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The Scientific Field of Production Economics 
Production Economics focuses on scientific topics treating the interface between 
engineering and management. All aspects of the subject in relation to manufacturing 
and process industries, as well as production in general are covered. The subject is 
interdisciplinary in nature, considering whole cycles of activities, such as the product 
life cycle - research, design, development, test, launch, disposal - and the material 
flow cycle - supply, production, distribution, recycling and remanufacturing. 

The ultimate objective is to create and develop knowledge for improving industrial 
practice and to strengthen the theoretical base necessary for supporting sound decision 
making. It provides a forum for the exchange of ideas and the presentation of new 
developments in theory and application, wherever engineering and technology meet 
the managerial and economic environment in which industry operates.  

Tracing economic and financial consequences in the analysis of the problem and 
solution reported, belongs to the central theme.  

 

The International Working Seminars 
on Production Economics 

The purpose of the International Working Seminars on Production Economics is to 
provide an opportunity for research scientists and practitioners to meet, present and 
develop their ideas on subjects within the field of Production Economics. A 
Discussant is appointed for each paper. The intention is that models and methods 
presented, and the discussion of them, will result in concrete ideas for future research 
and developments in this area. These seminars are working seminars, indicating that 
their main aim is to initiate and improve research results and to provide ample 
opportunities for interaction between Authors, Discussants, Chairmen and Audience, 
rather than to publish results. The purpose of these PrePrints is to have background 
working material for the discussion.  

This special character of the International Working Seminars on Production 
Economics, most likely, makes them unique in the international landscape of 
scientific interaction.  
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Abstract 
Metal Additive Manufacturing (MAM), as an advanced direct digital manufacturing method with shortened lead 
time and increased performance, has been increasingly applied in industrial sectors, in particular those 
characterised by small production batches but high level of demand customization. In a manufacturing company, 
the first baffling problem faced is how to properly respond to the price and due date inquiries from customers, i.e., 
the problem of Order Acceptance and Scheduling (OAS). OAS problem has been proved as NP-hard problem and 
studied extensively by academic scholars and industrial practitioners in the past decades. However, the nature of 
MAM process, e.g. serial-batching scheduling and inconclusive production time, makes the OAS problem in 
MAM environment become more challenging.  

This paper introduces the OAS problem faced by MAM companies for the first time in the literature and proposes 
a novel decision model inspired by Optimal Foraging Theory (OFT) for solving this problem. The proposed model 
combines scheduling optimization and order acceptance decision-making for the cases where the MAM machines, 
following various optimal foraging strategies, compete for orders by providing attractive offers to maximize the 
utilization of machine and optimize the payoff from an order acceptance decision as well.  

Keywords: Metal Additive Manufacturing, Order Acceptance and Scheduling, Decision Making, Serial Batching, 
Optimal Foraging Theory. 

1. Introduction
Metal Additive Manufacturing (MAM), as an advanced direct rapid manufacturing method
with shorter lead time and higher flexibility, is rising particularly in industrial sectors with
small batch sizes and a high level of customization (Li et al., 2017; Schmidt et al., 2017). This
development will put practical problems regarding production planning and scheduling on to
the table. Typically, the order acceptance and scheduling (OAS) problem is one of the trickiest 
challenges which must be faced by MAM service providers. The problem of OAS is defined
as a joint decision of which orders to accept for processing and how to schedule them (Slotnick,
2011). Over the last decades, the different versions of OAS problems have been studied with
different objective functions under different sets of manufacturing assumptions (Jiang et al.,
2017; Oguz et al., 2010; Slotnick, 2011; Zwier and Wits, 2016). Although the topic of OAS
has attracted considerable attention from those who study scheduling and those who practice
it, the OAS problems in MAM is barely discovered.

Traditionally, the OAS problem is motivated by practical situations in make-to-order (MTO) 
production systems to optimize the use of the limited capacity through determining whether to 
accept or reject orders from customers (Oguz et al., 2010). However, the nature of MAM makes 
it more challenging for decision making in OAS problems due to high level of uncertainties in 
production cost and lead time caused by different combinations of parts into a job. The 
production planning and scheduling problem in MAM was defined for the first time in the 
literature by (Kucukkoc et al., 2016; Li et al., 2017)and a mathematical model was proposed 
for the optimization of parts regrouping and allocating jobs to minimize average production 
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cost per volume of material while satisfying certain constrains. According to our research, for 
a specific part, the difference of production cost per volume of material could be more than 
40% by scheduled into different jobs. In powder-bed based MAM, the machine can handle one 
job at a time and the job consists of a batch of parts which will be started and completed 
simultaneously. For each job, a specific machine set-up/clean-up time is required. However, 
the time as well as the costs to produce parts included in the job is dynamic which depends on 
the total material volume and maximum height of these parts. In other words, the production 
time and costs are unknown before all the parts assigned to this job are confirmed. This will 
make it hard to answer the questions from customers: when will a part can be delivered and 
how much does it cost to produce this part?  

This paper will introduce the OAS problem faced by MAM companies for the first time in the 
literature and propose a novel decision model inspired by Optimal Foraging Theory (OFT). 
The OFT is one of the major predictive theories of animal foraging behaviour (Pyke, 1984; 
Pyke et al., 1977) and has inspired researches in decision making and optimization area 
(Hayden, 2018; Sulikowski, 2017; Zhu and Zhang, 2017). Foraging decisions are accept-reject 
decisions just like the decisions on order acceptance. The reminder of the paper is organized as 
follows: Section 2 introduces the nature of OAS problem in MAM filed; Section 3 presents the 
proposed decision model inspired by OFT; Section 4 discusses the simulation results based on 
the proposed decision model and Section 5 concludes the paper.  

2. The OAS problem in MAM
2.1 The nature of production with MAM
As one of the dominant applications of MAM processes, Selective Laser Melting (SLM) also
known as Direct Metal Laser Sintering (DMLS) has been widely adopted in a variety of
industries (Calignano et al., 2017; Schmidt et al., 2017). The general production process of
SLM/DMLS, as well as powder-bed based MAM technology, is illustrated in Figure 1.

Figure 1. The production process of SLM/DMLS. 
The production with powder-bed based MAM is job-based and a batch of parts can be produced 
simultaneously in one job. The MAM machine can handle one job at a time and, once the job 
starts, any of the parts included in this job cannot be taken out before the job finishing. 
Normally, a relative fixed time needs to be spent on setting up a new job and collecting the 
produced parts from the machine. However, the time of powder laying and melting to produce 
the parts is dynamic which depends on the total material volume and the maximum height of 
the parts included in the job. Also, the average production cost of per volume of material is 
dynamic due to all the parts in a job will share some of the fixed costs, such as the costs caused 
by job setting up and powder laying, which is not related with their volume of materials. 
Compared with traditional manufacturing processes, the major distinction of production with 
a powder-bed based MAM process is that the production cost and lead time are dynamically 
impacted by the combination of parts included in the same job. The cost and time of a job may 
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vary when a part with a particular height, production area, and material volume is added. The 
dynamics of production time and costs make it more challenging for the planning and 
scheduling of MAM production jobs when considering the constraints of dynamic release time 
and due date of orders.  

2.2 OAS problem statement 
This paper studies the OAS problem faced by MAM companies where the orders are 
dynamically released on the market and the MAM companies compete for orders to maximize 
their profits based on applied strategy. In a period of time 𝑇𝑇, a set of distinct orders (𝑖𝑖 = 1, … , 𝑖𝑖𝑛𝑛) 
are released on the market one by one in time sequence and a set of MAM machines (𝑚𝑚 =
1, … ,𝑚𝑚𝑛𝑛) with different specifications, including operation cost, production efficiency and 
maximum supported production area and height, are available at the beginning. The orders in 
this paper will be dispersed on a part by part basis using specific height ℎ𝑖𝑖, width 𝑤𝑤𝑖𝑖, length 𝑙𝑙𝑖𝑖, 
material volume 𝑣𝑣𝑖𝑖, release time 𝑟𝑟𝑖𝑖, expected due date 𝑑𝑑𝑖𝑖, expected production price 𝑝𝑝𝑖𝑖, and 
sale price 𝑠𝑠𝑖𝑖. The MAM machines monitor the orders released on the market and provide offers 
to the selected orders based on their situation and applied strategy. Meanwhile, the orders will 
compare the received offers from different MAM machines and make choice based on applied 
strategy. Once an offer is accepted, the order who accepted this offer will be assigned to the 
MAM machine within one of its jobs.  

Index/Parameters 
/Variables 

Descriptions 

𝑖𝑖 Order index (𝑖𝑖 = 1, … , 𝑖𝑖𝑛𝑛 𝑎𝑎𝑎𝑎𝑑𝑑 𝑖𝑖 ∈ 𝐼𝐼) 
𝑗𝑗 Job index (𝑗𝑗 = 1, … , 𝑗𝑗𝑛𝑛 𝑎𝑎𝑎𝑎𝑑𝑑 𝑗𝑗 ∈ 𝐽𝐽) 
𝑚𝑚 Machine index (𝑚𝑚 = 1, … ,𝑚𝑚𝑛𝑛 𝑎𝑎𝑎𝑎𝑑𝑑 𝑚𝑚 ∈ 𝑀𝑀) 

ℎ𝑖𝑖 , 𝑙𝑙𝑖𝑖 ,𝑤𝑤𝑖𝑖 , 𝑣𝑣𝑖𝑖 Height, length, width, and material volume of part 𝑖𝑖 
𝑟𝑟𝑖𝑖 ,𝑑𝑑𝑖𝑖 Release date and expected due date of part 𝑖𝑖 
𝑝𝑝𝑖𝑖 , 𝑠𝑠𝑖𝑖  Expected profit and sale price of part 𝑖𝑖 
𝑀𝑀𝑀𝑀 Cost per unit volume of material 
𝑇𝑇𝑀𝑀𝑚𝑚 Operation cost per unit time for machine 𝑚𝑚 
𝑉𝑉𝑇𝑇𝑚𝑚 Time for forming per unit volume of material for machine 𝑚𝑚 
𝐻𝐻𝑇𝑇𝑚𝑚 Accumulated interval time per unit height for machine 𝑚𝑚 
𝐻𝐻𝑀𝑀𝑚𝑚 Cost of human work per unit time for machine 𝑚𝑚 
𝑆𝑆𝑇𝑇𝑚𝑚 Set-up time needed for machine 𝑚𝑚 
𝑃𝑃𝑚𝑚 Production price per unit volume of material for machine 𝑚𝑚 

𝐻𝐻𝑚𝑚 ,𝑊𝑊𝑚𝑚, 𝐿𝐿𝑚𝑚 Maximum height, width, and length of part that machine 𝑚𝑚 can process 
𝑜𝑜𝑝𝑝𝑚𝑚𝑖𝑖 , 𝑜𝑜𝑑𝑑𝑚𝑚𝑖𝑖 Price and due date offered to part 𝑖𝑖 by machine 𝑚𝑚 

𝛿𝛿𝑚𝑚 Profitability expected by machine 𝑚𝑚 
𝐽𝐽𝑃𝑃𝑀𝑀𝑚𝑚𝑚𝑚  Production cost of job 𝑗𝑗 on machine 𝑚𝑚 
𝐽𝐽𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚  Profit of job 𝑗𝑗 on machine 𝑚𝑚 
𝐽𝐽𝑃𝑃𝑇𝑇𝑚𝑚𝑚𝑚  Production time of job 𝑗𝑗 on machine 𝑚𝑚 
𝐽𝐽𝑆𝑆𝑇𝑇𝑚𝑚𝑚𝑚  Start time of job 𝑗𝑗 on machine 𝑚𝑚 

Table 1. Index, parameters and variables used for OAS problem. 

Each MAM machine (𝑚𝑚 ∈ 𝑀𝑀) aims to win as many as possible orders to maximize its total 
profit within a time duration. To do this, the machine must carefully considere the decisions on 
the price and due date of the offer as well as the selection of target order who will receive the 
offer. The index, parameters and variables used for describing the above model are shown in 
Table 1.  

In terms of the notations given in Table 1, the profit of job 𝑗𝑗 on machine 𝑚𝑚, represented by 
𝐽𝐽𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚 , can be formulated as follows: 
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𝐽𝐽𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚 = 𝑃𝑃𝑚𝑚 ∙ ∑ 𝑣𝑣𝑖𝑖𝑖𝑖∈𝐼𝐼𝑚𝑚𝑚𝑚 − 𝐽𝐽𝑃𝑃𝑀𝑀𝑚𝑚𝑚𝑚, (1) 

where 𝐼𝐼𝑚𝑚𝑚𝑚 is the set of parts assigned to job 𝑗𝑗 (𝑗𝑗 ∈ 𝐽𝐽) on machine 𝑚𝑚 (𝑚𝑚 ∈ 𝑀𝑀), and 𝐽𝐽𝑃𝑃𝑀𝑀𝑚𝑚𝑚𝑚 is 
the production cost of job 𝑗𝑗 which can be formulated as follows: 

𝐽𝐽𝑃𝑃𝑀𝑀𝑚𝑚𝑚𝑚 = (𝑇𝑇𝑀𝑀𝑚𝑚 ∙ 𝑉𝑉𝑇𝑇𝑚𝑚 + 𝑀𝑀𝑀𝑀) ∙ ∑ 𝑣𝑣𝑖𝑖𝑖𝑖∈𝐼𝐼𝑚𝑚𝑚𝑚 + 𝑇𝑇𝑀𝑀𝑚𝑚 ∙ 𝐻𝐻𝑇𝑇𝑚𝑚 ∙ max
𝑖𝑖∈𝐼𝐼𝑚𝑚𝑚𝑚

{ℎ𝑖𝑖} + 𝑆𝑆𝑇𝑇𝑚𝑚 ∙ 𝐻𝐻𝑀𝑀𝑚𝑚. (2) 

The production time of job 𝑗𝑗  on machine 𝑚𝑚 , represented by 𝐽𝐽𝑃𝑃𝑇𝑇𝑚𝑚𝑚𝑚 , can be formulated as 
follows: 

𝐽𝐽𝑃𝑃𝑇𝑇𝑚𝑚𝑚𝑚 = 𝑉𝑉𝑇𝑇𝑚𝑚 ∙ ∑ 𝑣𝑣𝑖𝑖𝑖𝑖∈𝐼𝐼𝑚𝑚𝑚𝑚 + 𝐻𝐻𝑇𝑇𝑚𝑚 ∙ max
𝑖𝑖∈𝐼𝐼𝑚𝑚𝑚𝑚

{ℎ𝑖𝑖} + 𝑆𝑆𝑇𝑇𝑚𝑚. (3) 

Therefore, the objective function of machine 𝑚𝑚 can be formulated as follows: 

max𝑃𝑃 =
∑ 𝐽𝐽𝐽𝐽𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚∈𝐽𝐽𝑚𝑚
∑ 𝐽𝐽𝐽𝐽𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚∈𝐽𝐽𝑚𝑚

, (4) 

where 𝐽𝐽𝑚𝑚 is the set of jobs processed on machine 𝑚𝑚. 

With the objective function given above, the MAM machine would be able to make decision 
on order selection and offer generation. The details of decision model will be described in 
Section 3. 

3. Decision Model Inspired by OFT
3.1 Foraging decision-making
Animals forage and feed to obtain energy for survival and successful reproduction. However,
foraging and processing of the food require both energy and time. To maximize the benefit
(energy) with the lowest cost, the animal needs to make decision on whether to pursue or ignore 
a prey item during foraging. OFT addresses the kinds of decisions faced by animals. The
animals (predators) make decisions under the constraints of the environment and take optimal
decision rule, or the best foraging strategy, to maximize a variable known as the currency, such 
as the value of an item by taking into account the cost and time to acquire the item (Sinervo,
1997), which can be presented as follows:

𝑃𝑃𝑟𝑟𝑜𝑜𝑃𝑃𝑖𝑖𝑃𝑃𝑎𝑎𝑃𝑃𝑖𝑖𝑙𝑙𝑖𝑖𝑃𝑃𝑃𝑃 𝑜𝑜𝑃𝑃 𝑝𝑝𝑟𝑟𝑝𝑝𝑃𝑃 = 𝐸𝐸𝑛𝑛𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑝𝑝𝐸𝐸𝐸𝐸 𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸 𝑖𝑖𝑖𝑖𝐸𝐸𝑚𝑚−𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝐶𝐶 𝑖𝑖𝐶𝐶 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝐸𝐸𝐸𝐸 𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸 𝑖𝑖𝑖𝑖𝐸𝐸𝑚𝑚
𝑇𝑇𝑖𝑖𝑚𝑚𝐸𝐸 𝑖𝑖𝑎𝑎𝑡𝑡𝐸𝐸𝑛𝑛 𝑖𝑖𝐶𝐶 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝐸𝐸𝐸𝐸 𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸 𝑖𝑖𝑖𝑖𝐸𝐸𝑚𝑚

(5) 

The profitability of a prey provides decision-making basis for a predator on the chosen of prey 
item. Generally, the predator will gain more energy by eating large prey provided that the prey 
is not too large so that the predator runs into processing constraints, while the handling time, 
or the time taken to catch, subdue, and consume prey, will increase with prey size and prey 
armour (Sinervo, 1997). The handling time will be more crucial for some species, such as 
snakes, due to mobility impairment during feeding. Once a snake swallowed a prey, it will be 
not able to attack another prey before the prey was digested, and the other preys may have 
escaped or been captured by other predators. Therefore, in a competitive environment with 
limited food source, a snake must be more careful on the selection of preys to capture by 
considering the total potential benefits it will obtain over a period. 

Given that a snake with intelligence, a possible smart way to maximize the total benefits from 
foraging is to trap preys and consume the captured preys in packaged form based on snake’s 
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maximum size threshold. A prey with ability of activity will not stay there to be captured. The 
prey will be captured only when it has chosen and eaten a bait. A concept of trap-based foraging 
is illustrated in Figure 2. The predator releases a bait to attract a prey and capture it if it eaten 
the bait. The captured preys will be packaged, when their total size reached the expected goal, 
and stored as food packages which will be consumed on schedule. However, the value of a 
prey has timeliness which means the prey, if dead or decayed, may become valueless even 
harmful to the predator. Therefore, the crucial decision a snake needs to make is how to set a 
competitive bait to attract target preys and how to determine the boundary conditions of a food 
package to meet the maximum size threshold? 

Figure 2. The illustration of trap-based foraging concept. 

3.2 Decision model for OAS in MAM 
The nature of order competition and production scheduling in MAM is extremely similar to the 
trap-based foraging behaviour of snakes. For the OAS problem stated in Section 2.2, a MAM 
machine monitors the orders appeared on the market and competes for an order by providing 
an offer. The customer determines whether to accept an offer through comparing the price and 
due date of the offers provided by different MAM machines. Once the MAM machine obtains 
(or wins) enough orders, the orders will be grouped as a MAM production job which will be 
processed on a schedule. The MAM machine aims to compete orders as many as possible to 
maximize the utilization as well as the total profit obtained within a given period.  

To achieve this objective, the MAM machine needs to make optimal decision rules. The most 
important decision faced by MAM machine is to determine the price and due date of the offer 
and which order it should provide to? As mentioned previously, the parts included within one 
MAM production job will be produced simultaneously with same due date (completion time). 
However, the due date of a job is dynamic which depends on the combination of parts assigned 
to this job. At the time of making an offer, the MAM machine does not know if the offer would 
be accepted and does not know what orders it can obtain from the market in the future. 
Therefore, the MAM machine has to estimate the due date as well as the start time of the job 
based on its expected profitability. For machine 𝑚𝑚, its expected profitability 𝛿𝛿𝑚𝑚𝑚𝑚′  of job 𝑗𝑗 can 
be formulated as follows: 

𝛿𝛿𝑚𝑚𝑚𝑚′ =
𝐽𝐽𝐽𝐽𝐽𝐽𝑚𝑚𝑚𝑚

′

𝐽𝐽𝐽𝐽𝑇𝑇𝑚𝑚𝑚𝑚
′ =

(𝐽𝐽𝑚𝑚−𝑇𝑇𝐶𝐶𝑚𝑚∙𝑉𝑉𝑇𝑇𝑚𝑚−𝑀𝑀𝐶𝐶)∙𝑉𝑉𝑚𝑚𝑚𝑚
′ −𝑇𝑇𝐶𝐶𝑚𝑚∙𝐻𝐻𝑇𝑇𝑚𝑚∙ℎ𝑚𝑚𝑚𝑚

′ −𝑆𝑆𝑇𝑇𝑚𝑚∙𝐻𝐻𝐶𝐶𝑚𝑚
𝑉𝑉𝑇𝑇𝑚𝑚∙𝑉𝑉𝑚𝑚𝑚𝑚

′ +𝐻𝐻𝑇𝑇𝑚𝑚∙ℎ𝑚𝑚𝑚𝑚
′ +𝑆𝑆𝑇𝑇𝑚𝑚

, (6) 

where 𝑉𝑉𝑚𝑚𝑚𝑚′  and ℎ𝑚𝑚𝑚𝑚′  are the estimated total material volume and maximum height, respectively, 
for job 𝑗𝑗 on machine 𝑚𝑚. The value of 𝑉𝑉𝑚𝑚𝑚𝑚′  can be calculated as follows: 
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𝑉𝑉𝑚𝑚𝑚𝑚′ = 𝑉𝑉𝑚𝑚𝑚𝑚 ∙
𝜌𝜌𝑚𝑚∙𝑊𝑊𝑚𝑚∙𝐿𝐿𝑚𝑚
∑ (𝑤𝑤𝑖𝑖∙𝑙𝑙𝑖𝑖)𝑖𝑖∈𝐼𝐼𝑚𝑚𝑚𝑚

, (7) 

where 𝑉𝑉𝑚𝑚𝑚𝑚  is the total material volume already assigned to job 𝑗𝑗  and 𝜌𝜌𝑚𝑚  is the expected 
utilization of the total production area of machine 𝑚𝑚. 

Given the value of expected profitability 𝛿𝛿𝑚𝑚𝑚𝑚′ , the allowed maximum height ℎ𝑚𝑚𝑚𝑚′′ , which will 
not lower the expected profitability, can be calculated based on formulation (6) as follows: 

ℎ𝑚𝑚𝑚𝑚′′ =
�𝐽𝐽𝑚𝑚−𝑇𝑇𝐶𝐶𝑚𝑚∙𝑉𝑉𝑇𝑇𝑚𝑚−𝛿𝛿𝑚𝑚𝑚𝑚

′ ∙𝑉𝑉𝑇𝑇𝑚𝑚−𝑀𝑀𝐶𝐶�∙𝑉𝑉𝑚𝑚𝑚𝑚
′ −(𝐻𝐻𝐶𝐶𝑚𝑚−𝛿𝛿𝑚𝑚𝑚𝑚

′ )∙𝑆𝑆𝑇𝑇𝑚𝑚
(𝛿𝛿𝑚𝑚𝑚𝑚

′ +𝑇𝑇𝐶𝐶𝑚𝑚)∙𝐻𝐻𝑇𝑇𝑚𝑚
.  (8) 

However, the currently real maximum height ℎ𝑚𝑚𝑚𝑚  of job 𝑗𝑗 based on already assigned parts is 
presented as follows: 

ℎ𝑚𝑚𝑚𝑚 = max
𝑖𝑖∈𝐼𝐼𝑚𝑚𝑚𝑚

{ℎ𝑖𝑖}. (9) 

It can be mentioned that a part is profitable to job 𝑗𝑗 if ℎ𝑚𝑚𝑚𝑚′′ ≥ ℎ𝑚𝑚𝑚𝑚 after including this part into 
the job. Therefore, the value of (ℎ𝑚𝑚𝑚𝑚′′ − ℎ𝑚𝑚𝑚𝑚)/ℎ𝑚𝑚𝑚𝑚′′   as a function of part 𝑖𝑖 , termed as the 

profitability of part 𝑖𝑖 to job 𝑗𝑗 (marked as 𝛿𝛿𝑚𝑚𝑚𝑚𝑖𝑖 ), can be a decision variable for the selection of 
part to be offered. The estimated due date of job 𝑗𝑗 on machine 𝑚𝑚, also the due date offered to 
the parts which will be included in this job, will be determined based on the first part 𝑖𝑖 who 
accepted the offer. The offered due date 𝑜𝑜𝑑𝑑𝑚𝑚𝑖𝑖 for a new job 𝑗𝑗 by machine 𝑚𝑚 can be calculated 
based on the first part 𝑖𝑖 as follows:  

𝑜𝑜𝑑𝑑𝑚𝑚𝑖𝑖 = 𝐽𝐽𝑆𝑆𝑇𝑇𝑚𝑚𝑚𝑚 + 𝑉𝑉𝑇𝑇𝑚𝑚 ∙ 𝑉𝑉𝑚𝑚𝑚𝑚′ + 𝐻𝐻𝑇𝑇𝑚𝑚 ∙ ℎ𝑚𝑚𝑚𝑚′ + 𝑆𝑆𝑇𝑇𝑚𝑚, (10) 

where 𝐽𝐽𝑆𝑆𝑇𝑇𝑚𝑚𝑚𝑚  is the start time of a new job 𝑗𝑗 , 𝑉𝑉𝑚𝑚𝑚𝑚′ = 𝑣𝑣𝑖𝑖 ∙ (𝜌𝜌𝑚𝑚 ∙ 𝑊𝑊𝑚𝑚 ∙ 𝐿𝐿𝑚𝑚) /(𝑤𝑤𝑖𝑖 ∙ 𝑙𝑙𝑖𝑖) is the 
estimated total material volume based on part 𝑖𝑖, and ℎ𝑚𝑚𝑚𝑚′ = min{𝐻𝐻𝑚𝑚,ℎ𝑚𝑚𝑚𝑚′′ } is the estimated 
maximum height.  

For the price offered to a part, the MAM machine can determine it with various strategies. One 
of practical strategy, termed as “FIX_PRICE”, is pricing based on the material volume of the 
part where the price is fixed relative to per unit volume of material. Alternatively, the MAM 
machine can adopt a “FLEX_PRICE” strategy where the price offered to each part can be 
flexible by considering the material volume and the profitability of the part together. Given a 
reference price per unit volume of material 𝑃𝑃𝑚𝑚, the flexible price 𝑜𝑜𝑝𝑝𝑚𝑚𝑖𝑖 offered to part 𝑖𝑖 can be 
calculated as follows: 

𝑜𝑜𝑝𝑝𝑚𝑚𝑖𝑖 = 𝑃𝑃𝑚𝑚 ∙ �1 − 𝜔𝜔𝑚𝑚𝑚𝑚
𝑖𝑖 ∙ 𝛿𝛿𝑚𝑚𝑚𝑚𝑖𝑖 �, (11) 

where 𝜔𝜔𝑚𝑚𝑚𝑚
𝑖𝑖 ∈ [0, 1] is the weight factor related to the profitability of part 𝑖𝑖. The offered price 

will be cheaper than 𝑃𝑃𝑚𝑚  if a part has a positive profitability so that the offer will be more 
competitive.  

On the customer side, the offers provided by different MAM machines will be compared and 
selected to accept based on the customer’s strategy. The customers aim to produce their parts 
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through buying MAM service and make profit through selling the parts. The profit obtained 
from part 𝑖𝑖 produced with machine 𝑚𝑚 can be calculated as follows: 

𝑝𝑝𝑖𝑖 = (𝑠𝑠𝑖𝑖 − 𝑜𝑜𝑝𝑝𝑚𝑚𝑖𝑖) ∙ 𝑣𝑣𝑖𝑖 . (12) 

In the case of existing multiple offers which make positive profit, the customer may prefer the 
offer either with the lowest price (“PRICE” strategy) or with the shortest due date (“TIME” 
strategy). However, a “BLANCE” strategy, by considering the price and due date together, may 
be more practical if the sale price is highly time-sensitive which means the sale price will be 
higher if the part can be available earlier.  

Figure 3. The principle of decision-making in OAS problem of MAM. 

By now, the principle of decision-making in OAS problem of MAM can be illustrated as Figure 
3. The MAM machine will make an offer to the part with positive profitability to current job
of scheduling and determine the price and due date to be offered to the part based on applied
strategy. Meanwhile, the part who received the offer will consider whether to accept the offer
if it can make positive profit. The decision of acceptance or rejection depends on the strategy
applied by the customer. The part who accepted the offer will be assigned to a job of the
machine who made the offer. However, the machine will withdraw the offer if it is rejected,
and make a new offer to another available part on the market. The due date offered by the
machine will be updated based on a new job to be scheduled if the obtained parts have reached 
expected level or the moment for starting the job has come.

4. Simulation of OAS in MAM
4.1 OAS simulation system
The method of simulation-based optimization becomes more and more important because of
its flexibility and the capability to represent complex real world systems (Frantzé N et al., 2011; 
Klemmt et al., 2009). According to the decision model proposed in Section 3, a simulation
system was developed using SimPy which is a process-based discrete-event simulation
framework based on standard Python (“SimPy,” n.d.). Also, a graphic user interface was
developed using Kivy which is an open source Python library for creating GUIs (“Kivy,” n.d.).
An example of result generated with developed OAS simulation system is shown in Figure 4.
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Figure 4. An example of result generated with OAS simulation system. 

With the developed OAS simulation system, various MAM machines with different strategies 
can be generated at the beginning and the parts with selected strategy will be generated 
randomly in sequence during the simulation. The MAM machines monitoring the arrived parts 
(coloured in green) provide offers based on their strategies for competition. A part is coloured 
in red if it has accepted an offer or in blue if it has rejected all the offers. The scheduled jobs 
are displayed as rectangles with different size and colours based on their start time, due date, 
and status (red for completed, green for in printing, and blue for in scheduling).  

4.2 Application of the OAS simulation system 
The potential applications of the developed OAS simulation system are various. It can be used 
for the investigation of the competitivity of different pricing strategies and the analysis of 
sensitivities of various influencing factors including waiting time to start a new job, estimated 
due date, priority of orders, etc. To demonstrate the basic application of this system, a scene 
where 2 MAM machines with different strategies to compete 100 parts dynamically released 
on the market within 30 days was simulated. The 2 MAM machines with the same 
specifications as shown in Table 2 and the 100 parts are generated randomly with different size, 
material volume, sale price, release data and expected due date (details of the first 10 parts are 
shown in Table 3).  

Parameters M1 M2 

𝑉𝑉𝑇𝑇𝑚𝑚, (hour/cm3) 0.030864 0.030864 

𝐻𝐻𝑇𝑇𝑚𝑚 , (hour/cm) 0.7 0.7 

𝑆𝑆𝑇𝑇𝑚𝑚, (hour) 2 2 

𝑇𝑇𝑀𝑀𝑚𝑚,𝐻𝐻𝑀𝑀𝑚𝑚, (GBP/hour) 60, 30 60, 30 

𝐻𝐻𝑚𝑚 ,𝑊𝑊𝑚𝑚, 𝐿𝐿𝑚𝑚, (cm) 32.5, 25, 25 32.5, 25, 25 

𝑃𝑃𝑚𝑚, (GBP/cm3) 5 5 

Table 2. The specifications and parameters of the MAM machines. 

With the test data given above, the situations where the 2 MAM machines applied with different 
strategies were simulated. The parts were applied with “PRICE_TIME” strategy for the 
acceptance of offers, where the offer with lowest price and satisfied due date will be accepted. 
The simulated results as shown in Table 4.  
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Part Size ℎ𝑖𝑖 ∗  𝑤𝑤𝑖𝑖 ∗  𝑙𝑙𝑖𝑖 (cm) Volume 𝑣𝑣𝑖𝑖 (cm3) Arrive 𝑟𝑟𝑖𝑖 Due date 𝑑𝑑𝑖𝑖 Price 𝑠𝑠𝑖𝑖 (GBP/cm3) 

P1 15.4*3*15.2 229.21 512 9602 16.41 

P2 11.2*24.8*20.3 3559.27 895 30885 15.17 

P3 7.9*17.3*10.8 476.61 944 20439 20.15 

P4 25.7*8.6*18.3 2456.64 980 18182 15.9 

P5 28*23.5*15.4 7681.96 1356 34689 17.68 

P6 17.6*5.2*6.1 360.00 1615 25688 21.05 

P7 28*20*11.2 3689.05 1640 36063 21.99 

P8 2.8*8.6*24.5 469.36 2258 12749 24.9 

P9 19.9*12.3*11 1734.38 2912 20199 23.66 

P10 31.6*11*5 791.85 3339 16825 23.47 

Table 3. Sample data related to parts. 

Applied 
strategy 

Number of 
parts 

Volume 
(cm3) 

Makespan 
(hours) 

Profit 
(GBP) 

Profit/volum
e 

(GBP/cm3) 
Profit/time 
(GBP/hour) 

M1 FIX_PRICE 15 30756.47 1123.48 58229.45 1.89 51.83 

M2 FIX_PRICE 5 27960.74 970.78 56233.82 2.01 57.93 

M1 FIX_PRICE 15 29011.10 1081.58 54320.14 1.87 50.22 

M2 FLEX_PRICE 8 32713.52 1148.33 31679.97 0.97 27.59 

M1 RANDOM 12 29080.08 1029.37 57051.65 1.96 55.42 

M2 RANDOM 14 29237.34 1058.82 56472.80 1.93 53.34 

Table 4. Simulation settings and results. 

The machine M1 and M2 obtained 15 and 5 parts from the market respectively although they 
were applied with the same strategy of “FIX_PRICE” – the part with best profitability will be 
selected to provide offer. However, they obtained 12 and 14 parts respectively when applied 
with strategy of “RANDOM” – available parts will be randomly selected to provide offer. For 
the former situation, M1 and M2, with the same specifications, are likely to compete for the 
same part on the same price and due date. The winner will gain superiority in the follow-on 
competition. While for the latter situation, the competition on the same part is likely avoided 
due to randomly selection of parts to offer. Although the total profit and makes pane are 
different, M1 and M2 achieved similar profitability when applied with the same strategy. The 
results indicated that the selection of the first part to be assigned to a new job will affect the 
final competition results. 

Another factor which will affect the competition results is the price offered to a part. As shown 
in Table 4, M1 and M2 obtained 15 and 8 parts by applying strategy of “FIX_PRICE” and 
“FLEX_PRICE”, respectively. For the same part, M2 will provide an offer with lower price 
than M1 and this will give M2 more compactivity. As the result, the total profit achieved by 
M2 increased about 17% although the profitability decreased about 50%. The strategy of 
“FLEX_PRICE” will be useful when the manufacturers want to improve the utilization of their 
machines. 

5. Conclusions
In this paper, the OAS problem faced by MAM companies was introduced and a novel decision
model inspired by OFT was proposed for the first time. The nature of production with MAM,
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particularly the dynamism in the cost and time of a production job, makes it hard to determine 
on which order should be accepted and how to schedule the accepted order to maximize profit 
within a competitive market environment. The authors inspired by the trap-based foraging 
behaviour of animals, proposed a competition behaviour mechanism of MAM machines which 
aim to obtain as many orders as possible from the market to maximize their profit through 
providing competitive offers. Further, a simulation system based on the proposed competition 
mechanism was developed and the application for the investigation of different strategies was 
demonstrated.   

As a first attempt to handle the OAS problem in MAM, this study provided a principle decision 
making model as well as a novel simulation tool for the future studies in this emerging research 
field. A lot of efforts need to be undertaken to perfect the optimal decision rules for MAM 
machines to generate competitive offers based on their business strategy and objectives. Further, 
advanced theories such as the game theory will be considered in future for the study of 
cooperation and competition behaviours of MAM machines, while the machine learning theory 
will be considered to help the MAM machines to make more accurate estimations for decision 
making. 
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