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Abstract: U-type assembly lines are extensively applied in modern manufacturing systems for higher 

flexibility and productivity. This research presents a new mixed-integer linear programming model to 

minimize the number of stations, where one expression is used to represent the precedence relationship 

constraint rather than two expressions as in published researches. The proposed model is compared to 

three other models and the correctness or the incorrectness of these models are analyzed by 

enumerating all possible allocations between the two tasks. The comparison makes it clear that the 

proposed model iterates fast and achieves competing results. Additionally, a modified ant colony 

optimization approach, referred to as station-oriented ant colony optimization algorithm, is proposed to 

tackle large-size problems. This method generates a set of task assignments and selects the best one for 

the current station, rather than obtaining only one task assignment at a time. A set of benchmark 

problems is solved using the proposed method and the results are compared to those obtained by the 

state-of-the-art methods (including ULINO) and the variants of ant colony optimization approach. The 

computational study demonstrates the superiority of the proposed method over the compared ones as it 

achieves optimal solutions for 255 cases (out of 269) and outperforms the current best method, ULINO, 

for 21 cases. It is also worthy to mention that the station-oriented procedure improves the performance 

of original ant colony optimization by a significant margin. 

Keywords: Assembly line balancing; U-type assembly line; Integer programming; Ant colony 

optimization; Artificial intelligence  

 

 

 

 

  



  

New MILP model and station-oriented ant colony optimization algorithm for balancing 

U-type assembly lines 

 

Abstract: U-type assembly lines are extensively applied in modern manufacturing systems for higher 

flexibility and productivity. This research presents a new mixed-integer linear programming model to 

minimize the number of stations, where one expression is used to represent the precedence relationship 

constraint rather than two expressions as in published researches. The proposed model is compared to 

three other models and the correctness or the incorrectness of these models are analyzed by 

enumerating all possible allocations between the two tasks. The comparison makes it clear that the 

proposed model iterates fast and achieves competing results. Additionally, a modified ant colony 

optimization approach, referred to as station-oriented ant colony optimization algorithm, is proposed to 

tackle large-size problems. This method generates a set of task assignments and selects the best one for 

the current station, rather than obtaining only one task assignment at a time. A set of benchmark 

problems is solved using the proposed method and the results are compared to those obtained by the 

state-of-the-art methods (including ULINO) and the variants of ant colony optimization approach. The 

computational study demonstrates the superiority of the proposed method over the compared ones as it 

achieves optimal solutions for 255 cases (out of 269) and outperforms the current best method, ULINO, 

for 21 cases. It is also worthy to mention that the station-oriented procedure improves the performance 

of original ant colony optimization by a significant margin. 

Keywords: Assembly line balancing; U-type assembly line; Integer programming; Ant colony 

optimization; Artificial intelligence 

1. Introduction 

In conjunction with the industrial revolution emerged in the 18th century, mass production techniques 

have gained enormous importance. Assembly lines, one of the most efficient of those mass production 

techniques, have been put into practice by Henry Ford and his colleagues pioneering the advances in 

producing homogeneous products in mass quantities. As the flexibility has become one of the crucial 

factors which affect the survivability of companies in parallel to changes in consumer-centric market, 

assembly lines faced changes in terms of configuration (I. Kucukkoc & Zhang, 2016).  

An assembly line is a sequence of workstations (or stations) linked to each other via a conveyor or 

moving belt on which products are transported from one workstation to another. Some tasks are 

performed in each station by workers located in this station within the time allowed, called cycle time. 

The problem of deciding on which task will be conducted in which station is called the assembly line 

balancing problem and characterized based on various factors. Some of those are the configuration of 

the line, the variety of products assembled on the line and the allocation of workers or stations across 

the line. In its traditional version, a simple and straight assembly line, which consists of serially linked 

stations to perform tasks with the aim of producing a complete product, was assumed by Salveson 

(1955). However, about four decades later, Miltenburg and Wijngaard (1994) introduced the U-shaped 

assembly lines which provide more efficiency as well as flexibility. As seen in Fig.1, the line 



  

constitutes a U-shape in such a way that the entrance and the exit of the line are located close to each 

other. Thus, workers operating located on one branch of the line may work on the other branch in the 

same cycle, which helps increase the labor productivity.  
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Fig.1 Layout of a U-type assembly line 

1.1. Analysis of the literature 

Miltenburg and Wijngaard (1994) addressed to the simplest form of the U-shaped assembly line design 

and discussed its advantages over traditional straight lines. Many experimental and case-based research 

followed this and verified the efficiency of U-shaped lines over straight lines in different aspects. 

Battaïa and Dolgui (2013) presented a taxonomy of line balancing problems and Kucukkoc and Zhang 

(2015) summarized the majority of the research on U-shaped assembly lines, particularly. Urban (1998) 

and Urban and Chiang (2006) developed mathematical formulations (an integer programming 

formulation and a chance-constrained piecewise-linear program, respectively) for optimally balancing 

the single-model U-shaped lines with the aim of minimizing the number of stations. However, as the 

considered problem is NP-hard, metaheuristics are of good choice due to easy implementation and fast 

speed (see, for example, Modiri-Delshad et al. (2016), Kaboli et al. (2016), De et al. (2016), Pan et al. 

(2017), Samà et al. (2017), Aghay Kaboli et al. (2017), Mogale et al. (2017), De et al. (2017), Maiyar 

and Thakkar (2017) for some recent applications of metaheuristics on various NP-hard optimization 

problems. Therefore, the balancing effort for solving the U-shaped assembly line balancing problem 

(UALBP) majorly focused on developing heuristic and metaheuristic algorithms for its variants. The 

attention paid to the mathematical model was not as high as anticipated. Erel et al. (2001), Hamzadayi 

and Yildiz (2013) and Manavizadeh et al. (2013) developed simulated annealing approaches while 

Hwang et al. (2008) and Hamzadayi and Yildiz (2012) proposed genetic algorithm approaches for 

solving the UALBP with the aim of minimizing the number of stations. Other heuristics/metaheuristics 

developed on the same problem are as follows; a shortest route formulation by Gökçen et al. (2005), a 

hybrid heuristic algorithm by Chiang and Urban (2006), a heuristic approach by Toksari et al. (2008), 

an ant colony optimization (ACO) approach by Sabuncuoglu et al. (2009), and a multi-pass random 

assignment algorithm by Yegul et al. (2010). Chiang and Urban (2006) assumed stochastic task times 

and proposed a hybrid heuristic as a balancing solution procedure. Cycle time minimization was also 

considered by Scholl and Klein (1999), Gökçen and Ağpak (2006), Chiang et al. (2007), Kara et al. 

(2009) and Rabbani et al. (2012) as an additional objective to the minimization of the number of 

stations. Scholl and Klein (1999) developed a branch and bound procedure called ULINO and Gökçen 

and Ağpak (2006) developed a goal programming formulation for single model UALBP. While a 



  

binary fuzzy goal programming approach and more than one optimal solution strategy were proposed 

by Kara et al. (2009) and Chiang et al. (2007), respectively, for traditional U-lines; a genetic algorithm 

based approach was proposed by Rabbani et al. (2012) for balancing two-sided lines with multiple 

U-shaped layout. Kucukkoc and Zhang (2015; 2017) introduced parallel U-shaped lines and proposed 

constructive heuristic algorithms for balancing the lines considering single and mixed-model 

production. 

Kazemi et al. (2011) proposed a two-stage genetic algorithm for mixed-model U-line balancing 

problem considering duplicated tasks. Aase et al. (2004) conducted an experimental study on U-shaped 

line design and showed its effect on labor productivity. Kim et al. (2006) and Özcan et al. (2011) 

proposed an endosymbiotic evolutionary algorithm and a genetic algorithm, respectively, for solving 

both line balancing and model sequencing problems simultaneously as well as considering the absolute 

deviation of workloads in a mixed-model production environment. In addition, simulated annealing 

algorithms were proposed by Kara et al. (2007) and Dong et al. (2014) for solving the same problem. 

Although some attention was paid to the mathematical model, the models obtained eventually were far 

from achieving the state-of-the-art results. Aase et al. (2003) analyzed exact U-shaped line balancing 

procedures. Fattahi and Turkay (2015) investigated the use of either-or precedence relationship 

constraints in mathematical formulations given in previous studies and illustrated that using such 

constraints may cause infeasibility. They revised the MILP model for UALBP and tested its efficiency 

on benchmark problems. To the best of the authors’ knowledge, ULINO published in 1999 remains the 

best performer though several improvements have been gained in the technology and so the computing 

facilities have developed since then. On the other hand, there are several mathematical formulations 

including some wrong ones, but there is no research where all the models are evaluated. 

Some other objectives were also sought by researchers. Kara et al. (2011) proposed an integer 

programming formulation for minimizing total operating costs by considering resource-dependent task 

times. Celik et al. (2014) developed an ant colony optimization approach with the aim of minimizing 

total rebalancing cost considering stochastic times. Another cost minimization based research was 

conducted by Jayaswal and Agarwal (2014). Station and resource utilization costs were aimed to be 

minimized when considering resource-dependent task times. 

1.2. Contributions of the work 

This paper presents several contributions as follows. First, a new MILP model is developed to deal 

with the precedence relationship constraint, followed by a comprehensive analysis of the proposed 

model and other models provided by Urban (1998), Urban and Chiang (2006), Kazemi et al. (2011), 

Aase et al. (2004; 2003) and Fattahi and Turkay (2015). The comparative study shows that the 

proposed model iterates fast and produces competing results when executed via the Cplex solver of 

GAMS. Second, a station-oriented ant colony optimization approach (called SACO hereafter) is 

developed for solving large-sized UALBPs for the first time. This new algorithm differs from the 

original ACO in that the SACO utilizes a new pheromone trail to select the first task and proposes a 

station-oriented decoding mechanism. This mechanism selects the best set of tasks for the current 

station from a set of possible assignments. Third, a comprehensive computational study is conducted 



  

between the proposed SACO and state-of-the-art methods, including ULINO and ACO variants. A total 

of 269 test problems (summarized by Scholl and Klein (1999)) are solved for this aim. The results 

show that SACO is the best performer among those tested as it achieves all the current best results and 

optimal solutions of 255 cases. Furthermore, for 21 cases, SACO outperforms ULINO, which is the 

current best performer for UALBP.  

The remainder of this paper is organized as follows. Section 2 presents the newly developed 

mathematical model and analyses its differences from the existing models. Section 3 describes the 

running mechanism of the proposed SACO algorithm in details and Section 4 reports the results of the 

comprehensive computational study conducted. Finally, Section 5 concludes the paper by summarizing 

the main findings and the real-world application opportunities, followed by the directions for future 

research. 

2. Mathematical model 

This section introduces the applied models in literature and the proposed model, and carries out 

correctness analysis by enumerating all the possible allocations between two tasks. 

2.1 Developed models  

UALBP differs from SALBP in the precedence constraint. A task in SALBP is assignable when all its 

predecessors have been allocated whereas a task in UALBP is assignable when all its predecessors or 

successors have been allocated. To be precise, a task on the entrance side is assigned after assignment 

of all its predecessors and a task on the exit side is assigned after assignment of all its successors.  

To formulate the precedence relations, the first applied method employs 0-1 variables to describe 

either–or scenario (Aase et al. (2004; 2003) and Kazemi et al. (2011)), referred to as Model 1. Model 1, 

taken from the literature with no change, is as follows: 
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where i, p and q are the indices of tasks, and n is the total number of tasks. Parameter j is the index for 

stations, and m is the upper bound on the number of stations. zj is a binary variable to check whether 

station j is utilized (1, if station j is utilized; 0, otherwise). aij is a binary variable to describe the task 

assignment. If task i is allocated to station j, aij=1; otherwise, aij =0. Parameter ti denotes the operation 

time of task i, CT implies the cycle time and   is a very large positive number. Variable ui is also a 

binary variable to express either–or constraint, and           is the set of paired tasks, where task p 

is the immediate predecessor of task q. Equations (1-3) are identical to those for SALBP formulation, 



  

and thus this section mainly explains the precedence constraint in Equations (4-5). Equation (4) 

indicates that task q is assignable when all its predecessors have been allocated, whereas Equation (5) 

implies that task p is assignable if all its successors have been allocated. The basic logic is that ui is 

equal to 0 if task i is allocated to the entrance side, and it is equal to 1 if task i is allocated to the exit 

side. 

Nevertheless, Model 1 might find infeasible solutions (Fattahi & Turkay, 2015) and the main reason 

lying behind is that Model 1 ignores the situations when two tasks are allocated to entrance side and 

exit side, respectively. Hence, Fattahi and Turkay (2015) introduced a revised edition, named Model 2 

hereafter, where Equations (8-9) are utilized to replace Equations (4-5). The basic logic is that ui is 

equal to 1 if task i is allocated to the entrance side, and it is equal to 0 if task i is allocated to the exit 

side.  
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Another mathematical model for UALBP is developed by Urban (1998) and Urban and Chiang (2006), 

referred to as Model 3. Model 3 is formulated as follows with small adjustments, where xij and yij are 

the binary variables to describe the task assignment. If task i is allocated to the entrance side of station j, 

xij=1; otherwise, xij=0. If task i is allocated to the exit side of station j, yij=1; otherwise, yij=0.  
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This research proposes a new model based on Model 3, named Model 4 hereafter. The proposed model 

shares the same Equations (10, 11, 12 and 15), but it proposes a different method for tackling the 

precedence constraints and uses Equation (17) to replace Equations (13-14).  

       -    
 
         -       -    

 
                (17) 

The logic lying behind this new model is illustrated in Fig.2, where each station is divided into two 

sub-stations. The sub-stat ons on the entrance s de  s encoded w th  ,  ,  , m and the sub-stations on 

the exit side is encoded with 2m, 2m- ,  , m+1. The Equation (17) guarantees that a task can be 

allocated to the current sub-station when all its predecessors have been allocated to the same or former 

sub-stations. It is obvious that the precedence constraint can be satisfied, and this new model somewhat 

transfers the UALBP into SALBP with a new cycle time constraint.  
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Fig.2 New encode of the stations 

Notice that Model 4 refers to the new MILP model in this paper and it is comprised of Equations 

(10-12), Equation (17) and Equations (15-16). The four models will be further analyzed in Section 2.2.  

2.2 Model analysis  

All the models address the cycle time constraint properly, whereas Model 1 might achieve solutions 

conflicted with precedence constraint. This section proves the correctness of the Model 2, Model 3 and 

the proposed Model 4, and provides the situation where Model 1 will achieve infeasible solutions by 

enumerating all the possible allocations between two tasks. Suppose that task p is the predecessor of 

task q, the possible allocations of the two tasks are listed as follows (including those conflicting with 

the precedence constraint):  

1) Task p and task q are allocated to the same station, referred to as Case 1.  

2) Task p and task q are both allocated to the entrance side, and there are two situations: task p is 

allocated before task q, referred to as Case 2A, and task q is allocated before task p, referred to 

as Case 2B.  

3) Task p and task q are both allocated to the exit side, and there are two situations: task p is 

allocated before task q, referred to as Case 3A; and task q is allocated before task p, referred to 

as Case 3B.  

4) Task p and task q are allocated to the entrance and exit sides. There are two situations: task p 

is allocated to the entrance side and task q is allocated to the exit side, referred to as Case 4A, 

and task q is allocated to the entrance side and task p is allocated to the exit side, referred to as 

Case 4B.  

Among these occasions, Case 1, Case 2A, Case 3B and Case 4A satisfy the precedence constraint, 

whereas Case 2B, Case 3A and Case 4B violate the precedence constraint. The correct model must 

accept the occasions where precedence constraint is satisfied, and deny the occasions where precedence 

constraint is violated. All the four models accept Case 1, Case 2A, Case 3B and Case 4A, and deny the 

Case 2B and Case 3A. Nevertheless, constraints (4-5) in Model 1 are reduced to Equations (18-19) 

when Case 4B occurs and it is obvious that Model 1 cannot deny Case 4B.  

       -    
 
                (18) 

       -    
 
                (19) 

The other three models, on the contrary, are able to deny Case 4B. For simplicity, this section mainly 

focuses on Model 4. Equation (17) is reduced to Equation (20), and finally, Equation (21). Obviously, 

Equation (21) cannot happen and thus the Case 4B is denied by the proposed Model 4.  
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In brief, Model 2, Model 3 and the proposed Model 4 are capable of satisfying the precedence 

constraint, whereas Model 1 might generate infeasible solutions since it cannot deny Case 4B. More 

performance analysis is provided in Section 5 to compare the speed of these models. Recall that Model 

1 is not reflecting some operational constraints in the other models, hence it might produce infeasible 

solutions. However, the resulting solution can be used as a good lower bound for the actual problem as 

a relaxation. It is also noticed that both Model 2 and Model 3 have four variables and five constraints. 

The proposed model, on the contrary, has four variables and four constraints. That is one fewer than 

both Model 2 and Model 3 as they utilize two expressions to describe the precedence relationship 

constraint. 

3. Proposed methodology  

ACO is a powerful technique that has widely been used for solving complex engineering design 

problems. It mimics the behavior of ants in searching for the shortest paths from their nest to food 

sources (Sabuncuoglu et al., 2009). This optimization methodology has been applied to various kinds 

of assembly line balancing problems recently, see for example Boysen and Fliedner (2008), 

Sabuncuoglu et al. (2009), Baykasoğlu and Derel  (   9), and Zheng et al. (2013). Dorigo and Blum 

(2005) presented a survey on the ACO algorithms, and specifically, it was shown in Sabuncuoglu et al. 

(2009) that ACO outperforms simulated annealing algorithm and achieves competing results to ULINO. 

Hence, this algorithm is selected in this paper.  

Different from some other metaheuristic methods, ACO constructively builds feasible solutions by 

selecting a set of tasks based on pheromone trails and roulette wheel selection to be allocated to the 

workstations. However, the first task is selected at random rather than utilizing pheromone trails. In 

addition, the generated task assignment for the current workstation might contain unsatisfying 

workload and so the idle time of this workstation might be quite large. As known, if less workload is 

allocated to the former workstations, more workstations to be needed to perform remaining workload, 

which will eventually lead to a larger number of workstations. Hence, this research presents a variant 

of the traditional ACO, where two possible improvements are introduced. First, new pheromone trails 

(   ) are applied to determine the selection probability of the first task. Second, a new station-oriented 

decoding procedure is developed where the best one among a set of groups of tasks is selected and 

assigned to the current station. This station-oriented procedure attempts to eliminate the poor task 

assignment (having less workload) and increase the possibility of achieving solutions with fewer 

number of workstations. This procedure and the main segments of the proposed ACO are introduced in 

the following subsections. 

3.1 Modified ACO procedure 

The flowchart of the proposed ACO procedure is illustrated in Fig.3. It starts with initializing two sets 

of pheromone trails, and subsequently, individuals are obtained using the station-oriented procedure, 



  

given in Section 3.2. The pheromone trails are updated based on the obtained individuals. In contrary to 

the traditional ACO, this research employs two kinds of pheromone trails: pheromone trails between 

tasks,        (Sabuncuoglu et al., 2009), and new pheromone trails between a fictitious start point and a 

task,    . The new pheromone trails take effect when selecting the first task and it avoids the possible 

drawback in the original ACO where the first task is randomly selected.  

Algorithm SACO for UALBP 

%s refers to index of an individual and Popsize is the population size 

Begin 

Initialize pheromone trails,     and        

Repeat 

For s     Po s  e 

Obtain individuals using station-oriented procedure 

Achieve the fitness of individual p 

End for 

Update the pheromone trails,     and        

Until (termination criterion is met) 

Output the best individual 

End 

Fig.3 Flowchart of the modified ACO 

The     and        are updated with Equations (22-25), where Fits is the fitness of the individual s, 

Popsize is the population size and   is the evaporation rate.  

      -            
sPo s  e

s    (22) 

    
s  

    s ,   f task    s the f rst operated task  n the solut on bu lt by ant s

 ,   otherw se
   

(23) 

         -                  
sPo s  e

s    (24) 

       
s   

    s ,   f task    s operated    ed ately after task    n the solut on bu lt by ant s

 ,   otherw se
   

(25) 

The station-oriented procedure is expressed in following sub-section to detail the application of these 

pheromone trails.  

3.2 Station-oriented solution representation 

This section illustrates the solution representation in Fig.4, where a set of task assignments are 

generated for the current station. For achieving each task assignment, the assignable task set is obtained 

at first. A task is assignable if the finishing time of this task is equal to or the same to the cycle time and 

all its predecessors or successors have been allocated. Subsequently, this solution generation process 

introduces two rules to select the assignable tasks. The first task assignment rule gives priorities to the 

tasks whose finishing time is larger than or equal to the average cycle time (AT) calculated with 

AT    
 
    , where LB is the lower bound calculated with LB     

 
      . The expression      

here denotes the least integer greater than or equal to X. The second task assignment rule gives 

priorities to the tasks whose finishing time is equal to the cycle time. The two task assignment rules 



  

achieve the same goal of assigning as much workload as possible to the current station.  

 

Algorithm Station-oriented procedure 

%l refers to index of a task assignment to current station 

%LN is the number of generated task assignments 

Repeat 

Open a new station 

For l      N 

Repeat 

Achieve the assignable task set 

If (An ass gnable task’s f n sh ng t  e  s larger than AT) 

Delete the tasks whose finishing times are smaller than AT 

If (An ass gnable task’s f n sh ng t  e  s equal to  T) 

Delete the tasks whose finishing times are smaller than CT 

Obtain the selection probabilities of the remained assignable tasks 

Select a task using the roulette wheel selection scheme 

Update remained capacity of the current station 

Until (no assignable task exists) 

End for 

Select the best task assignment among LN task assignments 

Until (all tasks have been allocated) 

 

 

 

Fig.4 Station-oriented solution representation 

The selection of a task among the assignable tasks is another important issue. If no task has been 

allocated and all the predecessors of the assignable task q have been allocated, the selection probability 

of task q is set to    
    

    
 , where  ,   and   are three input parameters, and wq is ranked 

positional weight of task q (which is the sum of the operation times of task q and all its successors). If 

at least one task has been allocated, the selected probability of task q is set to       
    

    
 , where p is 

the last allocated task. Since a task is also assignable if all its successors have been allocated, owq is 

utilized when all the successors of the assignable task q have been allocated. owq is the ranked 

positional weight of task q in the reverse direction, and it is equal to the sum of the operation times of 

task q and all its predecessors. On the basis of the selection probabilities of the remained assignable 

tasks, a task is selected using the roulette wheel selection scheme. Subsequently, the selected task is 

allocated to the current station, and this procedure is repeated until no assignable task exists. 

After achieving a set of LN task assignments, the next job is selecting the best one as the current task 

assignment. This research selects the task assignment with a large value of 

                 -    ∈  
       o        o  -   ∈  , where FS (RS) is the set of tasks 

allocated to the current station in the forward (reverse) direction or their predecessors (successors) have 

been allocated before allocating them. Fi (oFi) refers to the number of immediate predecessors 

(successors) of task i. Parameter a, b and c are three input parameters, and the largest workload is 



  

selected when the values of three parameters are all set to 0.0. The rationale of this formula and the 

effect of each part are clarified as follows. The term ti preserves the larger workload, the term 

        selects the tasks whose successors have a large total operation time, the term      favors the 

tasks which will make more tasks assignable, and the term -  selects the tasks with larger operation 

times. The values of a, b and c are set to be much smaller than 1.0 in this paper so that the latter parts 

take effect only when the allocated workloads are equal.  

In brief, this station-oriented procedure generates a set of possible task assignments (or groups of 

tasks), and then selects the best one as the current task assignment. The basic logic is similar to the 

maximum workload rule in Scholl and Klein (1999) and the graded objectives in Li et al. (2017), where 

both allocate more workloads to the former stations.  

3.3 Illustrated example  

This section illustrates the station-oriented solution representation by solving a large-sized test problem, 

namely Tonge-70, where detailed operation times and precedence relationships are exhibited in Table 1.  

Table 1 Operation times and precedence relationships of tested problem 

Tasks Operation time Successors Tasks Operation time Successors 

1 17 2, 41, 69, 70 36 40 37 
2 66 3 37 2 38 
3 54 4, 68 38 1 39 
4 52 6, 7 39 3 40 
5 6 6, 24, 30 40 13 42 
6 88 8 41 16 42 
7 21 8 42 25 43 

8 128 12 43 21 50 
9 68 10 44 43 45 
10 70 11 45 30 46 
11 85 12 46 83 47 
12 21 13, 14 47 89 50 
13 134 23 48 56 49 
14 135 23 49 59 50 
15 94 16 50 43 - 

16 90 17, 18 51 11 52 
17 50 19 52 26 54 
18 143 19 53 44 54 
19 19 20, 22, 57 54 121 55 
20 54 21 55 38 - 
21 50 23 56 68 - 
22 40 23 57 22 58 
23 73 25, 31, 33 58 7 59 

24 12 25 59 16 60 
25 152 26, 27, 28, 29 60 32 - 
26 42 35 61 25 65 
27 45 35 62 27 63 
28 74 35 63 156 64 
29 26 35 64 28 65, 66, 67 
30 11 31 65 15 - 
31 31 32 66 26 - 

32 50 35 67 18 - 
33 102 34 68 72 - 
34 46 35 69 23 - 
35 35 36, 44, 48, 51, 53, 56, 60, 61, 62 70 27 - 

 

The illustrated case has 70 tasks and the cycle time is fixed to 527 units. Supposed that the number of 

task assignment or LN is set to 10, detailed station-oriented representation is illustrated in Table 2. In 



  

this table, workload means the allocated workload or the total operation time of allocated tasks. Value 

means the value of                  -    ∈  
       o        o  -   ∈  , where a, b and c are 

set to 0.0, 0.0 and 0.3 respectively.  

  Table 2 Illustrated station-oriented representation 

Station 
Task 
assignment 

Task assignment Workload Values 

1 1 65,56,60,50,9,67,70,47,10,46,5 519 518.67 

 
2 15,67,9,5,60,10,66,70,16,11,30 527 526.67 

 
3 9,65,68,66,70,56,15,1,16,17 527 526.7 

 
        

  Selected 9,65,68,66,70,56,15,1,16,17 527 526.7 

2 1 61,5,55,54,10,30,18,67,11 517 516.73 

 
2 50,61,47,18,2,49,46,19 527 526.76 

 
3 5,60,61,2,3,4,50,69,10,18,30 525 524.67 

 
        

  Selected 50,61,47,18,2,49,46,19 527 526.76 

3 1 60,3,22,48,20,21,45,55,57,44,43,10,59 526 525.61 

 
2 

43,67,42,48,60,5,55,59,54,52,45,64,40,24,10,58,39,

38,37 
525 524.43 

 
3 57,48,10,67,43,60,69,3,4,20,22,11 527 526.64 

 
        

  Selected 57,48,10,67,43,60,69,3,4,20,22,11 527 526.64 

4 1 42,59,5,55,6,54,45,41,64,63 524 523.7 

 
2 45,64,5,58,63,41,62,21,55,6,44,42,40 527 526.61 

 
3 5,45,58,6,7,64,42,21,44,30,55,63,24 515 514.61 

 
        

  Selected 45,64,5,58,63,41,62,21,55,6,44,42,40 527 526.61 

5 1 30,7,8,39,24,59,54,12,14,53,38,37 515 514.64 

 
2 7,39,8,54,59,24,52,53,12,14 527 526.7 

 
3 54,7,53,59,52,8,30,51,12,24,39,38,37,36,35,29 518 517.52 

 
        

  Selected 7,39,8,54,59,24,52,53,12,14 527 526.7 

6 1 51,13,23,38,30,25,26,33 526 525.76 

 
2 30,13,38,51,23,31,33,25,37 517 516.73 

 
3 51,30,13,23,31,38,25,33,37 517 516.73 

 
        

  Selected 51,13,23,38,30,25,26,33 526 525.76 

7 1 34,31,32,28,29,37,36,35,27 349 348.73 

 
2 29,37,34,31,36,28,27,32,35 349 348.73 

 
3 29,31,32,37,28,27,36,34,35 349 348.73 

 
        

  Selected 34,31,32,28,29,37,36,35,27 349 348.73 

 

In the station-oriented representation, a total of 10 task assignments are achieved at first for station 1, 

and then the corresponding values are calculated. The task assignment with the largest value is selected 

as the current task assignment, namely task 9, 65, 68, 66, 70, 56, 15, 1, 16 and 17. After determining 

the task assignment for station 1, the same procedure is executed for station 2. Again the task 

assignment with the largest value is selected as the current task assignment, namely task 50, 61, 47, 18, 

2, 49, 46, and 19. This procedure is repeated for the remaining workstations and terminated when all 

the tasks have been allocated. It is also observed that this station-oriented representation allocates 527, 

527, 527, 527, 527, 526 and 349 units workload to stations 1, 2, 3, 4, 5, 6 and 7, respectively. It is clear 

that more workload is allocated to former stations, and the less remained workload is endured by latter 

stations. 



  

4. Computational study 

This section first compares the summarized existing models with the newly developed model (given in 

Section 2.1), and later presents a comparative study on the proposed algorithm using well-known 

benchmarks.  

4.1 Model comparison  

Since Model 1 is incorrect and the comparison between Model 1 and Model 2 has been presented in 

Fattahi and Turkay (2015), this section mainly focuses on Model 2, Model 3 and the proposed model, 

namely Model 4. Table 3 presents the results of three models. All the models are coded into the Cplex 

solver of GAMS and terminated when an optimal solution is achieved or elapsed CPU time reaches 

1000 seconds. Notice that this table only presents the results for problems containing 45, 53 and 58 

tasks since all the models can solve the smaller-size problems very quickly and cannot achieve the 

optimal solution or prove the optimally of the achieved solution within the acceptable time when 

solving the large-size problems. Detailed precedence diagrams of the tested problems are available at 

http://assembly-line-balancing.mansci.de/wp-content/uploads/2017/01/Scholl-1993-ALBData.pdf. The 

initial station numbers are set to 12 for Kilbridge and Hahn and 40 for Warnecke. In this table, Nt is the 

number of tasks,     is the number of arcs in the precedence diagram and d is the network density 

calculated with          (Fattahi & Turkay, 2015). CT refers to the cycle time and iteration means 

the iteration time before the search process terminates. 

Table 3 Computational results by three models 

Problem Nt     d CT Model 
Single 

equations 

Single 

variables 
Result Iteration 

Time 

(s) 

Kilbridge 45 62 1.38 56 Model 2 192 598 10 72920 3.69 

     
Model 3 192 1093 10 9897 0.76 

     
Model 4 131 1093 10 4286 0.71 

    
57 Model 2 192 598 10 2497 0.6 

     
Model 3 192 1093 10 13668 0.93 

     
Model 4 131 1093 10 2299 0.59 

    
62 Model 2 192 598 9 24599 1.23 

     
Model 3 192 1093 9 20250 1.14 

     
Model 4 131 1093 9 6833 0.71 

Hahn 53 82 1.55 2004 Model 2 242 702 No solution 1000 

     
Model 3 242 1285 8 13328488 1000 

     
Model 4 160 1285 8 18409505 1000 

    
2338 Model 2 242 702 7 16645500 1000 

     
Model 3 242 1285 7 14030156 1000 

     
Model 4 160 1285 7 19291955 1000 

    
2806 Model 2 242 702 6 17070195 1000 

     
Model 3 242 1285 6 12190233 1000 

     
Model 4 160 1285 6 19409416 1000 

    
3507 Model 2 242 702 5 17531451 1000 

     
Model 3 242 1285 5 11994373 1000 

     
Model 4 160 1285 5 17603194 1000 

    
4676 Model 2 242 702 3 2297999 143.13 

     
Model 3 242 1285 3 2615731 224.67 

     
Model 4 160 1285 3 11398621 611.43 

Warnecke 58 70 1.21 54 Model 2 279 2419 32 8945461 1000 

     
Model 3 279 4681 31 7307103 1000 

     
Model 4 209 4681 31 8462699 1000 

    
56 Model 2 279 2419 No solution 1000 

     
Model 3 279 4681 29 117583 1000 

     
Model 4 209 4681 30 9946370 1000 

    
58 Model 2 279 2419 29 11247631 1000 



  

     
Model 3 279 4681 29 7603313 1000 

          Model 4 209 4681 28 1441324 155.32 

*Best results or the smallest CPU time in bold. 

From Table 3, it is observed that the numbers of single equations are 192, 192 and 131 for Model 2, 

Model 3 and Model 4, respectively, regarding Kilbridge-45 with the cycle time of 56 units. The 

corresponding numbers of single variables are 598, 1093 and 1093, respectively. Clearly, Model 2 and 

Model 3 have the same number of single equations for this case, whereas Model 4 has a smaller 

number of single equations. In addition, Model 3 and Model 4 share the same number of single 

variables, whereas Model 2 has fewer single variables. This situation suits all the other cases solved. 

Another finding is that these three models obtain the same station numbers for most of the tested cases. 

Nevertheless, Model 2 cannot achieve the feasible solutions for two cases within 1000 seconds. 

Regarding the utilized CPU time, all the models can solve the problem with 45 tasks within 10 seconds, 

whereas they cannot achieve the optimal solution or prove the optimality of the achieved solution 

within 1000 seconds for most cases. As for the iteration speed, it is observed that Model 4 iterates for 

the largest times within 1000 seconds for most cases, and Model 3 iterates for the smallest time. 

Consequently, the proposed Model 4 has fewer equations than Model 2 and Model 3, and has the same 

variables as Model 3. Model 4 iterates faster than Model 3 for all the cases and faster than Model 2 for 

most cases. Although Model 4 iterates fast, it achieves similar results with Model 2 and Model 3 and 

the superiority of Model 4 is not clear. But it is still sufficient to state that Model 4 is an alternative 

model for U-type assembly line balancing, as it iterates fast and achieve competitive results. 

4.2 Comparative study  

This section presents a comparative study where the performance of the proposed SACO is compared 

to those of the five published metaheuristics and one exact method, ULINO (Scholl & Klein, 1999). 

The metaheuristics are simulated annealing (SA) method (Erel et al., 2001), three modified ACO 

methods (Sabuncuoglu et al., 2009) and another ACO method (Baykasoğlu & Derel ,    9).  

To differentiate ACO methods, the three methods by Sabuncuoglu et al. (2009) are marked with 

ACSm-Sabuncuoglu, ACO-Version 1-Sabuncuoglu and ACO-Version 2-Sabuncuoglu. The ACO 

method by Baykasoglu and Dereli (2009) is marked with ACO-Baykasoğlu. The ULINO by Scholl and 

Klein (1999), to our best knowledge, is still the best performer for UALBP which achieves the 

maximum number of optimal solutions.  

Apart from the aforementioned four other published methods, four variants of ACO are also included in 

this research to evaluate the performance of the improvements. These variants are presented as follows. 

Among the four variants, ACO1 is the original ACO and ACO2 differs from ACO1 in that new 

pheromone trails     are employed. ACO3 differs from ACO2 in utilizing task assignment rule, which 

is proposed to test the performance of the developed task assignment rule. ACO4 inherits all features of 

the proposed SACO but the values of parameter a, b and c are set to 0.0. Specifically, ACO4 selects the 

task assignment with the largest allocated workload.  



  

ACO1: The new pheromone trails     are not employed and no task assignment rule or 

station-oriented procedure are applied.  

ACO2: The new pheromone trails     are employed whereas no task assignment rule or 

station-oriented procedure are applied.  

ACO3: The new pheromone trails     and task assignment rule are employed whereas the 

station-oriented procedure is not applied.   

ACO4: All the new pheromone trails    , task assignment rule and station-oriented procedure are 

employed, but the values of parameter a, b and c are set to 0.0.  

There are two benchmark sets available to test the performance of these methods: the set summarized 

in Scholl and Klein (1999) and the new one generated in Otto et al. (2013). The benchmark set 

summarized in Scholl and Klein (1999) has been widely applied whereas no paper has adopted the 

benchmark set by Otto et al. (2013) for the considered problem. In order to compare the published 

methods, this research mainly presents the computational results on the benchmark set in Scholl and 

Klein (1999). Regarding this benchmark set, there are a total number of 269 cases and all of them are 

solved in this study. Detailed precedence diagrams of all the tested problems are available at 

http://assembly-line-balancing.mansci.de/wp-content/uploads/2017/01/Scholl-1993-ALBData.pdf. 

Determining a proper termination criterion is an important issue. As in Scholl and Klein (1999), the 

methods terminate when the elapsed CPU time reaches 500 seconds per instance. 

For metaheuristics, parameter values play an important role in their final performances. This paper 

proposes the Taguchi method (Mozdgir et al., 2013) for parameter calibration. For simplicity, this 

section only presents the parameter calibration process of ACO1. There are six parameters to be 

determined: population size, initial pheromone trails, evaporation coefficient  , and weighting 

parameters  ,   and  . Each parameter is tested at three levels, so there are 27 combinations of the 

parameter values in the orthogonal table. Detailed orthogonal table and the levels of parameters are 

presented in Table A1 (see Appendix). Twenty cases of the largest problem Scholl-297 with 297 tasks 

are employed for parameter calibration, and the achieved station number is transferred into relative 

percentage deviation or RPD. Relative percentage deviation is calculated with 

  D         so e-LB LB , where LB is the lower bound on station number reported in Scholl and 

Klein (1999) and Fitsome is the station number found by an algorithm. After carrying out all the 

experiments, the average RPD value of twenty cases are selected as the response variable and the 

multi-factor analysis of variance (ANOVA) test is executed following Mozdgir et al. (2013), Tang et al. 

(2016) and Li et al. (2017), among others. Detailed ANOVA results are omitted in the section for space 

reason, but the average RPD plot and the corresponding S/N ratio plot are presented in Fig. A1 and Fig. 

A2 (see Appendix). Other tested methods are calibrated in the same methods, and the tested parameter 

values are presented in Table A2 (see Appendix). The detailed applications of the Taguchi method and 

ANOVA analysis are available upon request.   

The achieved best results and the average results achieved within twenty-times run are reported in 

Table 4. Notice that ULINO belongs to the exact methods and it can obtain the same results in repeated 

runs. ACO applies a stochastic search mechanism due to the randomness involved in its nature. To 

http://assembly-line-balancing.mansci.de/wp-content/uploads/2017/01/Scholl-1993-ALBData.pdf


  

maintain robustness, each test problem was run twenty-times and the results are reported in Table 4 

together with some performance metrics achieved in doing so. In Table 4, ‘# instances’ is the number of 

tested instances, ‘# Opt’ is the number of instances that optimal solutions are achieved at least once 

within twenty-times run. As each test problem was run twenty-times, this research utilizes RPDBest to 

denote the best RPD among the twenty RPD values within twenty-times run for each instance and 

RPDAvg to denote the average RPD within twenty-times run for each instance. RPDBest-Avg and 

RPDBest-Max are the average and maximum of the RPDBest values belonging to all test cases, 

respectively. RPDAvg-Avg is the average of the RPDAvg values of all the tested cases, and RPDAvg-Max is 

the maximum of the RPDAvg values of all the tested cases. 

Table 4 Comparison between ULINO and applied ACO methods 

Method 
Instance Talbot Hoffmann Scholl Combined 

# instances 64 50 168 269 

ULINO # Opt 60 32 150 233 

 

RPDBest-Avg 0.39 1.99 0.08 0.59 

  RPDBest-Max 7.14 10 5.26 10 

ACO1 # Opt 58 26 73 148 

 
RPDBest-Avg 0.73  2.68  2.13  1.91  

 
RPDBest-Max 14.29  7.69  8.33  14.29  

 
RPDAvg-Avg 0.74  2.85  2.37  2.09  

 
RPDAvg-Max 14.29  7.92  10.00  14.29  

ACO2 # Opt 58 25 78 152 

 
RPDBest-Avg 0.73  2.84  1.97  1.84  

 
RPDBest-Max 14.29  8.33  8.33  14.29  

 
RPDAvg-Avg 0.75  2.88  2.34  2.08  

 
RPDAvg-Max 14.29  8.33  8.89  14.29  

ACO3 # Opt 59 28 116 194 

 
RPDBest-Avg 0.61  2.41  1.11  1.19  

 

RPDBest-Max 14.29  7.69  6.25  14.29  

 
RPDAvg-Avg 0.62  2.66  1.32  1.38  

 
RPDAvg-Max 14.29  7.69  7.92  14.29  

ACO4 # Opt 63 39 161 251 

 
RPDBest-Avg 0.09  1.07  0.15  0.29  

 
RPDBest-Max 5.88  6.25  4.76  6.25  

 
RPDAvg-Avg 0.30  1.47  0.16  0.37  

 
RPDAvg-Max 6.79  6.79  4.76  6.79  

SACO # Opt 64 43 161 255 

 
RPDBest-Avg 0.00  0.61  0.15  0.21  

 
RPDBest-Max 0.00  5.00  4.76  5.00  

 
RPDAvg-Avg 0.06  0.85  0.15  0.25  

  RPDAvg-Max 3.53  5.00  4.76  5.00  

*Best results in bold 

It has been observed during the computational study that the ACO variants whose performances have 

been compared to that of SACO cannot achieve the same results with SACO even when the CPU time 

increases. Therefore, the results have been compared in terms of both the best results and the relative 

percentage deviation metrics. As for assembly line balancing problem, the number of the achieved 

optimal solutions is an important indicator to evaluate the performance of the algorithms, and thus this 

research mainly compares the number of achieved optimum solutions following the common tendency 

in the literature (e.g. see Sabuncuoglu et al. (2009)). It is observed from Table 4 that the proposed 

SACO is capable of finding optimal solutions for 255 cases, ranking first among the compared methods. 

Specifically, SACO outperforms ACO4, ULINO and ACO3 for 4, 22 and 61 cases out of 269 cases, 

respectively. ACO4 is the second-best performer which achieves the optimal solutions for 251 cases. 



  

ULINO achieves the third largest number of found optimal solutions, and ACO3 achieves the fourth 

largest number. ACO2 and ACO1 are the two worst performers and ACO2 shows a small superiority 

over ACO1. This finding suggests that the utilization of the new pheromone trails is reasonable. In 

addition, ACO3 shows a clear advantage over the ACO1 and ACO2, which indicates the superiority of 

utilizing task assignment rules. The proposed SACO is also the best performer when utilizing the 

RPDBest-Avg, RPDBest-Max, RPDAvg-Avg and RPDAvg-Max as the evaluation metrics. Again, ACO4 and 

ULINO are the second and third best performers when utilizing these evaluation metrics. The 

superiority of the SACO over the ULINO on the number of achieved optimal solutions suggests that 

the proposed SACO is highly effective for UALBP, and can be regarded as the state-of-the-art 

metaheuristic for UALBP. In fact, the high performance of the proposed SACO is mainly attributed to 

the utilization of the station-oriented procedure. This station-oriented procedure selects the best one 

among a set of task assignments (or groups of tasks), which ensures that the former workstations 

endures more workload and increase the possibility of achieving solutions with fewer workstations. In 

addition, this procedure also allocates the tasks with larger operation time at first and makes more tasks 

assignable for the latter workstations by allocating the tasks with more successors in the forward 

direction (predecessors in the reverse direction) preferably.   

A more thorough comparative study is presented in Table 5, which exhibits the achieved best results by 

proposed ACO methods and the best results published by five metaheuristics and an exact method, 

ULINO. Notice that the published five metaheuristics only tackle a portion of the benchmark problems, 

and thus this table summarizes the number of solved instances and the number of instances solved 

optimally. This table only calculates the percentage of the instance solved optimally in the last column. 

If the algorithms are ranked in decreasing order of the percentage values, the proposed SACO ranks 

first and ACO4 and ULINO rank the second the third. The ACO-Version 2-Sabuncuoglu ranks the 

fourth which is the best performer among the ACO methods which do not utilize station-oriented 

decoding. Among all these methods, ACO-Baykasoğlu  s the worst perfor er wh ch only ach eves the 

optimal solutions for 90 cases out of 232 tested cases. In addition, if the number of instances not solved 

optimally is considered, there are only 14 and 18 cases which are not solved optimally by SACO and 

ACO4. Nevertheless, there are 60 and 142 cases not solved optimally by SA and ACO-Baykasoğlu 

even though they solve fewer instances. All these computational results show that the proposed SACO 

outperforms the compared ones regarding the number of achieved optimal solutions.  

Table 5 Comparison between published methods and applied ACO methods 

Methods 
Talbot Hoffmann Scholl Combined cases 

# 

instances 

# 

Opt 

# 

instances 

# 

Opt 

# 

instances 

# 

Opt 

# 

instances 

# 

Opt 
Percent 

SA - - - - 168 112 187 127 67.91 

ACO-Baykasoğlu 64 55 - - 168 35 232 90 38.79 
ACSm-Sabuncuoglu - - - - - - 190 81 42.63 
ACO-Version 
1-Sabuncuoglu 

- - - - - - 190 108 56.84 

ACO-Version 
2-Sabuncuoglu 

- - - - - - 190 144 75.79 

ULINO 64 60 50 32 168 150 269 233 86.62 
ACO1 64 58 50 26 168 73 269 148 55.02 
ACO2 64 58 50 25 168 78 269 152 56.51 



  

ACO3 64 59 50 28 168 116 269 194 72.12 
ACO4 64 63 50 39 168 161 269 251 93.31 
SACO 64 64 50 43 168 161 269 255 94.80 

*Best results in bold  

Table 6 also shows the results of the hard instances from the tested 269 cases, where Nt is the number 

of tasks,     is the number of arcs in the precedence diagram, d is the network density,         , 

and CT is the cycle time (Fattahi & Turkay, 2015). The results of ACO methods are the best solution 

achieved in twenty-times independent runs. In this table, SACO updates the results by ULINO for 21 

cases. Since the newly achieved station number is equal to the lower bound provided by ULINO, it is 

proper to state that the optimal solutions of these 21 cases are first achieved. When the results obtained 

by ACO methods are compared, it is observed that ACO1, ACO2 and ACO3 cannot achieve the 

optimal solutions for all the cases of Barthol2-148 and Scholl-297 test cases. These findings suggest 

that the original ACO methods, ACO1, ACO2 and ACO3, are ineffective when solving large-size 

problems. 

Table 6 Comparison on challenging instances 

Graph Nt     d CT ULINO ACO1 ACO2 ACO3 ACO4 SACO 

Warnecke 58 70 1.21 54 [30,31] 31 31 31 31 31 
    62 [26,27] 27 27 27 26 26 
    65 [24,25] 25 25 25 25 25 
    68 [23,24] 24 24 24 23 23 
    71 [22,23] 23 23 23 23 23 
    74 [21,22] 22 22 22 22 22 
    82 [19,20] 20 20 20 19 19 

Tonge 70 86 1.23 160 [22,23] 23 23 23 22 22 
    176 [20,21] 21 21 21 20 20 

Wee-mag 75 87 1.16 47 [32,33] 33 33 32 32 32 
    49 [31,32] 32 32 32 32 32 
    50 [31,32] 32 32 32 32 32 

Arcus 1 83 113 1.36 3786 [21,22] 21 21 21 21 21 
Mukherje 94 181 1.93 176 [24,25] 25 25 25 24 24 
Arcus 2 111 176 1.59 5785 [26,27] 27 27 27 27 27 

    6016 [25,26] 26 26 26 26 26 
    6267 [24,25] 25 25 25 25 25 
    6540 [23,24] 24 24 24 24 24 
    6837 [22,23] 23 23 23 23 23 
    7162 [21,22] 22 22 22 22 22 
    7520 [20,21] 21 21 21 21 21 
    7916 [19,20] 20 20 20 20 19 
    8356 [18,19] 19 19 19 19 18 
    8847 [17,18] 18 18 18 18 17 

    9400 [16,17] 17 17 17 17 16 
    10027 [15,16] 16 16 16 15 15 
    10743 [14,15] 15 15 15 14 14 
    11570 [13,14] 14 14 14 13 13 

Barthol2 148 175 1.18 85 [50,51] 51 51 51 50 50 
    89 [48,49] 49 49 48 48 48 
    93 [46,47] 47 47 46 46 46 
    97 [44,45] 45 45 44 44 44 

Scholl 297 423 1.42 1394 [50,51] 51 51 51 50 50 
    1422 [49,50] 50 50 50 50 50 
    1452 48 49 49 49 48 48 
    1483 47 48 48 48 47 47 
    1515 [46,47] 47 47 47 46 46 
    1548 45 46 46 46 45 45 
    1584 44 45 45 45 44 44 
    1620 43 44 44 44 43 43 

    1659 42 43 43 43 42 42 



  

    1699 41 42 42 42 41 41 
    1742 40 41 41 41 40 40 
    1787 39 40 40 40 39 39 
    1834 38 39 39 39 38 38 
    1883 37 38 38 38 37 37 

    1935 36 37 37 37 36 36 
    1991 35 36 36 36 35 35 
    2049 34 35 35 35 34 34 
    2111 33 34 34 34 33 33 
    2177 32 33 33 33 32 32 
    2247 31 32 32 32 31 31 
    2322 30 31 31 31 30 30 
    2402 29 30 30 30 29 29 

    2488 28 29 29 29 28 28 
    2580 27 28 28 28 27 27 
    2680 26 27 27 27 26 26 
    2787 25 26 26 26 25 25 

*New found upper bounds or optimal solutions in bold.  
 

To have a better observation of the evolution process of the tested algorithms, Fig.5 illustrates the 

average workstation numbers achieved by the tested algorithm during evolution when solving 

Tonge-70 with a cycle time fixed to 168 units. From this figure, it is observed that none of the tested 

ACO methods shows clear convergence with the increasing CPU time. In fact, this interesting situation 

is attributed to the selection probabilities of tasks and the characteristic of the considered problem. As 

presented in Section 3.2, a task is selected based on the selection probabilities of tasks using the 

roulette wheel selection scheme, where ranked positional weight and operation time are also included 

in the selection strategy as heuristic information. While the heuristic information increases the 

exploration capacity and helps achieve diverse individuals, the proposed methods cannot show clear 

convergence. Additionally, the workstation number, which is determined by the task assignments on all 

workstations, is optimized. The optimal solution of the tested case is achieved only when all the 

workstations endure enough workload. However, the randomness in the task selection makes the 

probability of achieving optimal solution very low, and hence the population cannot convergence to the 

optimal or near optimal solution.  

Still, it is clear that SACO achieves the smallest values of the average workstation numbers. ACO1 and 

ACO2 obtain the largest values of the average workstation numbers. This demonstrates that the 

proposed ACO methods are capable of achieving diverse solutions and SACO outperforms the 

compared methods during the evolution process regarding the average workstation numbers.  
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Fig.5 Average workstation number during the evolution process 

From the above computational study, it is clear that SACO has a promising solution building capacity 

regardless of the problem size. As seen in Table 6, SACO maintains its competitiveness even the 

number of tasks increases from one problem to another. Thus, it is established that the proposed SACO 

is quite effective for UALBP and capable of achieving solutions with fewer workstations.  

The reduction in the number of opened workstations yields a decrease in the number of operators 

working in the line composed of those workstations. As known, U-type assembly lines are widely 

utilized in assembly industry to achieve high flexibility and productivity and the number of workers 

utilized on this line is the main expense. Thus, the reduction of the number opened workstations results 

in a decrease in labor cost. Therefore, SACO can improve line efficiency and reduce labor cost in 

U-shaped assembly lines. Line managers can undoubtedly use SACO for balancing U-shaped lines in 

real-life implementations to reduce their costs. 

5. Conclusions and future research 

This research addresses the U-type assembly line balancing problem to minimize the number of opened 

workstations. A new mixed-integer linear programming model is developed which utilizes one 

expression to describe the precedence constraint. The validity of this model and three compared models 

are analyzed by enumerating the possible allocations of two tasks. The proposed model and the two out 

of three compared ones are correct while one out of the three models is wrong. A comparative study on 

these models demonstrates that the proposed model executes more number of iterations within the 

same CPU time (1000 seconds) for most cases and it has the capability of achieving competing results. 

  To tackle the large-size problems, this research develops a station-oriented ant colony optimization. 

This modified ant colony optimization differs from the original ones in two aspects. New pheromone 

trails     are applied to determine the selection probability of the first task. A new station-oriented 

decoding is developed to achieve solutions where the best one among a set of task assignment groups is 

selected for the current station. The proposed method is compared with four variants of ant colony 



  

optimization, exact method ULINO and five published metaheuristics. Computational results 

demonstrate the proposed method is the best performer among the tested algorithms. Specifically, this 

newly developed method achieves the optimal solutions of 255 cases out of 269 cases and it 

outperforms the current best method ULINO for 21 cases regarding the best station number achieved. 

The proposed method is capable of reducing the number of workstations, which yields to a decrease in 

labor cost eventually thanks to the reduction in the number of operators. The methodology proposed in 

this research can easily be adopted by practitioners, i.e. line managers. Thus, a considerable number of 

workstations can be saved when constructing a new U-shaped line as well as balancing an existing line. 

However, the model still cannot solve large-size problems optimally within acceptable time and the 

algorithm needs several parameters to be calibrated. Also, the production environment may contain 

more sophisticated applications and/or constraints to be considered, such as customized demands 

requiring mixed-model production and the utilization of robots requiring their optimal assignment to 

workstations. Future research might consider focusing on these issues. The model can also be extended 

to balance other U-type assembly lines, including robotic U-type assembly lines, mixed-model U-type 

assembly lines and U-type assembly lines with model sequencing. Thus, this new method for tackling 

precedence constraint can help building the models for such problems. Furthermore, the proposed 

station-oriented method has wider applications due to its high performance observed in this study. This 

method might be applied to solve miscellaneous two-sided and parallel assembly line balancing 

problems. Even for type II assembly line balancing problem, this method might produce promising 

results utilizing an iterative search mechanism. It is also worthy to implement some other recent and 

effective metaheuristics.  

Appendix 

Nomenclature 

i, p, q : The task indices 

n, Nt  : The total number of tasks 

j   : The workstation index 

m   : The upper bound on the number of stations 

zj   : A binary variable, zj=1 if station j is utilized; zj=0, otherwise 

aij   : A binary variable, aij=1 if task i is allocated to station j; aij=0, otherwise 

ti   : The operation time of task i  

CT   : The cycle time  

    : A very large positive number 

ui  : A binary variable, ui=0 if task i is allocated to the entrance side; ui=1 if task i is allocated to 

the exit side 

          : The set of paired tasks, where task p is the immediate predecessor of task q 

xij   : A binary variable, xij=1 if task i is allocated to the entrance side of station j; xij=0 otherwise 

yij   : A binary variable, yij=1 if task i is allocated to the exit side of station j; yij=0 otherwise 

     : The pheromone trail between a fictitious start point and task p 



  

        : The pheromone trail between tasks p and q 

Popsize : Population size 

s  : The index of an individual in the population (s     Po s  e) 

Fits  : The fitness of individual s 

   : Evaporation rate 

AT  : Average cycle time 

   : Lower bound, LB     
 
       where the expression      denotes the least integer 

greater than or equal to X. 

 ,  ,    : Input parameters 

wq   : The ranked positional weight of task q (the sum of the operation times of task q and all its 

successors) 

owq   : The ranked positional weight of task q in the reverse direction (the sum of the operation 

times of task q and all its predecessors) 

LN   : The number of generated task assignments 

l   : The index of a task assignment to current station (l      N) 

FS   : The set of tasks allocated to the current station in the forward direction 

RS   : The set of tasks allocated to the current station in the reverse direction 

Fi  : The number of immediate predecessors of task i 

oFi   : The number of immediate successors of task i 

a, b, c : Input parameters 

      : The number of arcs in the precedence diagram 

d   : The network density calculated with          

Fitsome  : The station number found by an algorithm 

RPD  : Relative percentage deviation,   D         so e-LB LB  

# Opt : The number of instances that optimal solutions are achieved at least once within a certain 

number of iterations 

RPDBest  : The best RPD among those obtained within twenty-times run for each instance 

RPDAvg  : The average of the twenty RPD values obtained within twenty-times run for each instance 

RPDBest-Avg : The average of the RPDBest values of all the instances tested 

RPDBest-Max : The maximum of the RPDBest values of all the instances tested 

RPDAvg-Avg : The average of the RPDAvg values of all the instances tested 

RPDAvg-Max : The maximum of the RPDAvg values of all the instances tested 

 

Table A1 Orthogonal table of parameter levels 

Population size Initial pheromone trails Evaporation coefficient α β γ Average RPD 

40 1 0.1 0.1 0 0 2.62109 
40 1 0.1 0.1 0.1 0.1 2.52109 
40 1 0.1 0.1 0.2 0.2 2.52109 

40 5 0.2 0.2 0 0 2.72313 
40 5 0.2 0.2 0.1 0.1 2.52109 
40 5 0.2 0.2 0.2 0.2 2.52109 
40 10 0.3 0.3 0 0 2.93368 



  

40 10 0.3 0.3 0.1 0.1 2.62109 
40 10 0.3 0.3 0.2 0.2 2.52109 
80 1 0.2 0.3 0 0.1 2.62109 
80 1 0.2 0.3 0.1 0.2 2.52109 
80 1 0.2 0.3 0.2 0 2.52109 

80 5 0.3 0.1 0 0.1 2.52109 
80 5 0.3 0.1 0.1 0.2 2.52109 
80 5 0.3 0.1 0.2 0 2.52109 
80 10 0.1 0.2 0 0.1 2.52109 
80 10 0.1 0.2 0.1 0.2 2.52109 
80 10 0.1 0.2 0.2 0 2.52109 
120 1 0.3 0.2 0 0.2 2.52109 
120 1 0.3 0.2 0.1 0 2.52109 

120 1 0.3 0.2 0.2 0.1 2.52109 
120 5 0.1 0.3 0 0.2 2.52109 
120 5 0.1 0.3 0.1 0 2.52109 
120 5 0.1 0.3 0.2 0.1 2.52109 
120 10 0.2 0.1 0 0.2 2.52109 
120 10 0.2 0.1 0.1 0 2.52109 
120 10 0.2 0.1 0.2 0.1 2.52109 

 

 

Fig. A1 The average RPD plot for each level of the parameters. 

 

 

 



  

 

Fig. A2 The mean S/N ratio plot for each level of the parameters 

 

 

 

 

 

 

Table A2 Parameter values of tested methods 

Algorithm Parameter Tested values Selected value 

ACO1 Population size 40, 80, 120 120 

 

Initial pheromone trails 1, 5, 10 5 

 
Evaporation coefficient   0.1, 0.2, 0.3 0.1 

 
  0.1, 0.2, 0.3 0.1 

 
  0.0, 0.1, 0.2 0.2 

 
  0.0, 0.1, 0.2 0.2 

ACO2 Population size 40, 80, 120 120 

 
Initial pheromone trails 1, 5, 10 5 

 
Evaporation coefficient   0.1, 0.2, 0.3 0.1 

 

  0.1, 0.2, 0.3 0.1 

 
  0.0, 0.1, 0.2 0.2 

 
  0.0, 0.1, 0.2 0.2 

ACO3 Population size 40, 80, 120 120 

 
Initial pheromone trails 1, 5, 10 5 

 
Evaporation coefficient   0.1, 0.2, 0.3 0.1 

 
  0.1, 0.2, 0.3 0.1 

 

  0.0, 0.1, 0.2 0.2 

 
  0.0, 0.1, 0.2 0.2 

ACO4 Population size 40, 80, 120 80 

 
Initial pheromone trails 1, 5, 10 5 

 
Evaporation coefficient   0.1, 0.2, 0.3 0.1 

 
  0.1, 0.2, 0.3 0.1 

 
  0.0, 0.1, 0.2 0.2 

 
  0.0, 0.1, 0.2 0.2 

 

LN 10, 100, 500 10 or 100 

SACO Population size 40, 80, 120 80 

 
Initial pheromone trails 1, 5, 10 5 

 
Evaporation coefficient   0.1, 0.2, 0.3 0.1 

 
  0.1, 0.2, 0.3 0.1 



  

 
  0.0, 0.1, 0.2 0.2 

 
  0.0, 0.1, 0.2 0.2 

 
LN 10, 100, 500 10 or 100 

 
a 0.0, 0.005, 0.01 0.0 

 

b 0.0, 0.1, 0.2 0.0 

 
c 0.1, 0.2, 0.3 0.3 

*Note: LN is set to 100 for problems with 83, 111, 148 and 297 tasks and 10 for other problems. 

References 

Aase, G.R., Olson, J.R. & Schniederjans, M.J. (2004). U-shaped assembly line layouts and their impact on labor 

productivity: An experimental study. European Journal of Operational Research, 156(3), 698-711. 

Aase, G.R., Schniederjans, M.J. & Olson, J.R. (2003). U-OPT: An analysis of exact U-shaped line balancing 

procedures. International Journal of Production Research, 41(17), 4185-4210. 

Aghay Kaboli, S.H., Selvaraj, J. & Rahim, N.A. (2017). Rain-fall optimization algorithm: A population based 

algorithm for solving constrained optimization problems. Journal of Computational Science, 19, 31-42. 

Battaïa, O. & Dolgui, A. (2013). A taxonomy of line balancing problems and their solution approaches. 

International Journal of Production Economics, 142(2), 259-277. 

Baykasoğlu, A. & Derel , T. (   9).    ple and U-type Assembly Line Balancing by Using an Ant Colony Based 

Algorithm. Mathematical and Computational Applications, 14(1), 1. 

Boysen, N. & Fliedner, M. (2008). A versatile algorithm for assembly line balancing. European Journal of 

Operational Research, 184(1), 39-56. 

Celik, E., Kara, Y. & Atasagun, Y. (2014). A new approach for rebalancing of U-lines with stochastic task times 

using ant colony optimisation algorithm. International Journal of Production Research, 1-14. 

Chiang, W.-C., Kouvelis, P. & Urban, T.L. (2007). Line balancing in a just-in-time production environment: 

balancing multiple U-lines. IIE Transactions, 39(4), 347-359. 

Chiang, W.-C. & Urban, T.L. (2006). The stochastic U-line balancing problem: A heuristic procedure. European 

Journal of Operational Research, 175(3), 1767-1781. 

De, A., Kumar, S.K., Gunasekaran, A. & Tiwari, M.K. (2017). Sustainable maritime inventory routing problem 

with time window constraints. Engineering Applications of Artificial Intelligence, 61, 77-95. 

De, A., Mamanduru, V.K.R., Gunasekaran, A., Subramanian, N. & Tiwari, M.K. (2016). Composite particle 

algorithm for sustainable integrated dynamic ship routing and scheduling optimization. Computers & 

Industrial Engineering, 96, 201-215. 

Dong, J., Zhang, L., Xiao, T. & Mao, H. (2014). Balancing and sequencing of stochastic mixed-model assembly 

U-lines to minimise the expectation of work overload time. International Journal of Production Research, 1-20. 

Dorigo, M. & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical Computer Science, 344(2-3), 

243-278. 

Erel, E., Sabuncuoglu, I. & Aksu, B.A. (2001). Balancing of U-type assembly systems using simulated annealing. 

International Journal of Production Research, 39(13), 3003-3015. 

Fattahi, A. & Turkay, M. (2015). On the MILP model for the U-shaped assembly line balancing problems. 

European Journal of Operational Research, 242(1), 343-346. 

Gökçen, H. & Ağpak, K. (   6). A goal progra   ng approach to s  ple U-line balancing problem. European 

Journal of Operational Research, 171(2), 577-585. 

Gökçen, H., Ağpak, K., Gencer,  . & K   lkaya, E. (   5). A shortest route for ulat on of s  ple U-type assembly 

line balancing problem. Applied Mathematical Modelling, 29(4), 373-380. 

Hamzadayi, A. & Yildiz, G. (2012). A genetic algorithm based approach for simultaneously balancing and 

sequencing of mixed-model U-lines with parallel workstations and zoning constraints. Computers & Industrial 



  

Engineering, 62(1), 206-215. 

Hamzadayi, A. & Yildiz, G. (2013). A simulated annealing algorithm based approach for balancing and sequencing 

of mixed-model U-lines. Computers & Industrial Engineering, 66(4), 1070-1084. 

Hwang, R.K., Katayama, H. & Gen, M. (2008). U-shaped assembly line balancing problem with genetic algorithm. 

International Journal of Production Research, 46(16), 4637-4649. 

Jayaswal, S. & Agarwal, P. (2014). Balancing U-shaped assembly lines with resource dependent task times: A 

Simulated Annealing approach. Journal of Manufacturing Systems. 

Kaboli, S.H.A., Selvaraj, J. & Rahim, N.A. (2016). Long-term electric energy consumption forecasting via 

artificial cooperative search algorithm. Energy, 115, Part 1, 857-871. 

Kara, Y., Ozcan, U. & Peker, A. (2007). Balancing and sequencing mixed-model just-in-time U-lines with multiple 

objectives. Applied Mathematics and Computation, 184(2), 566-588. 

Kara, Y., Ö güven,  ., Yalçın, N. & Atasagun, Y. (    ). Balanc ng stra ght and U-shaped assembly lines with 

resource dependent task times. International Journal of Production Research, 49(21), 6387-6405. 

Kara, Y., Paksoy, T. & Chang, C.-T. (2009). Binary fuzzy goal programming approach to single model straight and 

U-shaped assembly line balancing. European Journal of Operational Research, 195(2), 335-347. 

Kazemi, S.M., Ghodsi, R., Rabbani, M. & Tavakkoli-Moghaddam, R. (2011). A novel two-stage genetic algorithm 

for a mixed-model U-line balancing problem with duplicated tasks. The International Journal of Advanced 

Manufacturing Technology, 55(9-12), 1111-1122. 

Kim, Y.K., Kim, J.Y. & Kim, Y. (2006). An endosymbiotic evolutionary algorithm for the integration of balancing 

and sequencing in mixed-model U-lines. European Journal of Operational Research, 168(3), 838-852. 

Kucukkoc, I. & Zhang, D.Z. (2015). Balancing of parallel U-shaped assembly lines. Computers and Operations 

Research, 64, 233–244, doi: http://dx.doi.org/210.1016/j.cor.2015.1005.1014. 

Kucukkoc, I. & Zhang, D.Z. (2016). Integrating ant colony and genetic algorithms in the balancing and scheduling 

of complex assembly lines. The International Journal of Advanced Manufacturing Technology, 82(1), 265–285. 

Kucukkoc, I. & Zhang, D.Z. (2017). Balancing of mixed-model parallel U-shaped assembly lines considering 

model sequences. International Journal of Production Research, 1-18. 

Li, Z., Tang, Q. & Zhang, L. (2017). Two-sided assembly line balancing problem of type I: Improvements, a 

simple algorithm and a comprehensive study. Computers & Operations Research, 79, 78-93. 

Maiyar, L.M. & Thakkar, J.J. (2017). A combined tactical and operational deterministic food grain transportation 

model: Particle swarm based optimization approach. Computers & Industrial Engineering, 110, 30-42. 

Manavizadeh, N., Hosseini, N.-s., Rabbani, M. & Jolai, F. (2013). A Simulated Annealing algorithm for a mixed 

model assembly U-line balancing type-I problem considering human efficiency and Just-In-Time approach. 

Computers & Industrial Engineering, 64(2), 669-685. 

Miltenburg, G.J. & Wijngaard, J. (1994). The U-Line Line Balancing Problem. Management Science, 40(10), 

1378-1388. 

Modiri-Delshad, M., Aghay Kaboli, S.H., Taslimi-Renani, E. & Rahim, N.A. (2016). Backtracking search 

algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options. Energy, 

116, Part 1, 637-649. 

Mogale, D.G., Kumar, S.K., Márquez, F.P.G. & Tiwari, M.K. (2017). Bulk wheat transportation and storage 

problem of public distribution system. Computers & Industrial Engineering, 104, 80-97. 

Mozdgir, A., Mahdavi, I., Badeleh, I.S. & Solimanpur, M. (2013). Using the Taguchi method to optimize the 

differential evolution algorithm parameters for minimizing the workload smoothness index in simple assembly 

line balancing. Mathematical and Computer Modelling, 57(1–2), 137-151. 

Otto, A., Otto, C. & Scholl, A. (2013). Systematic data generation and test design for solution algorithms on the 

http://dx.doi.org/210.1016/j.cor.2015.1005.1014


  

example of SALBPGen for assembly line balancing. European Journal of Operational Research, 228(1), 33-45. 

Özcan, U., Kellegöz, T. & Toklu, B. (2011). A genetic algorithm for the stochastic mixed-model U-line balancing 

and sequencing problem. International Journal of Production Research, 49(6), 1605-1626. 

Pan, Q.-K., Gao, L., Li, X.-Y. & Gao, K.-Z. (2017). Effective metaheuristics for scheduling a hybrid flowshop with 

sequence-dependent setup times. Applied Mathematics and Computation, 303, 89-112. 

Rabbani, M., Moghaddam, M. & Manavizadeh, N. (2012). Balancing of mixed-model two-sided assembly lines 

with multiple U-shaped layout. International Journal of Advanced Manufacturing Technology, 59(9-12), 

1191-1210. 

Sabuncuoglu, I., Erel, E. & Alp, A. (2009). Ant colony optimization for the single model U-type assembly line 

balancing problem. International Journal of Production Economics, 120(2), 287-300. 

Salveson, M.E. (1955). The assembly line balancing problem. Journal of Industrial Engineering, 6(3), 18-25. 

 a à,  ., D’Ar ano, A.,  or an,  . &  acc arell , D. (   7).  etaheur st cs for eff c ent a rcraft schedul ng and 

re-routing at busy terminal control areas. Transportation Research Part C: Emerging Technologies, 80, 

485-511. 

Scholl, A. & Klein, R. (1999). ULINO: Optimally balancing U-shaped JIT assembly lines. International Journal of 

Production Research, 37(4), 721-736. 

Tang, Q., Li, Z. & Zhang, L. (2016). An effective discrete artificial bee colony algorithm with idle time reduction 

techniques for two-sided assembly line balancing problem of type-II. Computers & Industrial Engineering, 97, 

146-156. 

Toksarı,  .D., İşleyen,  .K., Güner, E. & Baykoç, Ö. . (2008). Simple and U-type assembly line balancing 

problems with a learning effect. Applied Mathematical Modelling, 32(12), 2954-2961. 

Urban, T.L. (1998). Note. Optimal Balancing of U-Shaped Assembly Lines. Management science, 44(5), 738-741. 

Urban, T.L. & Chiang, W.-C. (2006). An optimal piecewise-linear program for the U-line balancing problem with 

stochastic task times. European Journal of Operational Research, 168(3), 771-782. 

Yegul, M.F., Agpak, K. & Yavuz, M. (2010). A New Algorithm for U-Shaped Two-Sided Assembly Line Balancing. 

Transactions of the Canadian Society for Mechanical Engineering, 34(2), 225-241. 

Zheng, Q., Li, M., Li, Y. & Tang, Q. (2013). Station ant colony optimization for the type 2 assembly line balancing 

problem. The International Journal of Advanced Manufacturing Technology, 66(9), 1859-1870. 

 

 

  



  

 

 

Graphical Abstract 

 

Station 1

1

Station 2

Entrance side

Station 3 . . . Station m

2 3 . . . m

2m 2m-1 2m-2 . . . m+1
Exit side

 
  



  

 

 

Highlights 

1. New MILP model is introduced and its validity is analyzed.   

2. A new station-oriented ant colony optimization algorithm is developed.  

3. Four MILP models are tested and evaluated.  

4. The proposed station-oriented ACO method outperforms all the methods compared. 

5. New best and optimum solutions are achieved for well-known benchmarks.  

 

 

 


