 is the best performer, while 

2ACO, ACO and PSONG3 are the second, third and fourth best performers, respectively. PSONG1 is 

the worst performer. The computational results yield following findings: 

 Embedding heuristic information into the PSONG2 improves the performance of original PSONG. 

 PSONG2 shows superiority over the ACO, and it might be strong competitor to ACO which also 

selects a task based on probabilities.  
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Figure 5 Means plot and 95% Tukey HSD confidence intervals for the interactions five algorithms and elapsed 

CPU time 

The test results of Friedman statistical test are not given here (provided as supplementary material 

instead). It is sufficient to say that the results of the Friedman test coincide with that of ANOVA and 
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the results reported in Table 3. Notice that the above computational results are achieved utilizing the 

combination of SOE, ST5,        and iterative mechanism. The comparative results might be different 

when utilizing other combinations.  

Since optimum cycle times for some large-sized problems are still in absence, Table 4 reports the new 

best solutions found during the experimental tests of this research. The current best cycle times and the 

best cycle times achieved by the nine most effective algorithms are exhibited for clarity. Notice that the 

current best cycle times are the minimum values of the reported ones in Tang, Li [6], Li, Tang [14] and 

Lei and Guo [15]. Table 4 also reports the lower bounds (    ) to measure the gap between the newly 

achieved best solutions and the possible optimum cycle times. This table shows that many best 

solutions are updated by the re-implemented algorithms. Specifically, the best solutions for four cases 

of P65 (    ,     ,      and     ), three cases of P148 (    ,       and 

     ) and eight cases of P205 (    ,     ,     ,     ,     ,      , 

      and      ) are updated. Meanwhile, the optimum solutions for six cases are first 

achieved: three cases for P65 and three cases for P148. Note that the achieved solution is considered to 

be optimum when its cycle time is equal to the corresponding lower bound. This is because it is not 

possible to obtain a better solution than the lower bound. Regarding the number of achieved best 

solutions, it is observed that IG3 is the best performer which updates 12 cases, TS is the second best 

performer which updates eight cases, and ABC is the third best performer which updates seven cases. 

GA updates for only one case. If the achieved results are compared to the current best ones, IG3 

outperforms the published ones for 12 cases, and TS and ABC outperform the published ones for 12 

cases and 11 cases, respectively. These computational results demonstrate that proper selection of 

objective function, encoding scheme and decoding procedure enhances the performance of the 

algorithms, and, as a consequence, algorithms are capable of obtaining satisfying results.  

Table 4 Best cycle times found for the large-sized problems 

Problem Nm      Current best SA TS LAHC IG2 IG3 GA BA ABC DABC 

P65 4 638 638 638 638 638 638 638 638 638 638 638 

 

5 510 511 511 511 511 510 510 511 511 511 511 

 

6 425 426 426 426 426 426 426 426 426 425 426 

 

7 365 367 365 365 366 366 365 366 365 365 366 
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8 319 321 320 320 321 320 320 320 321 320 321 

P148 4 641 641 641 641 641 641 641 641 641 641 641 

 

5 513 513 513 513 513 513 513 513 513 513 513 

 

6 427 427 427 427 427 427 427 427 427 427 427 

 

7 366 367 366 366 366 366 366 367 366 366 366 

 

8 321 321 321 321 321 321 321 321 321 321 321 

 

9 285 285 285 285 285 285 285 285 285 285 285 

 

10 257 257 257 257 257 257 257 257 257 257 257 

 

11 233 234 233 234 234 234 234 234 234 233 234 

 

12 214 215 214 214 214 214 214 215 214 214 214 

P205 4 2919 2927 2927 2926 2926 2927 2927 2927 2930 2928 2926 

 

5 2335 2342 2343 2344 2345 2345 2343 2345 2347 2342 2342 

 

6 1946 1954 1952 1953 1952 1953 1952 1953 1956 1952 1952 

 

7 1668 1676 1677 1675 1676 1675 1675 1677 1679 1676 1677 

 

8 1460 1469 1468 1468 1468 1469 1467 1468 1475 1469 1467 

 

9 1297 1309 1306 1305 1306 1306 1304 1308 1309 1306 1305 

 

10 1168 1180 1178 1178 1176 1180 1175 1185 1184 1176 1182 

 

11 1062 1074 1071 1070 1070 1071 1070 1073 1074 1072 1071 

 

12 973 984 984 982 982 983 982 984 986 983 983 

 

13 944 944 944 944 944 944 944 944 944 944 944 

 

14 944 944 944 944 944 944 944 944 944 944 944 

* New best solutions are given in bold.   

6. Conclusions and future research directions 

This research provides an extensive review and evaluation of heuristics and meta-heuristics applied in 

TALBP. Meanwhile, six encoding schemes and 30 decoding procedures are summarized, where part of 

them are first developed. This research also points out the search space for TALBP-I, which is 

        possible solutions rather than     possible solutions considered for the simple ALBP, 

where    is the number of tasks and    is the number of E-type tasks. A total of eighteen algorithms 

is carefully tested and evaluated, which includes the majority of the applied methods for TALBP.  

Several conclusions can be drawn based on the comprehensive experiments on seven sets of 

benchmark problems and statistical analysis of their results. Firstly, the encoding and decoding 
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procedures have a great effect on the performances of the algorithms, and the combination of 

sequence-oriented encoding and task assignment procedure ST5 is the good performer. Secondly, the 

objective function considered is another important factor which influences the algorithm performance 

by a significant margin. Thirdly, the iterative mechanism is quite effective, which makes sure that the 

incumbent and the new individuals are compared using the same initial cycle time. It also helps 

preserve the small improvements on individuals. Lastly, the iterated greedy search algorithms, bee 

algorithms, simulated annealing algorithm, tabu search algorithm, and late acceptance hill-climbing 

algorithm are efficient for TALBP-II utilizing the employed combination of the encoding scheme, 

decoding procedure and objective function. Furthermore, these findings also demonstrate the possible 

comparison unfairness published where algorithms utilize different encoding schemes, decoding 

procedures or objective functions. Another unique contribution of this paper is that new best solutions 

for 15 large-sized TALBP-II instances (of which six are optimum) are obtained for the first time in the 

literature. 

The future research might apply these findings to other two-sided assembly line balancing problems. 

For instance, the mixed-model TALBP, TALBP with multiple constraints and parallel TALBP might 

be further studied with the application of these findings. Specifically, the summarized encoding 

schemes and decoding procedures contain the majority of the published ones, and they are applicable to 

other two-sided assembly line balancing problems directly or with a simple modification. The 

summarized objective function shows that effective function leads to the high performance of the tested 

algorithms, and proposing these summarized objective function for other two-sided assembly line 

balancing problems might further enhance the performance of the algorithms. The procedures tested in 

this paper can be employed by the developers of new heuristics/meta-heuristics and the new best 

solutions reported in this research can be a reference for the comparison of algorithms to be developed 

in future researches. 

Accelerating the search speed developing new encoding/decoding procedures and objective functions 

might be another challenging topic. In TALBP, the more allocated workload to former mated-station 

always leads to better solutions. Hence, blending local search into the decoding procedure to ensure 

more workload to former mated-station might achieve better solutions and speed up the search speed. 
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The new objective might take the operation times of tasks and the precedence relationship into account 

to allocate the tasks with larger operation times and more successors to former mated-station.  

Since multi-objective optimization algorithms are not evaluated in this study, it is suggested to evaluate 

the published multi-objective optimization algorithms in the future. In the evaluation of the 

multi-objective algorithm, these findings achieved by solving one-objective TALBP might also benefit 

multi-objective TALBP, such as the encoding schemes and decoding procedures. In addition, most 

published multi-objective algorithms consider two or three objectives, whereas there might be more 

than three objectives in real applications. Hence, future research might also study the multi-objective 

algorithm with many objectives. 

Another research avenue is studying the TALBP with realistic considerations observed in real 

applications. For example, incompatible task groups constraints have been used by Zhang, Kucukkoc 

[61] to handle incompatible tasks which cannot be performed at the same time. In common practice, 

negative zoning constraints are used to represent tasks which cannot be assigned to the same 

workstation. However, in industry, there may be some tasks which can be assigned to the same 

workstation (and so performed subsequently), but not in the same mated-station (cannot be performed 

concurrently one on each side of the line). Let us assume a two-sided line utilized for the assembly of a 

safety cabin, which needs some tasks to be performed by operators inside the product. If the space 

inside the product is limited, two operators may not get inside it, which prevents the performance of 

two inside tasks at the same time. Also, it is widely observed in real-world applications that operators 

travel between the workstations even in a straight line [62]. This issue has naturally been studied and 

the walking times of operators have been considered for those working in either adjacent lines of a 

parallel line system or front/back branches of a U-shaped line. However, traveling workers have not 

been taken into account for a two-sided assembly line, to the best of the authors’ knowledge. Due to the 

labor-intensive structure of the final assembly systems, ergonomics issues also need to be investigated 

more in two-sided lines.  

Sustainability and energy efficiency are two trending topics in recent studies on industrial engineering 

and operations research problems. However, the research on these are strictly limited in the line 

balancing domain (see [18, 63]). As the flexibility crucially determines the survivability of enterprises 
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in today’s highly consumer-centric global market, it needs to be further investigated in two-sided lines. 

Consideration of express lines [64] (each of which employs different throughput rate or even 

specialized operators) and utilization of reconfigurable assembly lines (see [65, 66]) adaptable to 

radical changes in the assembly strategy can also be further investigated in a flexible assembly concept. 

The promising development of cloud manufacturing also desires its involvement in the line balancing 

problems [67]. 

 

 

Appendices 

Table A1 Parameter values for the re-implemented methods after calibration 

Algorithm Parameters Value 

SA Initial temperature 1.0 

 Ratio of temperature decreasing 0.95 

 Iteration rate 100 

 Neighborhood structure type Swap operation and insert operation 

TS Tabu length 100 

 Neighborhood structure type Swap operation and insert operation 

LAHC List length 10 

 Neighborhood structure type Swap operation and insert operation 

IG1 Temperature 0.001 

 Destruction size (d) 4 

IG2 Temperature 0.001 

 Destruction size (d) 4 

 a 40 

 b 3 

IG3 Temperature 0.001 

 Destruction size (d) 4 

 a 40 

 b 3 

GA Population size 120 

 Selection type Binary tournament selection 
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 Crossover type Two-point crossover 

 Crossover probability 0.4 

 Mutation type Swap operation and insert operation 

 Mutation probability 1-Crossover probability 

TLBO Population size 160 

BA Population size 80 

 Number of employed bees 40 

 Number of best employed bees 2 

 
Number of onlookers for each best employed 

bee 
10 

 
Number of onlookers for each employed bee 

except for the best employed bee 
1 

ABC Population size 40 

 Neighborhood operator  Swap operation and insert operation 

DABC Population size 120 

 Neighborhood operator for employed bees  Two-point crossover 

 Neighborhood operator for onlookers Swap operation and insert operation 

 Scout phase 
Sending a scout when there is no improvement within an 

iteration to replace the worst individual in the population 

PSO1 Number of swarms 8 

 Number of particles in a swarm 60 

 Global learning factor (c1) 1.0 

 Local learning factor (c2) 1.0 

 Initial weight (w) 1.0 

PSO2 Number of swarms 8 

 Number of particles in a swarm 60 

 c 0.5 

ACO Population size 120 

 Selection probability of task j 
     

[   ]
 
[  ]

 

∑ [   ]
 
[  ]

 
    

 ,   is the ranked positional weight 

heuristic,   and   are parameters 

 Parameters:   and   (0.2, 1.0)  

 Initial pheromone trails 1.0 

 Evaporation coefficient   0.1 

2ACO Population size 120 
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 Selection probability of task j 
     

[   ]
 
[  ]

 

∑ [   ]
 
[  ]

 
    

 ,   is the ranked positional weight 

heuristic,   and   are parameters 

 Parameters:   and   (0.2, 1.0) 

 Initial pheromone trails 1.0 

 Evaporation coefficient   0.1 

PSONG1/ 

PSONG2/ 

PSONG3 

Number of swarms 4 

 Number of particles in a swarm 40 

 Parameters:   and   (0.2, 1.0)  

 Global learning factor (c1) 0.2 

 Local learning factor (c2) 0.1 
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