
Accepted Manuscript

New MILP model and station-oriented ant colony optimization algorithm for
balancing U-type assembly lines

Zixiang Li, Ibrahim Kucukkoc, Qiuhua Tang

PII: S0360-8352(17)30295-4
DOI: http://dx.doi.org/10.1016/j.cie.2017.07.005
Reference: CAIE 4812

To appear in: Computers & Industrial Engineering

Received Date: 22 January 2017
Revised Date: 3 July 2017
Accepted Date: 5 July 2017

Please cite this article as: Li, Z., Kucukkoc, I., Tang, Q., New MILP model and station-oriented ant colony
optimization algorithm for balancing U-type assembly lines, Computers & Industrial Engineering (2017), doi: http://
dx.doi.org/10.1016/j.cie.2017.07.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.cie.2017.07.005
http://dx.doi.org/http://dx.doi.org/10.1016/j.cie.2017.07.005
http://dx.doi.org/http://dx.doi.org/10.1016/j.cie.2017.07.005

New MILP model and station-oriented ant colony optimization algorithm for balancing

U-type assembly lines

Zixiang Li a,b, Ibrahim Kucukkoc c*, Qiuhua Tang a,b

a Key Laboratory of Metallurgical Equipment and Control Technology, Wuhan University of Science and

Technology, Wuhan, Hubei, China.
b Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of

Science and Technology, Wuhan, Hubei, China.

Email: zixiangliwust@gmail.com (Z. Li); tangqiuhua@wust.edu.cn (Q. Tang)
c Industrial Engineering Department, Balikesir University, Cagis Campus, Balikesir 10145, Turkey.

Email: i.kucukkoc@exeter.ac.uk

*Corresponding author

Abstract: U-type assembly lines are extensively applied in modern manufacturing systems for higher

flexibility and productivity. This research presents a new mixed-integer linear programming model to

minimize the number of stations, where one expression is used to represent the precedence relationship

constraint rather than two expressions as in published researches. The proposed model is compared to

three other models and the correctness or the incorrectness of these models are analyzed by

enumerating all possible allocations between the two tasks. The comparison makes it clear that the

proposed model iterates fast and achieves competing results. Additionally, a modified ant colony

optimization approach, referred to as station-oriented ant colony optimization algorithm, is proposed to

tackle large-size problems. This method generates a set of task assignments and selects the best one for

the current station, rather than obtaining only one task assignment at a time. A set of benchmark

problems is solved using the proposed method and the results are compared to those obtained by the

state-of-the-art methods (including ULINO) and the variants of ant colony optimization approach. The

computational study demonstrates the superiority of the proposed method over the compared ones as it

achieves optimal solutions for 255 cases (out of 269) and outperforms the current best method, ULINO,

for 21 cases. It is also worthy to mention that the station-oriented procedure improves the performance

of original ant colony optimization by a significant margin.

Keywords: Assembly line balancing; U-type assembly line; Integer programming; Ant colony

optimization; Artificial intelligence

New MILP model and station-oriented ant colony optimization algorithm for balancing

U-type assembly lines

Abstract: U-type assembly lines are extensively applied in modern manufacturing systems for higher

flexibility and productivity. This research presents a new mixed-integer linear programming model to

minimize the number of stations, where one expression is used to represent the precedence relationship

constraint rather than two expressions as in published researches. The proposed model is compared to

three other models and the correctness or the incorrectness of these models are analyzed by

enumerating all possible allocations between the two tasks. The comparison makes it clear that the

proposed model iterates fast and achieves competing results. Additionally, a modified ant colony

optimization approach, referred to as station-oriented ant colony optimization algorithm, is proposed to

tackle large-size problems. This method generates a set of task assignments and selects the best one for

the current station, rather than obtaining only one task assignment at a time. A set of benchmark

problems is solved using the proposed method and the results are compared to those obtained by the

state-of-the-art methods (including ULINO) and the variants of ant colony optimization approach. The

computational study demonstrates the superiority of the proposed method over the compared ones as it

achieves optimal solutions for 255 cases (out of 269) and outperforms the current best method, ULINO,

for 21 cases. It is also worthy to mention that the station-oriented procedure improves the performance

of original ant colony optimization by a significant margin.

Keywords: Assembly line balancing; U-type assembly line; Integer programming; Ant colony

optimization; Artificial intelligence

1. Introduction

In conjunction with the industrial revolution emerged in the 18th century, mass production techniques

have gained enormous importance. Assembly lines, one of the most efficient of those mass production

techniques, have been put into practice by Henry Ford and his colleagues pioneering the advances in

producing homogeneous products in mass quantities. As the flexibility has become one of the crucial

factors which affect the survivability of companies in parallel to changes in consumer-centric market,

assembly lines faced changes in terms of configuration (I. Kucukkoc & Zhang, 2016).

An assembly line is a sequence of workstations (or stations) linked to each other via a conveyor or

moving belt on which products are transported from one workstation to another. Some tasks are

performed in each station by workers located in this station within the time allowed, called cycle time.

The problem of deciding on which task will be conducted in which station is called the assembly line

balancing problem and characterized based on various factors. Some of those are the configuration of

the line, the variety of products assembled on the line and the allocation of workers or stations across

the line. In its traditional version, a simple and straight assembly line, which consists of serially linked

stations to perform tasks with the aim of producing a complete product, was assumed by Salveson

(1955). However, about four decades later, Miltenburg and Wijngaard (1994) introduced the U-shaped

assembly lines which provide more efficiency as well as flexibility. As seen in Fig.1, the line

constitutes a U-shape in such a way that the entrance and the exit of the line are located close to each

other. Thus, workers operating located on one branch of the line may work on the other branch in the

same cycle, which helps increase the labor productivity.

Station 5Station 4 Station 6Station 3Station 2Station 1

1
Entrance side

2 3 4 5 6

781091211
Exit side

Fig.1 Layout of a U-type assembly line

1.1. Analysis of the literature

Miltenburg and Wijngaard (1994) addressed to the simplest form of the U-shaped assembly line design

and discussed its advantages over traditional straight lines. Many experimental and case-based research

followed this and verified the efficiency of U-shaped lines over straight lines in different aspects.

Battaïa and Dolgui (2013) presented a taxonomy of line balancing problems and Kucukkoc and Zhang

(2015) summarized the majority of the research on U-shaped assembly lines, particularly. Urban (1998)

and Urban and Chiang (2006) developed mathematical formulations (an integer programming

formulation and a chance-constrained piecewise-linear program, respectively) for optimally balancing

the single-model U-shaped lines with the aim of minimizing the number of stations. However, as the

considered problem is NP-hard, metaheuristics are of good choice due to easy implementation and fast

speed (see, for example, Modiri-Delshad et al. (2016), Kaboli et al. (2016), De et al. (2016), Pan et al.

(2017), Samà et al. (2017), Aghay Kaboli et al. (2017), Mogale et al. (2017), De et al. (2017), Maiyar

and Thakkar (2017) for some recent applications of metaheuristics on various NP-hard optimization

problems. Therefore, the balancing effort for solving the U-shaped assembly line balancing problem

(UALBP) majorly focused on developing heuristic and metaheuristic algorithms for its variants. The

attention paid to the mathematical model was not as high as anticipated. Erel et al. (2001), Hamzadayi

and Yildiz (2013) and Manavizadeh et al. (2013) developed simulated annealing approaches while

Hwang et al. (2008) and Hamzadayi and Yildiz (2012) proposed genetic algorithm approaches for

solving the UALBP with the aim of minimizing the number of stations. Other heuristics/metaheuristics

developed on the same problem are as follows; a shortest route formulation by Gökçen et al. (2005), a

hybrid heuristic algorithm by Chiang and Urban (2006), a heuristic approach by Toksari et al. (2008),

an ant colony optimization (ACO) approach by Sabuncuoglu et al. (2009), and a multi-pass random

assignment algorithm by Yegul et al. (2010). Chiang and Urban (2006) assumed stochastic task times

and proposed a hybrid heuristic as a balancing solution procedure. Cycle time minimization was also

considered by Scholl and Klein (1999), Gökçen and Ağpak (2006), Chiang et al. (2007), Kara et al.

(2009) and Rabbani et al. (2012) as an additional objective to the minimization of the number of

stations. Scholl and Klein (1999) developed a branch and bound procedure called ULINO and Gökçen

and Ağpak (2006) developed a goal programming formulation for single model UALBP. While a

binary fuzzy goal programming approach and more than one optimal solution strategy were proposed

by Kara et al. (2009) and Chiang et al. (2007), respectively, for traditional U-lines; a genetic algorithm

based approach was proposed by Rabbani et al. (2012) for balancing two-sided lines with multiple

U-shaped layout. Kucukkoc and Zhang (2015; 2017) introduced parallel U-shaped lines and proposed

constructive heuristic algorithms for balancing the lines considering single and mixed-model

production.

Kazemi et al. (2011) proposed a two-stage genetic algorithm for mixed-model U-line balancing

problem considering duplicated tasks. Aase et al. (2004) conducted an experimental study on U-shaped

line design and showed its effect on labor productivity. Kim et al. (2006) and Özcan et al. (2011)

proposed an endosymbiotic evolutionary algorithm and a genetic algorithm, respectively, for solving

both line balancing and model sequencing problems simultaneously as well as considering the absolute

deviation of workloads in a mixed-model production environment. In addition, simulated annealing

algorithms were proposed by Kara et al. (2007) and Dong et al. (2014) for solving the same problem.

Although some attention was paid to the mathematical model, the models obtained eventually were far

from achieving the state-of-the-art results. Aase et al. (2003) analyzed exact U-shaped line balancing

procedures. Fattahi and Turkay (2015) investigated the use of either-or precedence relationship

constraints in mathematical formulations given in previous studies and illustrated that using such

constraints may cause infeasibility. They revised the MILP model for UALBP and tested its efficiency

on benchmark problems. To the best of the authors’ knowledge, ULINO published in 1999 remains the

best performer though several improvements have been gained in the technology and so the computing

facilities have developed since then. On the other hand, there are several mathematical formulations

including some wrong ones, but there is no research where all the models are evaluated.

Some other objectives were also sought by researchers. Kara et al. (2011) proposed an integer

programming formulation for minimizing total operating costs by considering resource-dependent task

times. Celik et al. (2014) developed an ant colony optimization approach with the aim of minimizing

total rebalancing cost considering stochastic times. Another cost minimization based research was

conducted by Jayaswal and Agarwal (2014). Station and resource utilization costs were aimed to be

minimized when considering resource-dependent task times.

1.2. Contributions of the work

This paper presents several contributions as follows. First, a new MILP model is developed to deal

with the precedence relationship constraint, followed by a comprehensive analysis of the proposed

model and other models provided by Urban (1998), Urban and Chiang (2006), Kazemi et al. (2011),

Aase et al. (2004; 2003) and Fattahi and Turkay (2015). The comparative study shows that the

proposed model iterates fast and produces competing results when executed via the Cplex solver of

GAMS. Second, a station-oriented ant colony optimization approach (called SACO hereafter) is

developed for solving large-sized UALBPs for the first time. This new algorithm differs from the

original ACO in that the SACO utilizes a new pheromone trail to select the first task and proposes a

station-oriented decoding mechanism. This mechanism selects the best set of tasks for the current

station from a set of possible assignments. Third, a comprehensive computational study is conducted

between the proposed SACO and state-of-the-art methods, including ULINO and ACO variants. A total

of 269 test problems (summarized by Scholl and Klein (1999)) are solved for this aim. The results

show that SACO is the best performer among those tested as it achieves all the current best results and

optimal solutions of 255 cases. Furthermore, for 21 cases, SACO outperforms ULINO, which is the

current best performer for UALBP.

The remainder of this paper is organized as follows. Section 2 presents the newly developed

mathematical model and analyses its differences from the existing models. Section 3 describes the

running mechanism of the proposed SACO algorithm in details and Section 4 reports the results of the

comprehensive computational study conducted. Finally, Section 5 concludes the paper by summarizing

the main findings and the real-world application opportunities, followed by the directions for future

research.

2. Mathematical model

This section introduces the applied models in literature and the proposed model, and carries out

correctness analysis by enumerating all the possible allocations between two tasks.

2.1 Developed models

UALBP differs from SALBP in the precedence constraint. A task in SALBP is assignable when all its

predecessors have been allocated whereas a task in UALBP is assignable when all its predecessors or

successors have been allocated. To be precise, a task on the entrance side is assigned after assignment

of all its predecessors and a task on the exit side is assigned after assignment of all its successors.

To formulate the precedence relations, the first applied method employs 0-1 variables to describe

either–or scenario (Aase et al. (2004; 2003) and Kazemi et al. (2011)), referred to as Model 1. Model 1,

taken from the literature with no change, is as follows:

 n e

 (1)

Subject to

 for , , (2)

 T for , , (3)

 -

 (4)

 -

 - (5)

 for , , (6)

 , for all , (7)

where i, p and q are the indices of tasks, and n is the total number of tasks. Parameter j is the index for

stations, and m is the upper bound on the number of stations. zj is a binary variable to check whether

station j is utilized (1, if station j is utilized; 0, otherwise). aij is a binary variable to describe the task

assignment. If task i is allocated to station j, aij=1; otherwise, aij =0. Parameter ti denotes the operation

time of task i, CT implies the cycle time and is a very large positive number. Variable ui is also a

binary variable to express either–or constraint, and is the set of paired tasks, where task p

is the immediate predecessor of task q. Equations (1-3) are identical to those for SALBP formulation,

and thus this section mainly explains the precedence constraint in Equations (4-5). Equation (4)

indicates that task q is assignable when all its predecessors have been allocated, whereas Equation (5)

implies that task p is assignable if all its successors have been allocated. The basic logic is that ui is

equal to 0 if task i is allocated to the entrance side, and it is equal to 1 if task i is allocated to the exit

side.

Nevertheless, Model 1 might find infeasible solutions (Fattahi & Turkay, 2015) and the main reason

lying behind is that Model 1 ignores the situations when two tasks are allocated to entrance side and

exit side, respectively. Hence, Fattahi and Turkay (2015) introduced a revised edition, named Model 2

hereafter, where Equations (8-9) are utilized to replace Equations (4-5). The basic logic is that ui is

equal to 1 if task i is allocated to the entrance side, and it is equal to 0 if task i is allocated to the exit

side.

 -

 - (8)

 -

 (9)

Another mathematical model for UALBP is developed by Urban (1998) and Urban and Chiang (2006),

referred to as Model 3. Model 3 is formulated as follows with small adjustments, where xij and yij are

the binary variables to describe the task assignment. If task i is allocated to the entrance side of station j,

xij=1; otherwise, xij=0. If task i is allocated to the exit side of station j, yij=1; otherwise, yij=0.

 n e

 (10)

Subject to

 for , , (11)

 ≤ T for , , (12)

 - -

 ≥ ∈ (13)

 -

-

 ≥ ∈
(14)

 ≤ψ for

(15)

 ∈ for all (16)

This research proposes a new model based on Model 3, named Model 4 hereafter. The proposed model

shares the same Equations (10, 11, 12 and 15), but it proposes a different method for tackling the

precedence constraints and uses Equation (17) to replace Equations (13-14).

 -

 - -

 (17)

The logic lying behind this new model is illustrated in Fig.2, where each station is divided into two

sub-stations. The sub-stat ons on the entrance s de s encoded w th , , , m and the sub-stations on

the exit side is encoded with 2m, 2m- , , m+1. The Equation (17) guarantees that a task can be

allocated to the current sub-station when all its predecessors have been allocated to the same or former

sub-stations. It is obvious that the precedence constraint can be satisfied, and this new model somewhat

transfers the UALBP into SALBP with a new cycle time constraint.

Station 1

1

Station 2

Entrance side

Station 3 . . . Station m

2 3 . . . m

2m 2m-1 2m-2 . . . m+1
Exit side

Fig.2 New encode of the stations

Notice that Model 4 refers to the new MILP model in this paper and it is comprised of Equations

(10-12), Equation (17) and Equations (15-16). The four models will be further analyzed in Section 2.2.

2.2 Model analysis

All the models address the cycle time constraint properly, whereas Model 1 might achieve solutions

conflicted with precedence constraint. This section proves the correctness of the Model 2, Model 3 and

the proposed Model 4, and provides the situation where Model 1 will achieve infeasible solutions by

enumerating all the possible allocations between two tasks. Suppose that task p is the predecessor of

task q, the possible allocations of the two tasks are listed as follows (including those conflicting with

the precedence constraint):

1) Task p and task q are allocated to the same station, referred to as Case 1.

2) Task p and task q are both allocated to the entrance side, and there are two situations: task p is

allocated before task q, referred to as Case 2A, and task q is allocated before task p, referred to

as Case 2B.

3) Task p and task q are both allocated to the exit side, and there are two situations: task p is

allocated before task q, referred to as Case 3A; and task q is allocated before task p, referred to

as Case 3B.

4) Task p and task q are allocated to the entrance and exit sides. There are two situations: task p

is allocated to the entrance side and task q is allocated to the exit side, referred to as Case 4A,

and task q is allocated to the entrance side and task p is allocated to the exit side, referred to as

Case 4B.

Among these occasions, Case 1, Case 2A, Case 3B and Case 4A satisfy the precedence constraint,

whereas Case 2B, Case 3A and Case 4B violate the precedence constraint. The correct model must

accept the occasions where precedence constraint is satisfied, and deny the occasions where precedence

constraint is violated. All the four models accept Case 1, Case 2A, Case 3B and Case 4A, and deny the

Case 2B and Case 3A. Nevertheless, constraints (4-5) in Model 1 are reduced to Equations (18-19)

when Case 4B occurs and it is obvious that Model 1 cannot deny Case 4B.

 -

 (18)

 -

 (19)

The other three models, on the contrary, are able to deny Case 4B. For simplicity, this section mainly

focuses on Model 4. Equation (17) is reduced to Equation (20), and finally, Equation (21). Obviously,

Equation (21) cannot happen and thus the Case 4B is denied by the proposed Model 4.

 -

 - -

 (20)

 -

 -

 (21)

In brief, Model 2, Model 3 and the proposed Model 4 are capable of satisfying the precedence

constraint, whereas Model 1 might generate infeasible solutions since it cannot deny Case 4B. More

performance analysis is provided in Section 5 to compare the speed of these models. Recall that Model

1 is not reflecting some operational constraints in the other models, hence it might produce infeasible

solutions. However, the resulting solution can be used as a good lower bound for the actual problem as

a relaxation. It is also noticed that both Model 2 and Model 3 have four variables and five constraints.

The proposed model, on the contrary, has four variables and four constraints. That is one fewer than

both Model 2 and Model 3 as they utilize two expressions to describe the precedence relationship

constraint.

3. Proposed methodology

ACO is a powerful technique that has widely been used for solving complex engineering design

problems. It mimics the behavior of ants in searching for the shortest paths from their nest to food

sources (Sabuncuoglu et al., 2009). This optimization methodology has been applied to various kinds

of assembly line balancing problems recently, see for example Boysen and Fliedner (2008),

Sabuncuoglu et al. (2009), Baykasoğlu and Derel (9), and Zheng et al. (2013). Dorigo and Blum

(2005) presented a survey on the ACO algorithms, and specifically, it was shown in Sabuncuoglu et al.

(2009) that ACO outperforms simulated annealing algorithm and achieves competing results to ULINO.

Hence, this algorithm is selected in this paper.

Different from some other metaheuristic methods, ACO constructively builds feasible solutions by

selecting a set of tasks based on pheromone trails and roulette wheel selection to be allocated to the

workstations. However, the first task is selected at random rather than utilizing pheromone trails. In

addition, the generated task assignment for the current workstation might contain unsatisfying

workload and so the idle time of this workstation might be quite large. As known, if less workload is

allocated to the former workstations, more workstations to be needed to perform remaining workload,

which will eventually lead to a larger number of workstations. Hence, this research presents a variant

of the traditional ACO, where two possible improvements are introduced. First, new pheromone trails

() are applied to determine the selection probability of the first task. Second, a new station-oriented

decoding procedure is developed where the best one among a set of groups of tasks is selected and

assigned to the current station. This station-oriented procedure attempts to eliminate the poor task

assignment (having less workload) and increase the possibility of achieving solutions with fewer

number of workstations. This procedure and the main segments of the proposed ACO are introduced in

the following subsections.

3.1 Modified ACO procedure

The flowchart of the proposed ACO procedure is illustrated in Fig.3. It starts with initializing two sets

of pheromone trails, and subsequently, individuals are obtained using the station-oriented procedure,

given in Section 3.2. The pheromone trails are updated based on the obtained individuals. In contrary to

the traditional ACO, this research employs two kinds of pheromone trails: pheromone trails between

tasks, (Sabuncuoglu et al., 2009), and new pheromone trails between a fictitious start point and a

task, . The new pheromone trails take effect when selecting the first task and it avoids the possible

drawback in the original ACO where the first task is randomly selected.

Algorithm SACO for UALBP

%s refers to index of an individual and Popsize is the population size

Begin

Initialize pheromone trails, and

Repeat

For s Po s e

Obtain individuals using station-oriented procedure

Achieve the fitness of individual p

End for

Update the pheromone trails, and

Until (termination criterion is met)

Output the best individual

End

Fig.3 Flowchart of the modified ACO

The and are updated with Equations (22-25), where Fits is the fitness of the individual s,

Popsize is the population size and is the evaporation rate.

 -
sPo s e

s (22)

s

 s , f task s the f rst operated task n the solut on bu lt by ant s

 , otherw se

(23)

 -
sPo s e

s (24)

s

 s , f task s operated ed ately after task n the solut on bu lt by ant s

 , otherw se

(25)

The station-oriented procedure is expressed in following sub-section to detail the application of these

pheromone trails.

3.2 Station-oriented solution representation

This section illustrates the solution representation in Fig.4, where a set of task assignments are

generated for the current station. For achieving each task assignment, the assignable task set is obtained

at first. A task is assignable if the finishing time of this task is equal to or the same to the cycle time and

all its predecessors or successors have been allocated. Subsequently, this solution generation process

introduces two rules to select the assignable tasks. The first task assignment rule gives priorities to the

tasks whose finishing time is larger than or equal to the average cycle time (AT) calculated with

AT

 , where LB is the lower bound calculated with LB

 . The expression

here denotes the least integer greater than or equal to X. The second task assignment rule gives

priorities to the tasks whose finishing time is equal to the cycle time. The two task assignment rules

achieve the same goal of assigning as much workload as possible to the current station.

Algorithm Station-oriented procedure

%l refers to index of a task assignment to current station

%LN is the number of generated task assignments

Repeat

Open a new station

For l N

Repeat

Achieve the assignable task set

If (An ass gnable task’s f n sh ng t e s larger than AT)

Delete the tasks whose finishing times are smaller than AT

If (An ass gnable task’s f n sh ng t e s equal to T)

Delete the tasks whose finishing times are smaller than CT

Obtain the selection probabilities of the remained assignable tasks

Select a task using the roulette wheel selection scheme

Update remained capacity of the current station

Until (no assignable task exists)

End for

Select the best task assignment among LN task assignments

Until (all tasks have been allocated)

Fig.4 Station-oriented solution representation

The selection of a task among the assignable tasks is another important issue. If no task has been

allocated and all the predecessors of the assignable task q have been allocated, the selection probability

of task q is set to

 , where , and are three input parameters, and wq is ranked

positional weight of task q (which is the sum of the operation times of task q and all its successors). If

at least one task has been allocated, the selected probability of task q is set to

 , where p is

the last allocated task. Since a task is also assignable if all its successors have been allocated, owq is

utilized when all the successors of the assignable task q have been allocated. owq is the ranked

positional weight of task q in the reverse direction, and it is equal to the sum of the operation times of

task q and all its predecessors. On the basis of the selection probabilities of the remained assignable

tasks, a task is selected using the roulette wheel selection scheme. Subsequently, the selected task is

allocated to the current station, and this procedure is repeated until no assignable task exists.

After achieving a set of LN task assignments, the next job is selecting the best one as the current task

assignment. This research selects the task assignment with a large value of

 - ∈
 o o - ∈ , where FS (RS) is the set of tasks

allocated to the current station in the forward (reverse) direction or their predecessors (successors) have

been allocated before allocating them. Fi (oFi) refers to the number of immediate predecessors

(successors) of task i. Parameter a, b and c are three input parameters, and the largest workload is

selected when the values of three parameters are all set to 0.0. The rationale of this formula and the

effect of each part are clarified as follows. The term ti preserves the larger workload, the term

 selects the tasks whose successors have a large total operation time, the term favors the

tasks which will make more tasks assignable, and the term - selects the tasks with larger operation

times. The values of a, b and c are set to be much smaller than 1.0 in this paper so that the latter parts

take effect only when the allocated workloads are equal.

In brief, this station-oriented procedure generates a set of possible task assignments (or groups of

tasks), and then selects the best one as the current task assignment. The basic logic is similar to the

maximum workload rule in Scholl and Klein (1999) and the graded objectives in Li et al. (2017), where

both allocate more workloads to the former stations.

3.3 Illustrated example

This section illustrates the station-oriented solution representation by solving a large-sized test problem,

namely Tonge-70, where detailed operation times and precedence relationships are exhibited in Table 1.

Table 1 Operation times and precedence relationships of tested problem

Tasks Operation time Successors Tasks Operation time Successors

1 17 2, 41, 69, 70 36 40 37
2 66 3 37 2 38
3 54 4, 68 38 1 39
4 52 6, 7 39 3 40
5 6 6, 24, 30 40 13 42
6 88 8 41 16 42
7 21 8 42 25 43

8 128 12 43 21 50
9 68 10 44 43 45
10 70 11 45 30 46
11 85 12 46 83 47
12 21 13, 14 47 89 50
13 134 23 48 56 49
14 135 23 49 59 50
15 94 16 50 43 -

16 90 17, 18 51 11 52
17 50 19 52 26 54
18 143 19 53 44 54
19 19 20, 22, 57 54 121 55
20 54 21 55 38 -
21 50 23 56 68 -
22 40 23 57 22 58
23 73 25, 31, 33 58 7 59

24 12 25 59 16 60
25 152 26, 27, 28, 29 60 32 -
26 42 35 61 25 65
27 45 35 62 27 63
28 74 35 63 156 64
29 26 35 64 28 65, 66, 67
30 11 31 65 15 -
31 31 32 66 26 -

32 50 35 67 18 -
33 102 34 68 72 -
34 46 35 69 23 -
35 35 36, 44, 48, 51, 53, 56, 60, 61, 62 70 27 -

The illustrated case has 70 tasks and the cycle time is fixed to 527 units. Supposed that the number of

task assignment or LN is set to 10, detailed station-oriented representation is illustrated in Table 2. In

this table, workload means the allocated workload or the total operation time of allocated tasks. Value

means the value of - ∈
 o o - ∈ , where a, b and c are

set to 0.0, 0.0 and 0.3 respectively.

 Table 2 Illustrated station-oriented representation

Station
Task
assignment

Task assignment Workload Values

1 1 65,56,60,50,9,67,70,47,10,46,5 519 518.67

2 15,67,9,5,60,10,66,70,16,11,30 527 526.67

3 9,65,68,66,70,56,15,1,16,17 527 526.7

 Selected 9,65,68,66,70,56,15,1,16,17 527 526.7

2 1 61,5,55,54,10,30,18,67,11 517 516.73

2 50,61,47,18,2,49,46,19 527 526.76

3 5,60,61,2,3,4,50,69,10,18,30 525 524.67

 Selected 50,61,47,18,2,49,46,19 527 526.76

3 1 60,3,22,48,20,21,45,55,57,44,43,10,59 526 525.61

2

43,67,42,48,60,5,55,59,54,52,45,64,40,24,10,58,39,

38,37
525 524.43

3 57,48,10,67,43,60,69,3,4,20,22,11 527 526.64

 Selected 57,48,10,67,43,60,69,3,4,20,22,11 527 526.64

4 1 42,59,5,55,6,54,45,41,64,63 524 523.7

2 45,64,5,58,63,41,62,21,55,6,44,42,40 527 526.61

3 5,45,58,6,7,64,42,21,44,30,55,63,24 515 514.61

 Selected 45,64,5,58,63,41,62,21,55,6,44,42,40 527 526.61

5 1 30,7,8,39,24,59,54,12,14,53,38,37 515 514.64

2 7,39,8,54,59,24,52,53,12,14 527 526.7

3 54,7,53,59,52,8,30,51,12,24,39,38,37,36,35,29 518 517.52

 Selected 7,39,8,54,59,24,52,53,12,14 527 526.7

6 1 51,13,23,38,30,25,26,33 526 525.76

2 30,13,38,51,23,31,33,25,37 517 516.73

3 51,30,13,23,31,38,25,33,37 517 516.73

 Selected 51,13,23,38,30,25,26,33 526 525.76

7 1 34,31,32,28,29,37,36,35,27 349 348.73

2 29,37,34,31,36,28,27,32,35 349 348.73

3 29,31,32,37,28,27,36,34,35 349 348.73

 Selected 34,31,32,28,29,37,36,35,27 349 348.73

In the station-oriented representation, a total of 10 task assignments are achieved at first for station 1,

and then the corresponding values are calculated. The task assignment with the largest value is selected

as the current task assignment, namely task 9, 65, 68, 66, 70, 56, 15, 1, 16 and 17. After determining

the task assignment for station 1, the same procedure is executed for station 2. Again the task

assignment with the largest value is selected as the current task assignment, namely task 50, 61, 47, 18,

2, 49, 46, and 19. This procedure is repeated for the remaining workstations and terminated when all

the tasks have been allocated. It is also observed that this station-oriented representation allocates 527,

527, 527, 527, 527, 526 and 349 units workload to stations 1, 2, 3, 4, 5, 6 and 7, respectively. It is clear

that more workload is allocated to former stations, and the less remained workload is endured by latter

stations.

4. Computational study

This section first compares the summarized existing models with the newly developed model (given in

Section 2.1), and later presents a comparative study on the proposed algorithm using well-known

benchmarks.

4.1 Model comparison

Since Model 1 is incorrect and the comparison between Model 1 and Model 2 has been presented in

Fattahi and Turkay (2015), this section mainly focuses on Model 2, Model 3 and the proposed model,

namely Model 4. Table 3 presents the results of three models. All the models are coded into the Cplex

solver of GAMS and terminated when an optimal solution is achieved or elapsed CPU time reaches

1000 seconds. Notice that this table only presents the results for problems containing 45, 53 and 58

tasks since all the models can solve the smaller-size problems very quickly and cannot achieve the

optimal solution or prove the optimally of the achieved solution within the acceptable time when

solving the large-size problems. Detailed precedence diagrams of the tested problems are available at

http://assembly-line-balancing.mansci.de/wp-content/uploads/2017/01/Scholl-1993-ALBData.pdf. The

initial station numbers are set to 12 for Kilbridge and Hahn and 40 for Warnecke. In this table, Nt is the

number of tasks, is the number of arcs in the precedence diagram and d is the network density

calculated with (Fattahi & Turkay, 2015). CT refers to the cycle time and iteration means

the iteration time before the search process terminates.

Table 3 Computational results by three models

Problem Nt d CT Model
Single

equations

Single

variables
Result Iteration

Time

(s)

Kilbridge 45 62 1.38 56 Model 2 192 598 10 72920 3.69

Model 3 192 1093 10 9897 0.76

Model 4 131 1093 10 4286 0.71

57 Model 2 192 598 10 2497 0.6

Model 3 192 1093 10 13668 0.93

Model 4 131 1093 10 2299 0.59

62 Model 2 192 598 9 24599 1.23

Model 3 192 1093 9 20250 1.14

Model 4 131 1093 9 6833 0.71

Hahn 53 82 1.55 2004 Model 2 242 702 No solution 1000

Model 3 242 1285 8 13328488 1000

Model 4 160 1285 8 18409505 1000

2338 Model 2 242 702 7 16645500 1000

Model 3 242 1285 7 14030156 1000

Model 4 160 1285 7 19291955 1000

2806 Model 2 242 702 6 17070195 1000

Model 3 242 1285 6 12190233 1000

Model 4 160 1285 6 19409416 1000

3507 Model 2 242 702 5 17531451 1000

Model 3 242 1285 5 11994373 1000

Model 4 160 1285 5 17603194 1000

4676 Model 2 242 702 3 2297999 143.13

Model 3 242 1285 3 2615731 224.67

Model 4 160 1285 3 11398621 611.43

Warnecke 58 70 1.21 54 Model 2 279 2419 32 8945461 1000

Model 3 279 4681 31 7307103 1000

Model 4 209 4681 31 8462699 1000

56 Model 2 279 2419 No solution 1000

Model 3 279 4681 29 117583 1000

Model 4 209 4681 30 9946370 1000

58 Model 2 279 2419 29 11247631 1000

Model 3 279 4681 29 7603313 1000

 Model 4 209 4681 28 1441324 155.32

*Best results or the smallest CPU time in bold.

From Table 3, it is observed that the numbers of single equations are 192, 192 and 131 for Model 2,

Model 3 and Model 4, respectively, regarding Kilbridge-45 with the cycle time of 56 units. The

corresponding numbers of single variables are 598, 1093 and 1093, respectively. Clearly, Model 2 and

Model 3 have the same number of single equations for this case, whereas Model 4 has a smaller

number of single equations. In addition, Model 3 and Model 4 share the same number of single

variables, whereas Model 2 has fewer single variables. This situation suits all the other cases solved.

Another finding is that these three models obtain the same station numbers for most of the tested cases.

Nevertheless, Model 2 cannot achieve the feasible solutions for two cases within 1000 seconds.

Regarding the utilized CPU time, all the models can solve the problem with 45 tasks within 10 seconds,

whereas they cannot achieve the optimal solution or prove the optimality of the achieved solution

within 1000 seconds for most cases. As for the iteration speed, it is observed that Model 4 iterates for

the largest times within 1000 seconds for most cases, and Model 3 iterates for the smallest time.

Consequently, the proposed Model 4 has fewer equations than Model 2 and Model 3, and has the same

variables as Model 3. Model 4 iterates faster than Model 3 for all the cases and faster than Model 2 for

most cases. Although Model 4 iterates fast, it achieves similar results with Model 2 and Model 3 and

the superiority of Model 4 is not clear. But it is still sufficient to state that Model 4 is an alternative

model for U-type assembly line balancing, as it iterates fast and achieve competitive results.

4.2 Comparative study

This section presents a comparative study where the performance of the proposed SACO is compared

to those of the five published metaheuristics and one exact method, ULINO (Scholl & Klein, 1999).

The metaheuristics are simulated annealing (SA) method (Erel et al., 2001), three modified ACO

methods (Sabuncuoglu et al., 2009) and another ACO method (Baykasoğlu & Derel , 9).

To differentiate ACO methods, the three methods by Sabuncuoglu et al. (2009) are marked with

ACSm-Sabuncuoglu, ACO-Version 1-Sabuncuoglu and ACO-Version 2-Sabuncuoglu. The ACO

method by Baykasoglu and Dereli (2009) is marked with ACO-Baykasoğlu. The ULINO by Scholl and

Klein (1999), to our best knowledge, is still the best performer for UALBP which achieves the

maximum number of optimal solutions.

Apart from the aforementioned four other published methods, four variants of ACO are also included in

this research to evaluate the performance of the improvements. These variants are presented as follows.

Among the four variants, ACO1 is the original ACO and ACO2 differs from ACO1 in that new

pheromone trails are employed. ACO3 differs from ACO2 in utilizing task assignment rule, which

is proposed to test the performance of the developed task assignment rule. ACO4 inherits all features of

the proposed SACO but the values of parameter a, b and c are set to 0.0. Specifically, ACO4 selects the

task assignment with the largest allocated workload.

ACO1: The new pheromone trails are not employed and no task assignment rule or

station-oriented procedure are applied.

ACO2: The new pheromone trails are employed whereas no task assignment rule or

station-oriented procedure are applied.

ACO3: The new pheromone trails and task assignment rule are employed whereas the

station-oriented procedure is not applied.

ACO4: All the new pheromone trails , task assignment rule and station-oriented procedure are

employed, but the values of parameter a, b and c are set to 0.0.

There are two benchmark sets available to test the performance of these methods: the set summarized

in Scholl and Klein (1999) and the new one generated in Otto et al. (2013). The benchmark set

summarized in Scholl and Klein (1999) has been widely applied whereas no paper has adopted the

benchmark set by Otto et al. (2013) for the considered problem. In order to compare the published

methods, this research mainly presents the computational results on the benchmark set in Scholl and

Klein (1999). Regarding this benchmark set, there are a total number of 269 cases and all of them are

solved in this study. Detailed precedence diagrams of all the tested problems are available at

http://assembly-line-balancing.mansci.de/wp-content/uploads/2017/01/Scholl-1993-ALBData.pdf.

Determining a proper termination criterion is an important issue. As in Scholl and Klein (1999), the

methods terminate when the elapsed CPU time reaches 500 seconds per instance.

For metaheuristics, parameter values play an important role in their final performances. This paper

proposes the Taguchi method (Mozdgir et al., 2013) for parameter calibration. For simplicity, this

section only presents the parameter calibration process of ACO1. There are six parameters to be

determined: population size, initial pheromone trails, evaporation coefficient , and weighting

parameters , and . Each parameter is tested at three levels, so there are 27 combinations of the

parameter values in the orthogonal table. Detailed orthogonal table and the levels of parameters are

presented in Table A1 (see Appendix). Twenty cases of the largest problem Scholl-297 with 297 tasks

are employed for parameter calibration, and the achieved station number is transferred into relative

percentage deviation or RPD. Relative percentage deviation is calculated with

 D so e-LB LB , where LB is the lower bound on station number reported in Scholl and

Klein (1999) and Fitsome is the station number found by an algorithm. After carrying out all the

experiments, the average RPD value of twenty cases are selected as the response variable and the

multi-factor analysis of variance (ANOVA) test is executed following Mozdgir et al. (2013), Tang et al.

(2016) and Li et al. (2017), among others. Detailed ANOVA results are omitted in the section for space

reason, but the average RPD plot and the corresponding S/N ratio plot are presented in Fig. A1 and Fig.

A2 (see Appendix). Other tested methods are calibrated in the same methods, and the tested parameter

values are presented in Table A2 (see Appendix). The detailed applications of the Taguchi method and

ANOVA analysis are available upon request.

The achieved best results and the average results achieved within twenty-times run are reported in

Table 4. Notice that ULINO belongs to the exact methods and it can obtain the same results in repeated

runs. ACO applies a stochastic search mechanism due to the randomness involved in its nature. To

http://assembly-line-balancing.mansci.de/wp-content/uploads/2017/01/Scholl-1993-ALBData.pdf

maintain robustness, each test problem was run twenty-times and the results are reported in Table 4

together with some performance metrics achieved in doing so. In Table 4, ‘# instances’ is the number of

tested instances, ‘# Opt’ is the number of instances that optimal solutions are achieved at least once

within twenty-times run. As each test problem was run twenty-times, this research utilizes RPDBest to

denote the best RPD among the twenty RPD values within twenty-times run for each instance and

RPDAvg to denote the average RPD within twenty-times run for each instance. RPDBest-Avg and

RPDBest-Max are the average and maximum of the RPDBest values belonging to all test cases,

respectively. RPDAvg-Avg is the average of the RPDAvg values of all the tested cases, and RPDAvg-Max is

the maximum of the RPDAvg values of all the tested cases.

Table 4 Comparison between ULINO and applied ACO methods

Method
Instance Talbot Hoffmann Scholl Combined

instances 64 50 168 269

ULINO # Opt 60 32 150 233

RPDBest-Avg 0.39 1.99 0.08 0.59

 RPDBest-Max 7.14 10 5.26 10

ACO1 # Opt 58 26 73 148

RPDBest-Avg 0.73 2.68 2.13 1.91

RPDBest-Max 14.29 7.69 8.33 14.29

RPDAvg-Avg 0.74 2.85 2.37 2.09

RPDAvg-Max 14.29 7.92 10.00 14.29

ACO2 # Opt 58 25 78 152

RPDBest-Avg 0.73 2.84 1.97 1.84

RPDBest-Max 14.29 8.33 8.33 14.29

RPDAvg-Avg 0.75 2.88 2.34 2.08

RPDAvg-Max 14.29 8.33 8.89 14.29

ACO3 # Opt 59 28 116 194

RPDBest-Avg 0.61 2.41 1.11 1.19

RPDBest-Max 14.29 7.69 6.25 14.29

RPDAvg-Avg 0.62 2.66 1.32 1.38

RPDAvg-Max 14.29 7.69 7.92 14.29

ACO4 # Opt 63 39 161 251

RPDBest-Avg 0.09 1.07 0.15 0.29

RPDBest-Max 5.88 6.25 4.76 6.25

RPDAvg-Avg 0.30 1.47 0.16 0.37

RPDAvg-Max 6.79 6.79 4.76 6.79

SACO # Opt 64 43 161 255

RPDBest-Avg 0.00 0.61 0.15 0.21

RPDBest-Max 0.00 5.00 4.76 5.00

RPDAvg-Avg 0.06 0.85 0.15 0.25

 RPDAvg-Max 3.53 5.00 4.76 5.00

*Best results in bold

It has been observed during the computational study that the ACO variants whose performances have

been compared to that of SACO cannot achieve the same results with SACO even when the CPU time

increases. Therefore, the results have been compared in terms of both the best results and the relative

percentage deviation metrics. As for assembly line balancing problem, the number of the achieved

optimal solutions is an important indicator to evaluate the performance of the algorithms, and thus this

research mainly compares the number of achieved optimum solutions following the common tendency

in the literature (e.g. see Sabuncuoglu et al. (2009)). It is observed from Table 4 that the proposed

SACO is capable of finding optimal solutions for 255 cases, ranking first among the compared methods.

Specifically, SACO outperforms ACO4, ULINO and ACO3 for 4, 22 and 61 cases out of 269 cases,

respectively. ACO4 is the second-best performer which achieves the optimal solutions for 251 cases.

ULINO achieves the third largest number of found optimal solutions, and ACO3 achieves the fourth

largest number. ACO2 and ACO1 are the two worst performers and ACO2 shows a small superiority

over ACO1. This finding suggests that the utilization of the new pheromone trails is reasonable. In

addition, ACO3 shows a clear advantage over the ACO1 and ACO2, which indicates the superiority of

utilizing task assignment rules. The proposed SACO is also the best performer when utilizing the

RPDBest-Avg, RPDBest-Max, RPDAvg-Avg and RPDAvg-Max as the evaluation metrics. Again, ACO4 and

ULINO are the second and third best performers when utilizing these evaluation metrics. The

superiority of the SACO over the ULINO on the number of achieved optimal solutions suggests that

the proposed SACO is highly effective for UALBP, and can be regarded as the state-of-the-art

metaheuristic for UALBP. In fact, the high performance of the proposed SACO is mainly attributed to

the utilization of the station-oriented procedure. This station-oriented procedure selects the best one

among a set of task assignments (or groups of tasks), which ensures that the former workstations

endures more workload and increase the possibility of achieving solutions with fewer workstations. In

addition, this procedure also allocates the tasks with larger operation time at first and makes more tasks

assignable for the latter workstations by allocating the tasks with more successors in the forward

direction (predecessors in the reverse direction) preferably.

A more thorough comparative study is presented in Table 5, which exhibits the achieved best results by

proposed ACO methods and the best results published by five metaheuristics and an exact method,

ULINO. Notice that the published five metaheuristics only tackle a portion of the benchmark problems,

and thus this table summarizes the number of solved instances and the number of instances solved

optimally. This table only calculates the percentage of the instance solved optimally in the last column.

If the algorithms are ranked in decreasing order of the percentage values, the proposed SACO ranks

first and ACO4 and ULINO rank the second the third. The ACO-Version 2-Sabuncuoglu ranks the

fourth which is the best performer among the ACO methods which do not utilize station-oriented

decoding. Among all these methods, ACO-Baykasoğlu s the worst perfor er wh ch only ach eves the

optimal solutions for 90 cases out of 232 tested cases. In addition, if the number of instances not solved

optimally is considered, there are only 14 and 18 cases which are not solved optimally by SACO and

ACO4. Nevertheless, there are 60 and 142 cases not solved optimally by SA and ACO-Baykasoğlu

even though they solve fewer instances. All these computational results show that the proposed SACO

outperforms the compared ones regarding the number of achieved optimal solutions.

Table 5 Comparison between published methods and applied ACO methods

Methods
Talbot Hoffmann Scholl Combined cases

instances

Opt

instances

Opt

instances

Opt

instances

Opt
Percent

SA - - - - 168 112 187 127 67.91

ACO-Baykasoğlu 64 55 - - 168 35 232 90 38.79
ACSm-Sabuncuoglu - - - - - - 190 81 42.63
ACO-Version
1-Sabuncuoglu

- - - - - - 190 108 56.84

ACO-Version
2-Sabuncuoglu

- - - - - - 190 144 75.79

ULINO 64 60 50 32 168 150 269 233 86.62
ACO1 64 58 50 26 168 73 269 148 55.02
ACO2 64 58 50 25 168 78 269 152 56.51

ACO3 64 59 50 28 168 116 269 194 72.12
ACO4 64 63 50 39 168 161 269 251 93.31
SACO 64 64 50 43 168 161 269 255 94.80

*Best results in bold

Table 6 also shows the results of the hard instances from the tested 269 cases, where Nt is the number

of tasks, is the number of arcs in the precedence diagram, d is the network density, ,

and CT is the cycle time (Fattahi & Turkay, 2015). The results of ACO methods are the best solution

achieved in twenty-times independent runs. In this table, SACO updates the results by ULINO for 21

cases. Since the newly achieved station number is equal to the lower bound provided by ULINO, it is

proper to state that the optimal solutions of these 21 cases are first achieved. When the results obtained

by ACO methods are compared, it is observed that ACO1, ACO2 and ACO3 cannot achieve the

optimal solutions for all the cases of Barthol2-148 and Scholl-297 test cases. These findings suggest

that the original ACO methods, ACO1, ACO2 and ACO3, are ineffective when solving large-size

problems.

Table 6 Comparison on challenging instances

Graph Nt d CT ULINO ACO1 ACO2 ACO3 ACO4 SACO

Warnecke 58 70 1.21 54 [30,31] 31 31 31 31 31
 62 [26,27] 27 27 27 26 26
 65 [24,25] 25 25 25 25 25
 68 [23,24] 24 24 24 23 23
 71 [22,23] 23 23 23 23 23
 74 [21,22] 22 22 22 22 22
 82 [19,20] 20 20 20 19 19

Tonge 70 86 1.23 160 [22,23] 23 23 23 22 22
 176 [20,21] 21 21 21 20 20

Wee-mag 75 87 1.16 47 [32,33] 33 33 32 32 32
 49 [31,32] 32 32 32 32 32
 50 [31,32] 32 32 32 32 32

Arcus 1 83 113 1.36 3786 [21,22] 21 21 21 21 21
Mukherje 94 181 1.93 176 [24,25] 25 25 25 24 24
Arcus 2 111 176 1.59 5785 [26,27] 27 27 27 27 27

 6016 [25,26] 26 26 26 26 26
 6267 [24,25] 25 25 25 25 25
 6540 [23,24] 24 24 24 24 24
 6837 [22,23] 23 23 23 23 23
 7162 [21,22] 22 22 22 22 22
 7520 [20,21] 21 21 21 21 21
 7916 [19,20] 20 20 20 20 19
 8356 [18,19] 19 19 19 19 18
 8847 [17,18] 18 18 18 18 17

 9400 [16,17] 17 17 17 17 16
 10027 [15,16] 16 16 16 15 15
 10743 [14,15] 15 15 15 14 14
 11570 [13,14] 14 14 14 13 13

Barthol2 148 175 1.18 85 [50,51] 51 51 51 50 50
 89 [48,49] 49 49 48 48 48
 93 [46,47] 47 47 46 46 46
 97 [44,45] 45 45 44 44 44

Scholl 297 423 1.42 1394 [50,51] 51 51 51 50 50
 1422 [49,50] 50 50 50 50 50
 1452 48 49 49 49 48 48
 1483 47 48 48 48 47 47
 1515 [46,47] 47 47 47 46 46
 1548 45 46 46 46 45 45
 1584 44 45 45 45 44 44
 1620 43 44 44 44 43 43

 1659 42 43 43 43 42 42

 1699 41 42 42 42 41 41
 1742 40 41 41 41 40 40
 1787 39 40 40 40 39 39
 1834 38 39 39 39 38 38
 1883 37 38 38 38 37 37

 1935 36 37 37 37 36 36
 1991 35 36 36 36 35 35
 2049 34 35 35 35 34 34
 2111 33 34 34 34 33 33
 2177 32 33 33 33 32 32
 2247 31 32 32 32 31 31
 2322 30 31 31 31 30 30
 2402 29 30 30 30 29 29

 2488 28 29 29 29 28 28
 2580 27 28 28 28 27 27
 2680 26 27 27 27 26 26
 2787 25 26 26 26 25 25

*New found upper bounds or optimal solutions in bold.

To have a better observation of the evolution process of the tested algorithms, Fig.5 illustrates the

average workstation numbers achieved by the tested algorithm during evolution when solving

Tonge-70 with a cycle time fixed to 168 units. From this figure, it is observed that none of the tested

ACO methods shows clear convergence with the increasing CPU time. In fact, this interesting situation

is attributed to the selection probabilities of tasks and the characteristic of the considered problem. As

presented in Section 3.2, a task is selected based on the selection probabilities of tasks using the

roulette wheel selection scheme, where ranked positional weight and operation time are also included

in the selection strategy as heuristic information. While the heuristic information increases the

exploration capacity and helps achieve diverse individuals, the proposed methods cannot show clear

convergence. Additionally, the workstation number, which is determined by the task assignments on all

workstations, is optimized. The optimal solution of the tested case is achieved only when all the

workstations endure enough workload. However, the randomness in the task selection makes the

probability of achieving optimal solution very low, and hence the population cannot convergence to the

optimal or near optimal solution.

Still, it is clear that SACO achieves the smallest values of the average workstation numbers. ACO1 and

ACO2 obtain the largest values of the average workstation numbers. This demonstrates that the

proposed ACO methods are capable of achieving diverse solutions and SACO outperforms the

compared methods during the evolution process regarding the average workstation numbers.

CPU time (s)

0 100 200 300 400 500

A
ve

ra
ge

 w
o
rk

st
at

io
n

nu
m

b
er

22.0

22.2

22.4

22.6

22.8

23.0

23.2

23.4

ACO1

ACO2

ACO3

ACO4

SACO

Fig.5 Average workstation number during the evolution process

From the above computational study, it is clear that SACO has a promising solution building capacity

regardless of the problem size. As seen in Table 6, SACO maintains its competitiveness even the

number of tasks increases from one problem to another. Thus, it is established that the proposed SACO

is quite effective for UALBP and capable of achieving solutions with fewer workstations.

The reduction in the number of opened workstations yields a decrease in the number of operators

working in the line composed of those workstations. As known, U-type assembly lines are widely

utilized in assembly industry to achieve high flexibility and productivity and the number of workers

utilized on this line is the main expense. Thus, the reduction of the number opened workstations results

in a decrease in labor cost. Therefore, SACO can improve line efficiency and reduce labor cost in

U-shaped assembly lines. Line managers can undoubtedly use SACO for balancing U-shaped lines in

real-life implementations to reduce their costs.

5. Conclusions and future research

This research addresses the U-type assembly line balancing problem to minimize the number of opened

workstations. A new mixed-integer linear programming model is developed which utilizes one

expression to describe the precedence constraint. The validity of this model and three compared models

are analyzed by enumerating the possible allocations of two tasks. The proposed model and the two out

of three compared ones are correct while one out of the three models is wrong. A comparative study on

these models demonstrates that the proposed model executes more number of iterations within the

same CPU time (1000 seconds) for most cases and it has the capability of achieving competing results.

 To tackle the large-size problems, this research develops a station-oriented ant colony optimization.

This modified ant colony optimization differs from the original ones in two aspects. New pheromone

trails are applied to determine the selection probability of the first task. A new station-oriented

decoding is developed to achieve solutions where the best one among a set of task assignment groups is

selected for the current station. The proposed method is compared with four variants of ant colony

optimization, exact method ULINO and five published metaheuristics. Computational results

demonstrate the proposed method is the best performer among the tested algorithms. Specifically, this

newly developed method achieves the optimal solutions of 255 cases out of 269 cases and it

outperforms the current best method ULINO for 21 cases regarding the best station number achieved.

The proposed method is capable of reducing the number of workstations, which yields to a decrease in

labor cost eventually thanks to the reduction in the number of operators. The methodology proposed in

this research can easily be adopted by practitioners, i.e. line managers. Thus, a considerable number of

workstations can be saved when constructing a new U-shaped line as well as balancing an existing line.

However, the model still cannot solve large-size problems optimally within acceptable time and the

algorithm needs several parameters to be calibrated. Also, the production environment may contain

more sophisticated applications and/or constraints to be considered, such as customized demands

requiring mixed-model production and the utilization of robots requiring their optimal assignment to

workstations. Future research might consider focusing on these issues. The model can also be extended

to balance other U-type assembly lines, including robotic U-type assembly lines, mixed-model U-type

assembly lines and U-type assembly lines with model sequencing. Thus, this new method for tackling

precedence constraint can help building the models for such problems. Furthermore, the proposed

station-oriented method has wider applications due to its high performance observed in this study. This

method might be applied to solve miscellaneous two-sided and parallel assembly line balancing

problems. Even for type II assembly line balancing problem, this method might produce promising

results utilizing an iterative search mechanism. It is also worthy to implement some other recent and

effective metaheuristics.

Appendix

Nomenclature

i, p, q : The task indices

n, Nt : The total number of tasks

j : The workstation index

m : The upper bound on the number of stations

zj : A binary variable, zj=1 if station j is utilized; zj=0, otherwise

aij : A binary variable, aij=1 if task i is allocated to station j; aij=0, otherwise

ti : The operation time of task i

CT : The cycle time

 : A very large positive number

ui : A binary variable, ui=0 if task i is allocated to the entrance side; ui=1 if task i is allocated to

the exit side

 : The set of paired tasks, where task p is the immediate predecessor of task q

xij : A binary variable, xij=1 if task i is allocated to the entrance side of station j; xij=0 otherwise

yij : A binary variable, yij=1 if task i is allocated to the exit side of station j; yij=0 otherwise

 : The pheromone trail between a fictitious start point and task p

 : The pheromone trail between tasks p and q

Popsize : Population size

s : The index of an individual in the population (s Po s e)

Fits : The fitness of individual s

 : Evaporation rate

AT : Average cycle time

 : Lower bound, LB

 where the expression denotes the least integer

greater than or equal to X.

 , , : Input parameters

wq : The ranked positional weight of task q (the sum of the operation times of task q and all its

successors)

owq : The ranked positional weight of task q in the reverse direction (the sum of the operation

times of task q and all its predecessors)

LN : The number of generated task assignments

l : The index of a task assignment to current station (l N)

FS : The set of tasks allocated to the current station in the forward direction

RS : The set of tasks allocated to the current station in the reverse direction

Fi : The number of immediate predecessors of task i

oFi : The number of immediate successors of task i

a, b, c : Input parameters

 : The number of arcs in the precedence diagram

d : The network density calculated with

Fitsome : The station number found by an algorithm

RPD : Relative percentage deviation, D so e-LB LB

Opt : The number of instances that optimal solutions are achieved at least once within a certain

number of iterations

RPDBest : The best RPD among those obtained within twenty-times run for each instance

RPDAvg : The average of the twenty RPD values obtained within twenty-times run for each instance

RPDBest-Avg : The average of the RPDBest values of all the instances tested

RPDBest-Max : The maximum of the RPDBest values of all the instances tested

RPDAvg-Avg : The average of the RPDAvg values of all the instances tested

RPDAvg-Max : The maximum of the RPDAvg values of all the instances tested

Table A1 Orthogonal table of parameter levels

Population size Initial pheromone trails Evaporation coefficient α β γ Average RPD

40 1 0.1 0.1 0 0 2.62109
40 1 0.1 0.1 0.1 0.1 2.52109
40 1 0.1 0.1 0.2 0.2 2.52109

40 5 0.2 0.2 0 0 2.72313
40 5 0.2 0.2 0.1 0.1 2.52109
40 5 0.2 0.2 0.2 0.2 2.52109
40 10 0.3 0.3 0 0 2.93368

40 10 0.3 0.3 0.1 0.1 2.62109
40 10 0.3 0.3 0.2 0.2 2.52109
80 1 0.2 0.3 0 0.1 2.62109
80 1 0.2 0.3 0.1 0.2 2.52109
80 1 0.2 0.3 0.2 0 2.52109

80 5 0.3 0.1 0 0.1 2.52109
80 5 0.3 0.1 0.1 0.2 2.52109
80 5 0.3 0.1 0.2 0 2.52109
80 10 0.1 0.2 0 0.1 2.52109
80 10 0.1 0.2 0.1 0.2 2.52109
80 10 0.1 0.2 0.2 0 2.52109
120 1 0.3 0.2 0 0.2 2.52109
120 1 0.3 0.2 0.1 0 2.52109

120 1 0.3 0.2 0.2 0.1 2.52109
120 5 0.1 0.3 0 0.2 2.52109
120 5 0.1 0.3 0.1 0 2.52109
120 5 0.1 0.3 0.2 0.1 2.52109
120 10 0.2 0.1 0 0.2 2.52109
120 10 0.2 0.1 0.1 0 2.52109
120 10 0.2 0.1 0.2 0.1 2.52109

Fig. A1 The average RPD plot for each level of the parameters.

Fig. A2 The mean S/N ratio plot for each level of the parameters

Table A2 Parameter values of tested methods

Algorithm Parameter Tested values Selected value

ACO1 Population size 40, 80, 120 120

Initial pheromone trails 1, 5, 10 5

Evaporation coefficient 0.1, 0.2, 0.3 0.1

 0.1, 0.2, 0.3 0.1

 0.0, 0.1, 0.2 0.2

 0.0, 0.1, 0.2 0.2

ACO2 Population size 40, 80, 120 120

Initial pheromone trails 1, 5, 10 5

Evaporation coefficient 0.1, 0.2, 0.3 0.1

 0.1, 0.2, 0.3 0.1

 0.0, 0.1, 0.2 0.2

 0.0, 0.1, 0.2 0.2

ACO3 Population size 40, 80, 120 120

Initial pheromone trails 1, 5, 10 5

Evaporation coefficient 0.1, 0.2, 0.3 0.1

 0.1, 0.2, 0.3 0.1

 0.0, 0.1, 0.2 0.2

 0.0, 0.1, 0.2 0.2

ACO4 Population size 40, 80, 120 80

Initial pheromone trails 1, 5, 10 5

Evaporation coefficient 0.1, 0.2, 0.3 0.1

 0.1, 0.2, 0.3 0.1

 0.0, 0.1, 0.2 0.2

 0.0, 0.1, 0.2 0.2

LN 10, 100, 500 10 or 100

SACO Population size 40, 80, 120 80

Initial pheromone trails 1, 5, 10 5

Evaporation coefficient 0.1, 0.2, 0.3 0.1

 0.1, 0.2, 0.3 0.1

 0.0, 0.1, 0.2 0.2

 0.0, 0.1, 0.2 0.2

LN 10, 100, 500 10 or 100

a 0.0, 0.005, 0.01 0.0

b 0.0, 0.1, 0.2 0.0

c 0.1, 0.2, 0.3 0.3

*Note: LN is set to 100 for problems with 83, 111, 148 and 297 tasks and 10 for other problems.

References

Aase, G.R., Olson, J.R. & Schniederjans, M.J. (2004). U-shaped assembly line layouts and their impact on labor

productivity: An experimental study. European Journal of Operational Research, 156(3), 698-711.

Aase, G.R., Schniederjans, M.J. & Olson, J.R. (2003). U-OPT: An analysis of exact U-shaped line balancing

procedures. International Journal of Production Research, 41(17), 4185-4210.

Aghay Kaboli, S.H., Selvaraj, J. & Rahim, N.A. (2017). Rain-fall optimization algorithm: A population based

algorithm for solving constrained optimization problems. Journal of Computational Science, 19, 31-42.

Battaïa, O. & Dolgui, A. (2013). A taxonomy of line balancing problems and their solution approaches.

International Journal of Production Economics, 142(2), 259-277.

Baykasoğlu, A. & Derel , T. (9). ple and U-type Assembly Line Balancing by Using an Ant Colony Based

Algorithm. Mathematical and Computational Applications, 14(1), 1.

Boysen, N. & Fliedner, M. (2008). A versatile algorithm for assembly line balancing. European Journal of

Operational Research, 184(1), 39-56.

Celik, E., Kara, Y. & Atasagun, Y. (2014). A new approach for rebalancing of U-lines with stochastic task times

using ant colony optimisation algorithm. International Journal of Production Research, 1-14.

Chiang, W.-C., Kouvelis, P. & Urban, T.L. (2007). Line balancing in a just-in-time production environment:

balancing multiple U-lines. IIE Transactions, 39(4), 347-359.

Chiang, W.-C. & Urban, T.L. (2006). The stochastic U-line balancing problem: A heuristic procedure. European

Journal of Operational Research, 175(3), 1767-1781.

De, A., Kumar, S.K., Gunasekaran, A. & Tiwari, M.K. (2017). Sustainable maritime inventory routing problem

with time window constraints. Engineering Applications of Artificial Intelligence, 61, 77-95.

De, A., Mamanduru, V.K.R., Gunasekaran, A., Subramanian, N. & Tiwari, M.K. (2016). Composite particle

algorithm for sustainable integrated dynamic ship routing and scheduling optimization. Computers &

Industrial Engineering, 96, 201-215.

Dong, J., Zhang, L., Xiao, T. & Mao, H. (2014). Balancing and sequencing of stochastic mixed-model assembly

U-lines to minimise the expectation of work overload time. International Journal of Production Research, 1-20.

Dorigo, M. & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical Computer Science, 344(2-3),

243-278.

Erel, E., Sabuncuoglu, I. & Aksu, B.A. (2001). Balancing of U-type assembly systems using simulated annealing.

International Journal of Production Research, 39(13), 3003-3015.

Fattahi, A. & Turkay, M. (2015). On the MILP model for the U-shaped assembly line balancing problems.

European Journal of Operational Research, 242(1), 343-346.

Gökçen, H. & Ağpak, K. (6). A goal progra ng approach to s ple U-line balancing problem. European

Journal of Operational Research, 171(2), 577-585.

Gökçen, H., Ağpak, K., Gencer, . & K lkaya, E. (5). A shortest route for ulat on of s ple U-type assembly

line balancing problem. Applied Mathematical Modelling, 29(4), 373-380.

Hamzadayi, A. & Yildiz, G. (2012). A genetic algorithm based approach for simultaneously balancing and

sequencing of mixed-model U-lines with parallel workstations and zoning constraints. Computers & Industrial

Engineering, 62(1), 206-215.

Hamzadayi, A. & Yildiz, G. (2013). A simulated annealing algorithm based approach for balancing and sequencing

of mixed-model U-lines. Computers & Industrial Engineering, 66(4), 1070-1084.

Hwang, R.K., Katayama, H. & Gen, M. (2008). U-shaped assembly line balancing problem with genetic algorithm.

International Journal of Production Research, 46(16), 4637-4649.

Jayaswal, S. & Agarwal, P. (2014). Balancing U-shaped assembly lines with resource dependent task times: A

Simulated Annealing approach. Journal of Manufacturing Systems.

Kaboli, S.H.A., Selvaraj, J. & Rahim, N.A. (2016). Long-term electric energy consumption forecasting via

artificial cooperative search algorithm. Energy, 115, Part 1, 857-871.

Kara, Y., Ozcan, U. & Peker, A. (2007). Balancing and sequencing mixed-model just-in-time U-lines with multiple

objectives. Applied Mathematics and Computation, 184(2), 566-588.

Kara, Y., Ö güven, ., Yalçın, N. & Atasagun, Y. (). Balanc ng stra ght and U-shaped assembly lines with

resource dependent task times. International Journal of Production Research, 49(21), 6387-6405.

Kara, Y., Paksoy, T. & Chang, C.-T. (2009). Binary fuzzy goal programming approach to single model straight and

U-shaped assembly line balancing. European Journal of Operational Research, 195(2), 335-347.

Kazemi, S.M., Ghodsi, R., Rabbani, M. & Tavakkoli-Moghaddam, R. (2011). A novel two-stage genetic algorithm

for a mixed-model U-line balancing problem with duplicated tasks. The International Journal of Advanced

Manufacturing Technology, 55(9-12), 1111-1122.

Kim, Y.K., Kim, J.Y. & Kim, Y. (2006). An endosymbiotic evolutionary algorithm for the integration of balancing

and sequencing in mixed-model U-lines. European Journal of Operational Research, 168(3), 838-852.

Kucukkoc, I. & Zhang, D.Z. (2015). Balancing of parallel U-shaped assembly lines. Computers and Operations

Research, 64, 233–244, doi: http://dx.doi.org/210.1016/j.cor.2015.1005.1014.

Kucukkoc, I. & Zhang, D.Z. (2016). Integrating ant colony and genetic algorithms in the balancing and scheduling

of complex assembly lines. The International Journal of Advanced Manufacturing Technology, 82(1), 265–285.

Kucukkoc, I. & Zhang, D.Z. (2017). Balancing of mixed-model parallel U-shaped assembly lines considering

model sequences. International Journal of Production Research, 1-18.

Li, Z., Tang, Q. & Zhang, L. (2017). Two-sided assembly line balancing problem of type I: Improvements, a

simple algorithm and a comprehensive study. Computers & Operations Research, 79, 78-93.

Maiyar, L.M. & Thakkar, J.J. (2017). A combined tactical and operational deterministic food grain transportation

model: Particle swarm based optimization approach. Computers & Industrial Engineering, 110, 30-42.

Manavizadeh, N., Hosseini, N.-s., Rabbani, M. & Jolai, F. (2013). A Simulated Annealing algorithm for a mixed

model assembly U-line balancing type-I problem considering human efficiency and Just-In-Time approach.

Computers & Industrial Engineering, 64(2), 669-685.

Miltenburg, G.J. & Wijngaard, J. (1994). The U-Line Line Balancing Problem. Management Science, 40(10),

1378-1388.

Modiri-Delshad, M., Aghay Kaboli, S.H., Taslimi-Renani, E. & Rahim, N.A. (2016). Backtracking search

algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options. Energy,

116, Part 1, 637-649.

Mogale, D.G., Kumar, S.K., Márquez, F.P.G. & Tiwari, M.K. (2017). Bulk wheat transportation and storage

problem of public distribution system. Computers & Industrial Engineering, 104, 80-97.

Mozdgir, A., Mahdavi, I., Badeleh, I.S. & Solimanpur, M. (2013). Using the Taguchi method to optimize the

differential evolution algorithm parameters for minimizing the workload smoothness index in simple assembly

line balancing. Mathematical and Computer Modelling, 57(1–2), 137-151.

Otto, A., Otto, C. & Scholl, A. (2013). Systematic data generation and test design for solution algorithms on the

http://dx.doi.org/210.1016/j.cor.2015.1005.1014

example of SALBPGen for assembly line balancing. European Journal of Operational Research, 228(1), 33-45.

Özcan, U., Kellegöz, T. & Toklu, B. (2011). A genetic algorithm for the stochastic mixed-model U-line balancing

and sequencing problem. International Journal of Production Research, 49(6), 1605-1626.

Pan, Q.-K., Gao, L., Li, X.-Y. & Gao, K.-Z. (2017). Effective metaheuristics for scheduling a hybrid flowshop with

sequence-dependent setup times. Applied Mathematics and Computation, 303, 89-112.

Rabbani, M., Moghaddam, M. & Manavizadeh, N. (2012). Balancing of mixed-model two-sided assembly lines

with multiple U-shaped layout. International Journal of Advanced Manufacturing Technology, 59(9-12),

1191-1210.

Sabuncuoglu, I., Erel, E. & Alp, A. (2009). Ant colony optimization for the single model U-type assembly line

balancing problem. International Journal of Production Economics, 120(2), 287-300.

Salveson, M.E. (1955). The assembly line balancing problem. Journal of Industrial Engineering, 6(3), 18-25.

 a à, ., D’Ar ano, A., or an, . & acc arell , D. (7). etaheur st cs for eff c ent a rcraft schedul ng and

re-routing at busy terminal control areas. Transportation Research Part C: Emerging Technologies, 80,

485-511.

Scholl, A. & Klein, R. (1999). ULINO: Optimally balancing U-shaped JIT assembly lines. International Journal of

Production Research, 37(4), 721-736.

Tang, Q., Li, Z. & Zhang, L. (2016). An effective discrete artificial bee colony algorithm with idle time reduction

techniques for two-sided assembly line balancing problem of type-II. Computers & Industrial Engineering, 97,

146-156.

Toksarı, .D., İşleyen, .K., Güner, E. & Baykoç, Ö. . (2008). Simple and U-type assembly line balancing

problems with a learning effect. Applied Mathematical Modelling, 32(12), 2954-2961.

Urban, T.L. (1998). Note. Optimal Balancing of U-Shaped Assembly Lines. Management science, 44(5), 738-741.

Urban, T.L. & Chiang, W.-C. (2006). An optimal piecewise-linear program for the U-line balancing problem with

stochastic task times. European Journal of Operational Research, 168(3), 771-782.

Yegul, M.F., Agpak, K. & Yavuz, M. (2010). A New Algorithm for U-Shaped Two-Sided Assembly Line Balancing.

Transactions of the Canadian Society for Mechanical Engineering, 34(2), 225-241.

Zheng, Q., Li, M., Li, Y. & Tang, Q. (2013). Station ant colony optimization for the type 2 assembly line balancing

problem. The International Journal of Advanced Manufacturing Technology, 66(9), 1859-1870.

Graphical Abstract

Station 1

1

Station 2

Entrance side

Station 3 . . . Station m

2 3 . . . m

2m 2m-1 2m-2 . . . m+1
Exit side

Highlights

1. New MILP model is introduced and its validity is analyzed.

2. A new station-oriented ant colony optimization algorithm is developed.

3. Four MILP models are tested and evaluated.

4. The proposed station-oriented ACO method outperforms all the methods compared.

5. New best and optimum solutions are achieved for well-known benchmarks.

