
Journal Pre-proofs

Iterated local search method and mathematical model for sequence-dependent
U-shaped disassembly line balancing problem

Zixiang Li, Ibrahim Kucukkoc, Zikai Zhang

PII: S0360-8352(19)30515-7
DOI: https://doi.org/10.1016/j.cie.2019.106056
Reference: CAIE 106056

To appear in: Computers & Industrial Engineering

Received Date: 15 November 2018
Revised Date: 6 August 2019
Accepted Date: 8 September 2019

Please cite this article as: Li, Z., Kucukkoc, I., Zhang, Z., Iterated local search method and mathematical model for
sequence-dependent U-shaped disassembly line balancing problem, Computers & Industrial Engineering (2019),
doi: https://doi.org/10.1016/j.cie.2019.106056

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will
undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing
this version to give early visibility of the article. Please note that, during the production process, errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

https://doi.org/10.1016/j.cie.2019.106056
https://doi.org/10.1016/j.cie.2019.106056

Iterated local search method and mathematical model for sequence-dependent U-shaped
disassembly line balancing problem

Zixiang Li1,2, Ibrahim Kucukkoc3*, Zikai Zhang 1,2

1Key Laboratory of Metallurgical Equipment and Control Technology, Wuhan University of Science
and Technology, Wuhan, Hubei, China

2Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan
University of Science and Technology, Wuhan, Hubei, China

3Industrial Engineering Department, Balikesir University, Cagis Campus, Balikesir 10145, Turkey
Email: zixiangliwust@gmail.com (Z. Li); ikucukkoc@balikesir.edu.tr (I. Kucukkoc);

zhangzikai0703@gmail.com (Z. Zhang);
*Corresponding author. Tel: +902666121194 (Ext. 6407)

Abstract

Disassembly lines play an important role in disassembling end-of-life products and retrieving the

valuable components. Sequence-dependent time increments are inevitable due to the interactions

between two tasks in some occasions. This research provides the first attempt to study the sequence-

dependent U-shaped disassembly line balancing problem (SUDLBP) with multiple objectives. A mixed-

integer programming model is developed to solve the small-size instances optimally, where new

expressions are developed to formulate the AND/OR precedence relations. Due to the NP-hard nature of

this problem, a simple and effective iterated local search algorithm is developed for the first time. This

algorithm utilizes modified NEH heuristic to achieve a high-quality initial solution. A new local search

technic with referenced permutation and two neighbor structures is also embedded into it to obtain the

local optimum solution. Computational tests demonstrate that the U-shaped lines outperform traditional

straight lines in terms of the objective values. The comparative study on two sets of instances

demonstrates that the proposed method outperforms the CPLEX solver in search speed and achieves a

competing performance in comparison with other eight re-implemented algorithms.

Keywords: Disassembly line balancing; Sequence-dependent U-shaped disassembly line; Integer

programming; Iterated local search algorithm; Metaheuristics

mailto:zixiangliwust@gmail.com%20(Z.

Iterated local search method and mathematical model for sequence-dependent U-shaped
disassembly line balancing problem

Abstract
Disassembly lines play an important role in disassembling end-of-life products and retrieving the
valuable components. Sequence-dependent time increments are inevitable due to the interactions
between two tasks in some occasions. This research provides the first attempt to study the sequence-
dependent U-shaped disassembly line balancing problem (SUDLBP) with multiple objectives. A mixed-
integer programming model is developed to solve the small-size instances optimally, where new
expressions are developed to formulate the AND/OR precedence relations. Due to the NP-hard nature of
this problem, a simple and effective iterated local search algorithm is developed for the first time. This
algorithm utilizes modified NEH heuristic to achieve a high-quality initial solution. A new local search
technic with referenced permutation and two neighbor structures is also embedded into it to obtain the
local optimum solution. Computational tests demonstrate that the U-shaped lines outperform traditional
straight lines in terms of the objective values. The comparative study on two sets of instances
demonstrates that the proposed method outperforms the CPLEX solver in search speed and achieves a
competing performance in comparison with other eight re-implemented algorithms.

Keywords: Disassembly line balancing; Sequence-dependent U-shaped disassembly line; Integer
programming; Iterated local search algorithm; Metaheuristics

1. Introduction
Recently, there is an increasing number of obsolete products especially with short product life-cycles
decreasing constantly. Improper dealing with the end-of-life (EOL) products yields not only the large
waste but also environmental problems. Product recovery has become even more popular and urgent. It
is usually realized through recycling, refurbishing or remanufacturing the valuable components, where
disassembly is the most critical and time-consuming step. Disassembly process separates the EOL
products into components for reuse or remanufacturing. Disassembly lines have been widely employed
in industry thanks to their higher productivity, easy training of the workers and suitability for automation
(Güngör and Gupta 1999, Gungor and Gupta 2001). The components are separated on a set of paced
stations linked to each other via a material transportation system. If the disassembly line is not well
designed, there will be a large amount of wasted time and line imbalance. A highly efficient disassembly
line may not be a global solution to recycle all EOL products. However, it may play an enormously
important role in dealing with the short product cycles especially in the electronics sector in today’s
modern industrial environment. Hence, the topic of balancing the disassembly lines, known as
disassembly line balancing problem (DLBP), attracts academics and practitioners.
In the DLBPs, disassembly operations cannot be regarded as the reverse operations of the assembly
operations due to the unique characteristics. There are much complex precedence relations in DLBP,
including AND precedence, OR precedence and complex AND/OR precedence (Güngör and Gupta
2002). There is a high degree of uncertainty in the quality, reliability and conditions of the EOL products
in the disassembly process. In addition, there are some hazardous tasks needing special handling and

they are preferred to be removed at early stations if possible.
Since the pioneering works published by (Güngör and Gupta 1999) and (Gungor and Gupta 2001), the
DLBP has drawn an increasing attention. Many heuristics, metaheuristics and exact methods were
developed for this problem, which was proven to be NP-hard by (McGovern and Gupta 2007) and
(McGovern and Gupta 2007). Heuristic methods include the heuristic presented by (Güngör and Gupta
2002), 2-opt hybrid algorithm introduced by (McGovern and Gupta 2003) and later employed by (Ren,
Zhang et al. 2018), and a beam search heuristic by (Mete, Çil et al. 2016). The beam search heuristic
produced a promising performance in solving large-size problems. Exact methods mainly have the mixed
integer linear programming model (MILP) utilizing CPLEX solver (Altekin, Kandiller et al. 2008, Koc,
Sabuncuoglu et al. 2009, Altekin and Akkan 2012, Paksoy, Güngör et al. 2013, Mete, Çil et al. 2018),
which is capable of obtaining the optimal solution for small-size instances. Nevertheless, one main
drawback of these MILP models is that it might cost tremendous time to solve large-size instances.
Sometimes it is not even possible to get satisfying results within an acceptable time. Hence,
metaheuristics were applied to obtain near-optimal solutions and solve the multi-objective DLBPs. These
include genetic algorithm (GA) (McGovern and Gupta 2007, Kalayci, Polat et al. 2016, Ren, Zhang et
al. 2018), ant colony optimization (McGovern and Gupta 2006, Agrawal and Tiwari 2008, Ding, Feng
et al. 2010, Kalayci and Gupta 2013), artificial bee colony (Kalayci and Gupta 2013, Kalayci, Hancilar
et al. 2015, Liu and Wang 2017), tabu search (TS) (Kalayci and Gupta 2014) and particle swarm
optimization (PSO) (Kalayci and Gupta 2013, Xiao, Wang et al. 2017). Also, variable neighborhood
search (Ren, Zhang et al. 2018), gravitational search algorithm (Ren, Yu et al. 2017), artificial fish swarm
algorithm (Zhang, Wang et al. 2017), bees algorithm (Liu, Zhou et al. 2018), and firefly algorithm (Zhu,
Zhang et al. 2018) were applied to DLBPs. For in-depth reviews, please refer to Tsao (2015), Hoseini et
al. (2019), Gharaei, Karimi et al. (2019), Gharaei, Hoseini et al. (2019), Rabbani et al. (2018, 2019),
Kazemi et al. (2018) and Gharaei, Karimi et al. (2019).
In real-world applications, there might be interactions between tasks in some occasions. The removal
time of a part might be influenced by the removal of another part, resulting in the sequence-dependent
disassembly line balancing problem (SDLBP). This topic has an importance to prevent any delays on the
line and also increase the efficiency. However, sequence dependency has been studied only for the
straight disassembly lines (Özceylan, Kalayci et al. 2018). For example, (Kalayci and Gupta 2013)
introduced this problem and described it with a mathematical formulation, and presented an artificial bee
colony (ABC) algorithm. However, the presented model to describe this problem cannot be solved
utilizing an exact technique. Later, they presented a PSO algorithm (Kalayci and Gupta 2013) and a TS
algorithm (Kalayci and Gupta 2014). More recently, (Kalayci, Polat et al. 2016) re-formulated this model
and presented a hybrid GA. Still, this new model cannot be solved utilizing an exact technique. (Liu and
Wang 2017) proposed an improved ABC algorithm, which was stated to outperform all the
aforementioned algorithms in the computational study.
U-shaped lines differ from the straight lines based on their U-shaped layout, which brings many
advantages based on the increased possibility of allocating tasks to workstations in different
combinations. In a U-shaped line, a worker in the first workstation may perform tasks from both the
beginning and end of the precedence relationship diagram, which also increases the problem complexity.
Figure 1 illustrates an example, with eight parts and a cycle time of 20 units, to highlight the features of
U-shaped disassembly lines. The precedence diagram of the problem is provided in Fig. 1(a). Fig. 1(b)
and Fig. 1(c) present the optimal task assignments on a straight disassembly line and on a U-shaped
disassembly line, respectively, in terms of the number of workers. On a straight disassembly line, the

product is disassembled from the first station to the last station until all the parts are removed. On a U-
shaped disassembly line, one workstation is divided into two sub-stations: the sub-station on the entrance
side and the sub-station on the exit side. As presented in Fig. 1(c), the product is disassembled in the
sequence of the sub-stations on the entrance side of station 3 and station 4; and the sub-stations on the
exist side of station 3, station 2, and station 1. Clearly, the product is disassembled from the entrance side
to the exit side until all the parts are removed. Worker 3 first completes task 1 on the entrance side, later
operates task 3 on the exit side and afterwards comes back to operate task 1 on the entrance side again.
A clear advantage of the U-shaped layout is that fewer workers may be needed due to higher flexibility.
In this example, the U-shaped disassembly line needs only four workers whereas the straight disassembly
line needs five workers.

31 2

6

75

84

11 17 9

5

8

12

10

3

(a) Precedence diagram of an 8-part product

5 4 7861 2 3

Station 1

7

Station 2 Station 3 Station 4 Station 5

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5
Product Parts

(b) Optimal task assignment on a straight disassembly line

548 6

1 2

3

Station 1

7

Station 2 Station 3 Station 4

Worker 1 Worker 2 Worker 3 Worker 4

Product

Parts
5

Entrance

Exit

(c) Optimal task assignment on a U-shaped disassembly line

Figure 1 An illustrated example for the comparison of straight and U-shaped lines

The studies on U-shaped disassembly lines are extremely limited and none of them deals with the
sequence dependency. There are mainly three studies related to the U-shaped disassembly line balancing
problem (UDLBP): one study addressed the stochastic mixed-model UDLBP with an ant colony
algorithm (Agrawal and Tiwari 2008) and two studies addressed the UDLBP with heuristics (without
sequence dependency) (Avikal and Mishra 2012, Avikal, Jain et al. 2013). As observed from this survey,
there is a gap in the literature for sequence-dependent U-shaped disassembly line balancing problem
(SUDLBP).
For all aforementioned reasons above, this work provides three main contributions to the literature:

1. A mixed-integer programming model is developed to formulate the SUDLBP and solve it
optimally. This model attributes the modelling techniques in SDLBP and SUDLBP in two aspects.

Firstly, the proposed model is a mixed-integer programming model that is capable of optimizing
the number of stations utilizing CPLEX solver or optimizing a non-linear objective utilizing the
mixed-integer non-linear programming (MINLP) solver. Nevertheless, none of the published
models on SDLBP (Kalayci and Gupta 2013, Kalayci and Gupta 2013, Kalayci and Gupta 2014,
Kalayci, Polat et al. 2016, Wang, Guo et al. 2019), to our best knowledge, can solve the small-
size instances optimally utilizing an exact technique. Technically, these published models could
be regarded as unsuitable and might lead to possible confusion or misunderstanding. Secondly,
this study presents new expressions to deal with the AND/OR precedence relations by diving one
station into two sub-stations. Recall that, none of the published studies on U-shaped disassembly
lines (Agrawal and Tiwari 2008, Avikal and Mishra 2012, Avikal, Jain et al. 2013) has formulated
the precedence relations via mixed-integer programming.

2. This study presents a simple and effective iterated local search (ILS) algorithm to tackle the
SUDLBP, which is classified as NP-hard in nature. The reason for selecting ILS is its simplicity
in implementation and superior performance in kinds of different combinational optimization
problems (Lourenço, Martin et al. 2003, Stützle 2006, Pan and Ruiz 2012). To the best of the
authors’ knowledge, this is the first attempt to utilize ILS to solve SUDLBP or even DLBP. To
solve the SUDLBP effectively, the proposed ILS proposes several modifications. Firstly, a new
decoding procedure is developed to obtain a feasible solution, where the assigned task set is
divided into two sub-sets on the entrance side and the exit side. Secondly, the NEH heuristic is
extended and modified to obtain a high-quality initial solution, which produces superior
performance than the well-known simple heuristics. Thirdly, the proposed ILS utilizes a new local
search procedure with referenced permutation and two neighbor structures to obtain a local
optimum solution. This new local search procedure outperforms published ones (Ruiz and Stützle
2007, Pan and Ruiz 2014).

3. A set of eight metaheuristics are extended to solve the SUDLBP and a comprehensive study is
carried out on two sets of instances to evaluate the U-shaped disassembly line and proposed ILS
method. Notice that, this is also the first time to apply these metaheuristics to SUDLBP.
Computational tests show that the U-shaped line obtains a better line balance than the traditional
straight line. The comparative study demonstrates that the improvements enhance the search
capacity of ILS by a significant margin. The proposed ILS algorithm outperforms the CPLEX
solver in search speed and achieves competing performance in comparison with these re-
implemented algorithms.

The remainder of this study is structured as follows. Section 2 presents the problem statement along with
the detailed model formulation. Subsequently, the description of the proposed algorithm is provided in
detail in Section 3. Section 4 presents the case studies and the comparative study to test the performance
of the proposed algorithm. Finally, Section 5 concludes this study and gives several future research
venues.

2. Problem statement
This section introduces the considered problem and later presents the detailed mathematical formulation.
2.1 Problem definition
DLBP involves assigning a set of disassembly tasks to several stations with one or several optimization
criteria, including minimizing the station number, optimizing the line balance and removing hazardous
tasks or tasks with larger demand at earlier stations. Figure 2 illustrates an 8-part PC example by (Kalayci

and Gupta 2014), and each part needs a positive removing time presented in Table 1. There are two main
constraints needed to be satisfied. Cycle time constraint requires that the total operation time of tasks on
each station does not exceed the cycle time given. Precedence constraint indicates that all the AND
predecessors or at least one OR predecessor must be allocated before this task (this example only has
AND predecessors) (Güngör and Gupta 2002).

31

2 6 7

5

8

4

Figure 2 Precedence diagram of 8-part PC instance (sequence dependency in dashed line arrows)

Table 1 Database for the 8-part PC instance by (Kalayci and Gupta 2014)
Task Part name Part removal time Hazardous Demand

1 PC top cover 14 No 360
2 Floppy drive 10 No 500
3 Hard drive 12 No 620
4 Back plane 18 No 480
5 PCI cards 23 No 540
6 RAM modules 16 No 750
7 Power supply 20 No 295
8 Motherboard 36 No 720

In real-world applications, an interaction between tasks might happen and the operation times may be
influenced by the remained parts/tasks (Kalayci and Gupta 2013, Kalayci and Gupta 2013, Kalayci and
Gupta 2014). This situation might also happen between two tasks with no precedence relationship in
between, when one component hinders the other component. So that additional removing time is
consumed. Let us assume that task and task have no precedence relation in between and task is 𝑖 𝑗 𝑖
operated before task . The disassembly time of task is affected by task and time units is 𝑗 𝑖 𝑗 𝑠𝑑𝑗𝑖

added to compute the operation time of task . Here, the sequence dependencies of the 8-part PC instance 𝑖
are provided as follows: , ; , . Suppose that the task operation 𝑠𝑑2,3 = 2 𝑠𝑑3,2 = 4 𝑠𝑑5,6 = 1 𝑠𝑑6,5 = 3
sequence is 1, 2, 3, 6, 5, 8, 7, 4. The real removing time of part 2 is , and the real 𝑡2 + 𝑠𝑑3,2 = 10 + 4
removing time of part 6 is due to the sequence dependencies. 𝑡6 + 𝑠𝑑5,6 = 16 + 1

Station 3Station 1 Station 4

54 7

Station 2

8 6

1 2

3

Sub-station 1 Sub-station 2 Sub-station 3 Sub-station 4

Sub-station 8 Sub-station 7 Sub-station 6 Sub-station 5

Figure 3 Task assignment on a U-shaped disassembly line

Compared with the straight lines, U-shaped lines have higher flexibility and line efficiency (Agrawal and
Tiwari 2008, Avikal and Mishra 2012, Avikal, Jain et al. 2013), where a task might be allocated to either
entrance side or exit side while satisfying cycle time constraint and precedence constraint. Figure 3
illustrates one task assignment on the U-shaped disassembly line with sequence dependencies. Due to
the sequence dependencies, the total operation time of station 4 is 𝑡1 + 𝑡2 + 𝑠𝑑3,2 + 𝑡3

 and the total operation time of station 3 is .= 14 + 10 + 4 + 12 𝑡6 + 𝑠𝑑5,6 + 𝑡5 = 16 + 1 + 23

2.2 Model formulation
This section presents the mathematical model for the SUDLBP with AND/OR precedence. Notations
utilized in the formulation are introduced as follows.

Indices and parameters:
𝑖, 𝑗,ℎ Task/part index, , where is the number of tasks/parts. 𝑖,𝑗 ∈ {1,2,⋯,𝑁} 𝑁
𝑚,𝑛 Sub-station index, , where is the maximum number of stations 𝑚,𝑛 ∈ {1,2,⋯,2𝑀} 𝑀

allowed to be opened.
𝐶𝑇 Given cycle time.
𝑡𝑖 Operation time of performing task .𝑖
ℎ𝑖 1, if part is hazardous; 0, otherwise. 𝑖
𝑑𝑖 Demand; requested quantity of part . 𝑖
ANDP(𝑖) Set of AND predecessor of task .𝑖
ORP(𝑖) Set of OR predecessor of task .𝑖
ORPT Set of tasks which have OR predecessors.
𝑠𝑑𝑗𝑖 Sequence dependent time increment influence of task on task 𝑗 𝑖.
𝑆𝐷 Set of interacting tasks, .𝑆𝐷 = {(𝑖,𝑗)}
𝑆𝐷𝑖 Set of tasks interacting with task 𝑖.
Decision variables:
𝑇𝑚 The completion time of station m.
𝑥𝑖𝑚 1, if task is allocated to substation ; 0, otherwise. 𝑖 𝑚
𝑦𝑖𝑚𝑗 1, if task is allocated to substation and is executed before task ; 0, otherwise. 𝑖 𝑚 𝑗
𝑤𝑖𝑗 1, if task is executed before task ; 0, otherwise.𝑖 𝑗
𝑠𝑖 Sequence of task in the solution.𝑖
𝑧𝑚 1, if station is opened; 0, otherwise.𝑚

On the basis of (Kalayci, Polat et al. 2016), the model formulation is provided as follows to optimize
four objectives utilizing Equations (1)-(19). Here, the sub-stations are numbered and encoded with

 in dealing with the precedence relations (see Figure 3). Specifically, the sub-stations on the [1,2,⋯,2𝑀]
entrance side are coded with in the increasing order of the station indexes; the sub-stations [1,2,⋯,𝑀]
on the exit side are coded with in the decreasing order of the [2 × 𝑀, 2 × 𝑀 ― 1, …,𝑀 + 2,𝑀 + 1]
station indexes.

Min 𝑓1 =
𝑀

∑
𝑚 = 1

𝑧𝑚 (1)

Min 𝑓2 =
𝑀

∑
𝑚 = 1

𝑧𝑚 ∙ (𝐶𝑇 ― 𝑇𝑚)2 (2)

Min 𝑓3 =
𝑁

∑
𝑖 = 1

(𝑠𝑖 ∙ ℎ𝑖) (3)

Min 𝑓4 =
𝑁

∑
𝑖 = 1

(𝑠𝑖 ∙ 𝑑𝑖) (4)

𝑀

∑
𝑚

(𝑥𝑖𝑚 + 𝑥𝑖,2𝑀 + 1 ― 𝑚) = 1 ∀𝑖 (5)

𝑇𝑚 ≤ 𝑧𝑚.𝐶𝑇 ∀𝑚 (6)
𝑁

∑
𝑖 = 1

𝑡𝑖 ∙ (𝑥𝑖𝑚 + 𝑥𝑖,2𝑀 + 1 ― 𝑚) +
𝑁

∑
𝑖 = 1

𝑁

∑
𝑗 = 1

𝑠𝑑𝑗𝑖 ∙ (𝑦𝑖𝑚𝑗 + 𝑦𝑖,2𝑀 + 1 ― 𝑚,𝑗) = 𝑇𝑚 ∀𝑖; ∀(𝑗,𝑖) ∈ 𝑆𝐷 (7)

𝑥𝑖𝑚 ≤
𝑚

∑
𝑛 = 1

𝑥𝑗𝑛 ∀𝑚; ∀𝑖;∀𝑗 ∈ ANDP(𝑖) (8)

𝑥𝑖𝑚 ≤ ∑
𝑗 ∈ ORP(𝑖)

𝑚

∑
𝑛 = 1

𝑥𝑗𝑛 ∀𝑚;∀ 𝑖 ∈ ORPT (9)

 𝑥𝑖𝑚 + 𝑤𝑖𝑗 ≤ 1 + 𝑦𝑖𝑚𝑗 ∀𝑖;∀ 𝑗; ∀𝑚; ∀(𝑗,𝑖) ∈ 𝑆𝐷 (10)
 𝑥𝑖𝑚 ≥ 𝑦𝑖𝑚𝑗 ∀𝑖; ∀ 𝑗; ∀𝑚; ∀(𝑗,𝑖) ∈ 𝑆𝐷 (11)
 𝑤𝑖𝑗 ≥ 𝑦𝑖𝑚𝑗 ∀𝑖; ∀ 𝑗; ∀𝑚; ∀(𝑗,𝑖) ∈ 𝑆𝐷 (12)

 𝑤𝑖𝑖 = 0 ∀𝑖 (13)
𝑤𝑖𝑗 + 𝑤𝑗𝑖 = 1 ∀𝑖,𝑗 and 𝑖 < 𝑗 (14)
𝑤𝑗𝑖 = 1 ∀𝑗 ∈ ANDP(𝑖) (15)

∑
𝑗 ∈ ORP(𝑖)

𝑤𝑗𝑖 ≥ 1 ∀𝑖 ∈ ORPT (16)

𝑥𝑖𝑚 + 𝑥𝑗𝑛 ― 1 ≤ 𝑤𝑖𝑗 ∀𝑖,𝑗,𝑚,𝑛,𝑚 < 𝑛 (17)
 𝑤𝑖ℎ + 𝑤ℎ𝑗 ―1 ≤ 𝑤𝑖𝑗 ∀𝑖,𝑗,ℎ, 𝑖 ≠ ℎ, ℎ ≠ 𝑗 and 𝑖 ≠ 𝑗 (18)

𝑠𝑖 = 𝑁 ―
𝑁

∑
𝑗 = 1

(𝑤𝑖𝑗) (19)

In this model, Equation (1) minimizes the number of opened stations. Equation (2) optimizes the line
balance or the idle time distribution, and this is a non-linear objective. Equation (3) indicates that the
hazardous parts should be removed at first, and Equation (4) ensures that the parts with larger demand
are removed at earlier workstations. Constraint (5) indicates that a task must be allocated to the entrance
side or exit side of one station. Constraint (6) and Constraint (7) handle the cycle time constraint,
indicating that the completion time (including task operation times and sequence dependent times) should
be less than or equal to the cycle time. Constraint (8) and Constraint (9) deal with the precedence
constraint. Constraint (8) ensures that the AND predecessors of a task should be allocated to the former

or the same station. Constraint (9) ensures that at least one of the OR predecessors should be allocated
to the former or the same station. Constraints (10-12) connects the , and , indicating that 𝑥𝑖𝑚 𝑤𝑖𝑗 𝑦𝑖𝑚𝑗

the takes the value of 1 when task is allocated to sub-station and task is executed before 𝑦𝑖𝑚𝑗 𝑖 𝑚 𝑖
task . Constraints (13-18) tackle the calculation of the . Specifically, constraint (14) indicates that 𝑗 𝑤𝑖𝑗

task should be operated before task or task should be operated before task . Constraint (15) 𝑖 𝑗 𝑗 𝑖
indicates that is equal to 1 when task is the AND predecessor of task . Constraint (16) ensures 𝑤𝑗𝑖 𝑗 𝑖
that the sum of is larger than or equal to 1 when task is one of the OR predecessors of ∑

𝑗 ∈ ORP(𝑖)𝑤𝑗𝑖 𝑗

task . Constraint (17) indicates that is equal to 1 when task is allocated to former station than 𝑖 𝑤𝑖𝑗 𝑖
task . Constraint (18) means that task is executed before task when task is executed before task 𝑗 𝑖 𝑗 𝑖

 and task is executed before task . Constraint (19) calculates the sequence of task in the solution. ℎ ℎ 𝑗 𝑖
Recall that the proposed model differentiates from the published models on SDLBP in two aspects.
Firstly, the proposed model is a mixed-integer programming model and this model is capable of solving
the small-size instances optimally utilizing the CPLEX solver for the linear objective or MINLP solver
for the non-linear objective. On the contrary, the published models for SDLBP (Kalayci and Gupta 2013,
Kalayci and Gupta 2013, Kalayci and Gupta 2014, Kalayci, Polat et al. 2016, Wang, Guo et al. 2019)
only help describe the problem and none of the published models is capable of solving the small-size
instances optimally. Technically, all these published models could be regarded as inapplicable. Moreover,
the published models for SDLBP only consider the AND precedence relation, whereas the proposed
model deals with AND precedence relation with Constraint (8) and the OR precedence relation with
Constraint (9) properly. The model is also capable of solving the instances with only AND precedence
relations via disabling Constraint (9).
Secondly, this is the first mathematical model for the SUDLBP and it utilizes Constraint (5), Constraint
(8) and Constraint (9) to handle the AND/OR precedence relations. Nevertheless, none of the published
studies on U-shaped disassembly line (Agrawal and Tiwari 2008, Avikal and Mishra 2012, Avikal, Jain
et al. 2013) has formulated the precedence relations utilizing the mixed-integer programming. For the
models on U-shaped assembly lines, they usually utilize Equations (20)-(22) to deal with the AND
precedence relations (Urban 1998, Urban and Chiang 2006) (see the cited papers for a detailed
description). Here, is the station index and and are the binary variables to describe the task p 𝐴ip 𝐵jp

assignment on the entrance side and exit side; respectively. Here, when task is allocated to 𝐴ip = 1 𝑖
entrance side of station ; and , otherwise. when task is allocated to exit side of 𝑝 𝐴ip = 0 𝐵𝑖𝑝 = 1 𝑖
station ; , otherwise. 𝑝 𝐵𝑖𝑝 = 0

𝑀

∑
𝑝

(𝐴ip + 𝐵𝑗𝑝) = 1 ∀𝑖 (20)

𝑀

∑
𝑝

(𝑀 ― 𝑝 ― 1) ∙ (𝐴ip ― 𝐴jp) = 1 ∀𝑖;∀𝑖 ∈ ANDP(𝑗) (21)

𝑀

∑
𝑝

(𝑀 ― 𝑝 ― 1) ∙ (𝐵jp ― 𝐵ip) = 1 ∀𝑖;∀𝑖 ∈ ANDP(𝑗) (22)

Clearly, this published model divides one station into two sub-stations and utilizes and to 𝐴ip 𝐵𝑗𝑝

describe the task assignment on the entrance side and exit side. Although the basic idea is similar, the
proposed model encodes the sub-stations with (see Figure 3). The precedence relation is [1,2,⋯,2𝑀]
satisfied when all the AND predecessors and at least one of the OR predecessors of one task are assigned

to the former (with larger index) or the same sub-station. Notice that the proposed model has the same
number of variables as the published one (). Another difference between the N ∙ M + N ∙ M = N ∙ (2 ∙ 𝑀)
two approaches is that the proposed model is capable of dealing with the AND/OR precedence relations,
whereas the published one again cannot handle the OR precedence relation.
Following (McGovern and Gupta 2006), (Kalayci and Gupta 2013) and many others, this research
utilizes the hierarchy method in (McGovern and Gupta 2006) to handle these objectives: has the 𝑓1

highest priority, has the second highest priority and it takes effect when cannot be further 𝑓2 𝑓1

improved. The third objective has the third highest priority and it takes effect when and 𝑓3 𝑓1 𝑓2
cannot be further improved. Finally, has the lowest priority and it takes effect when , and 𝑓4 𝑓1 𝑓2 𝑓3

cannot be further improved. Among the objectives and constraints, only in Equation (2) is non-linear 𝑓2

and it is applicable to optimize other objectives utilizing CPLEX solver. Recall that, when utilizing the
MINLP solver to solve several objectives simultaneously, this research utilizes the weighting method
and the objectives with higher priorities are provided with much larger weights.

3. Proposed iterated local search algorithm
As the considered problem is NP-hard in the strong sense, the developed model in Section 2.2 fails to
solve the large-size instances efficiently due to tremendous computation time. Hence, this research also
develops an ILS algorithm to tackle the SUDLBP within acceptable execution time. In contrary to some
sophisticated algorithms, ILS is a simple local search algorithm to be implemented whereas it produces
promising performances in various kinds of combinational optimization problems (Lourenço, Martin et
al. 2003, Stützle 2006, Pan and Ruiz 2012).
ILS starts with constructing an initial high-quality solution with effective heuristic, and later a local
search is applied to improve the quality of this initial solution. Afterwards, a main loop, comprising
perturbation, local search and acceptance criterion, is repeated until a termination criterion is satisfied.
The perturbation aims at obtaining a new different solution to help the algorithm to escape from being
trapped into local optima. The local search is utilized to improve this new solution, and the acceptance
criterion is applied to determine whether this new solution replaces the incumbent one. The outline of
the ILS algorithm is provided in Algorithm 1. From this procedure, it is clear that ILS algorithm is quite
simple and quite easy for implementation. In fact, the main and the most complex part is the local search,
and it is necessary to design an effective local search based on the characteristics of the considered
problem. The solution presentation and the main segments of the ILS are presented in the following
subsections.

Algorithm 1: Procedure of the ILS algorithm
 Obtain an initial high-quality solution;𝜋0←

 Conduct local search on ; % Local search𝜋← 𝜋0

Repeat
 Conduct perturbation on ; % Perturbation 𝜋′← 𝜋
 Conduct local search on ; % Local search𝜋′′← 𝜋′

% Acceptance criterion
 Utilize acceptance criterion to select one solution from and ; 𝜋← 𝜋 𝜋′′

Until termination criterion is satisfied
Output the best solution so far

3.1 Encoding and decoding
The proposed algorithm utilizes the task permutation for encoding following (Kalayci and Gupta 2013),
(Kalayci and Gupta 2014). An encoding example of 4, 7, 8, 5, 6, 3, 1, 2 for the 8-part PC instance is
illustrated in Figure 4. The task in the former position has higher priority and should be assigned at first,
e.g. task 4 should be allocated at first. To transfer the encoding into a feasible solution, an effective
decoding procedure is vital. However, the published decoding procedure for SDLBP cannot be applied
to the SUDLBP due to the special precedence constraint. Hence, it is necessary to modify the decoding
procedure in SDLBP to suit the SUDLBP. For better comparison, the decoding procedure for SDLBP is
first presented in Algorithm 2 as follows, where is the set of unallocated tasks and is the 𝑈 𝑇𝑚

completion time of current station.

Algorithm 2: Decoding procedure for SDLBP
Start
Step 1: When all tasks have been allocated, terminate this procedure; execute Step 2, otherwise.
Step 2: Open a new station for task assignment.
Step 3: Add the tasks, whose predecessors have been allocated, to available task set;
Step 4: Add the tasks to the assignable task set when cycle time constraint is satisfied.

% For task , the cycle time is satisfied when .𝑖 𝑇𝑚 + 𝑡𝑖 + max{0,𝑠𝑑𝑗𝑖} ≤ 𝐶𝑇 ∃𝑗 ∈ 𝑈
Step 5: If the assignable task set is empty, execute Step 1; execute Step 6, otherwise.
Step 6: Select the assignable task in the former position of the task permutation and allocate the

selected task to the current station. Afterwards, go to Step 3.
End

The main procedure of the proposed decoding scheme for SUDLBP is presented in Algorithm 3, where
 is the set of unallocated tasks. The sets and denote the allocated tasks to the entrance side 𝑈 𝐴𝐸𝑛𝑡 𝐴𝐸𝑥

and exit side, respectively. is the completion time of the current station. Clearly, the decoding 𝑇𝑚

procedure for SUDLBP is much more complex than that for SDLBP. As seen, a task is available when
all its predecessors or successors have been allocated. Both the available task set and the assignable task
set need to be divided into two sub-sets: for the entrance side and the exit side. Regarding the cycle time
constraint, both the unallocated tasks and the allocated tasks on the exit side should be 𝑈 𝐴𝐸𝑥

considered as the product is disassembled from the entrance side to the exit side. Hence, the task
operation sequence needs to be recoded to calculate the objective values.

Algorithm 3: Decoding procedure for SUDLBP
Start
Step 1: When all tasks have been allocated, terminate this procedure; execute Step 2, otherwise.
Step 2: Open a new station for task assignment.
Step 3: 1) Add the tasks, whose predecessors have been allocated to the entrance side, to the

available task set on the entrance side;𝐴𝑉𝐸𝑛𝑡

2) Add the tasks, whose successors have been allocated to the exit side, to the available task
set on the exit side;𝐴𝑉𝐸𝑥

Step 4: 1) Add the tasks in to the assignable task set on the entrance side when cycle 𝐴𝑉𝐸𝑛𝑡 𝐴𝑆𝐸𝑛𝑡
time constraint is satisfied;
% For task in , the cycle time is satisfied when 𝑖 𝐴𝑉𝐸𝑛𝑡 𝑇𝑚 + 𝑡𝑖 + max{0,𝑠𝑑𝑗𝑖} ≤ 𝐶𝑇 ∃𝑗 ∈

.𝐴𝐸𝑥⋃𝑈
2) Add the tasks in to the assignable task set on the exit side when cycle time 𝐴𝑉𝐸𝑥 𝐴𝑆𝐸𝑥

constraint is satisfied.
% For task in , the cycle time is satisfied when 𝑖 𝐴𝑉𝐸𝑥 𝑇𝑚 + 𝑡𝑖 + max{0,𝑠𝑑𝑗𝑖} ≤ 𝐶𝑇 ∃𝑗 ∈

.𝐴𝐸𝑥⋃𝑈
Step 5: If both and are empty, execute Step 1; execute Step 6, otherwise.𝐴𝑆𝐸𝑛𝑡 𝐴𝑆𝐸𝑥
Step 6: Select the assignable task in the former position of the task permutation from and 𝐴𝑆𝐸𝑛𝑡

 and allocate the selected task in (or) to the entrance (or exit) side of the 𝐴𝑆𝐸𝑥 𝐴𝑆𝐸𝑛𝑡 𝐴𝑆𝐸𝑥

current station. Afterwards, go to Step 3.
End

Figure 4 illustrates the example solution presentation of the 8-part PC instance in Section 2.1. In this
figure, the solution sequence or the task operation sequence is 1, 2, 3, 6, 5, 8, 7, 4 rather than the 4, 7, 8,
5, 6, 3, 1, 2 in the decoding since the AND predecessors of one task must be allocated to the former sub-
stations (with larger index). On the basis of the solution sequence, the objective values are calculated in
Table 2. In this table, the real removing time of task 6 is and the real removing 𝑡6 + 𝑠𝑑5,6 = 16 + 1
time of task 2 is due to the sequence dependencies. 𝑡2 + 𝑠𝑑3,2 = 10 + 4

4 7 8 5 6 3 1 2

1 2 3 6 5 8 7 4

Task permutation

Solution sequence

Task assignment Station 3Station 1 Station 4

54 7

Station 2

8 6

1 2

3

Sub-station 1 Sub-station 2 Sub-station 3 Sub-station 4

Sub-station 8 Sub-station 7 Sub-station 6 Sub-station 5

Figure 4 Solution presentation

Table 2 Calculation of the objectives
Stations Sub-stations Assigned tasks Removing times of tasks Total time Idle time

Sub-station 1 - -
Station 1

Sub-station 8 7, 4 20, 18
38 2

Sub-station 2 - -
Station 2

Sub-station 7 8 36
36 4

Sub-station 3 - -
Station 3

Sub-station 6 6, 5 16+1, 23
40 0

Sub-station 4 1, 2 14, 10+4
Station 4

Sub-station 5 3 12
40 0

; ;𝑓1 = 4 𝑓2 = 22 + 42 = 20

;𝑓3 = 1 × 0 + 2 × 0 + 3 × 0 + 4 × 0 + 5 × 0 + 6 × 0 + 7 × 0 + 8 × 0 = 0

;𝑓4 = 1 × 360 + 2 × 500 + 3 × 620 + 4 × 750 + 5 × 540 + 6 × 720 + 7 × 295 + 8 × 480 = 19145

3.2 Initialization with modified NEH heuristic
There are several simple heuristics to obtain initial solutions, such as the well-known ranked positional
weight method. However, these heuristics might obtain poor solutions for some instances. Therefore,
this study proposes a modified NEH heuristic based on the well-known NEH heuristic (Ruiz and Stützle
2007) to obtain a high-quality initial solution. The main procedure of the modified NEH heuristic is
presented as follows.

Step 1: An initial task permutation is obtained in the decreasing order of the ranked 𝜋
positional weights (the sum of the operation times of the task and all its successors).

Step 2: The task in the second position of the permutation is removed out and inserted into the
first position, and the better one between the new solution and the incumbent solution
is preserved.

Step 3: The task in the third position of the permutation is removed out and inserted into the
first and the second positions, and the better one between the two new solutions and the
incumbent solution is preserved. This procure is terminated when the task in the last
position is removed out and inserted into all the former positions.

The main differences between the original NEH and the modified NEH lie in two aspects: (i) The original
NEH obtains the initial task permutation based on the task operation times, whereas the modified NEH
achieves the initial task permutation with the ranked positional weight method. (ii) The original NEH
inserts the tasks into all the positions before its original position in the task permutation, and these new
partial solutions are evaluated and the best partial solution is preserved. However, the partial solution is
difficult to be evaluated in terms of the multiple objectives in this paper, and hence this modified NEH
preserves the latter part of the task permutation to obtain a complete solution. As you will see in Section
4.3, this modified NEH produces superior performance than the simple heuristics.

3.3 Improved local search operator
Local search aims at finding the local optimal solution, which is the vital segment of the ILS algorithm.
However, the effective local search operators in flowshop scheduling problem might not produce
satisfying results observed in our preliminary experiments. Hence, this study produces a new local search
with referenced permutation and two neighbor structures. To differentiate the proposed local search
procedure from those published ones, this study exhibits two local search operators (Ruiz and Stützle
2007, Pan and Ruiz 2014).
The first local search applied in (Ruiz and Stützle 2007), referred to as OLS1, is illustrated in Algorithm
4, where means the current solution. Within this local search procedure, a task is removed out from 𝜋

 and inserted into any position of the permutation, and the incumbent permutation is updated only when 𝜋
improvement is achieved. This procedure terminates when no improvement is achieved in 𝑁
consecutive iterations. On the basis of this local search, (Pan and Ruiz 2014) developed an improved
version, referred to as OLS2, by employing a referenced permutation which is the best task permutation
found so far. Instead of removing one task randomly, this new local search removes the tasks in the task
permutation in sequence. Hence, OLS2 ensures that all the tasks are selected in sequence and avoids
selecting the same task again and again.

Algorithm 4: Procedure of OLS1 ()𝜋
; improve: = true

Repeat

;improve: = false
For to do𝑖≔1 𝑁

Remove one task from randomly (without repetition);𝑗 𝜋
 best task permutation by inserting task into any position of permutation 𝜋′← 𝑗 𝜋

(without repetition);
If Fit(𝜋′) < Fit(𝜋)

 and ; 𝜋: = 𝜋′ improve: = true
Endif

Endfor
Until ();improve = false

For the SUDLBP, OLS1 and OLS2 cannot show a satisfying performance due to the special
characteristics of the SUDLBP. Hence, this research develops a new local search approach, referred to
as LS, and the main procedure is illustrated in Algorithm 5. Here, represents the current solution, 𝜋 𝜋𝑟𝑝
is the best task permutation found so far, and and are two parameters. The main features of this 𝑎 𝑏
local search are described as follows. (i) The utilization of makes sure that all tasks are selected in 𝜋𝑟𝑝

sequence and one-by-one. (ii) This study utilizes parameter as the number of the neighbor solutions 𝑎
to speed up the search process. In fact, there are many identical solutions when inserting one task to all
possible positions. (iii) The proposed local search utilizes both insert operator and swap operator to scan
the search space efficiently. The algorithm is terminated when no improvement is achieved after
executing times insert or swap operator for each task.𝑎 × 𝑏
To evaluate the performance of the proposed method, LS is compared with OLS1, OLS2 and two more
versions: OLS3 where the referenced permutation is not employed in Algorithm 5 and OLS4 where only
the insert operator is employed in Algorithm 5. As you will see in Section 4.3, the proposed LS
outperforms the compared two ones, demonstrating the effectiveness of these improvements.

Algorithm 5: Procedure of local search LS ()𝜋,𝜋𝑟𝑝, 𝑎, 𝑏
Set and ;𝑐𝑜𝑢𝑛𝑡𝑒𝑟≔0 𝑖≔1
Repeat

Remove task from ;𝜋𝑟𝑝
𝑖 𝜋

% is the task in the position of the best task permutation ;𝜋𝑟𝑝
𝑖 𝑖th 𝜋𝑟𝑝

For to do𝑗≔1 𝑏
If ()𝑟𝑎𝑛𝑑 ≤ 0.5

 Permutation by inserting task into a randomly selected position in 𝜋′← 𝜋𝑟𝑝
𝑖

 (without repetition);𝜋
Else

 Permutation by exchanging the positions of task and another 𝜋′← 𝜋𝑟𝑝
𝑖

randomly selected task in (without repetition);𝜋
Endif
Set when ;𝑐𝑜𝑢𝑛𝑡𝑒𝑟≔0 Fit(𝜋′) < Fit(𝜋)
% is the fitness of solution ; Fit(𝜋) 𝜋
Replace with when ;𝜋 𝜋′ Fit(𝜋′) ≤ Fit(𝜋)

and ;𝑐𝑜𝑢𝑛𝑡𝑒𝑟≔𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1 𝑖≔1 + mod(i + 1,N)
Endfor

Until ;𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑎 ∙ 𝑁

3.4 Perturbation and acceptance criterion
Perturbation operator aims at exploring new regions and increasing the exploration capacity by
modifying the current task permutation. In the proposed ILS algorithm, perturbation obtains a number of
neighbor solutions (set to 50) by executing a total of times (set to 6) of insert operator and swap 𝛾
operator. The values of parameter should be carefully determined and small value leads to difficulties 𝛾
in escaping from local optima and a large value leads to a completely new solution inheriting little
information from the incumbent solution. Afterwards, the best one among the generated neighbor
solutions is selected as the new solution and local search is conducted to improve this individual.
As for the newly achieved solution, it is necessary to determine whether this solution replaces the
incumbent solution. While there are some studies to utilize the SA acceptance criterion to accept the
worse solution with a certain probability (see (Pan and Ruiz 2012)). For simplicity, this study utilizes
one simple acceptance criterion where the new solution replaces the incumbent one only when the same
or better objective values are obtained.

4. Computational study and results
This section carries out the computational studies to test the proposed model and the algorithm. To have
a better observation of the algorithms’ performance, two sets of benchmarks are solved: the first set
contains two different scale cases taken from the studies on the SDLBP and the second set contains 47
instances by (Kalayci, Polat et al. 2016). The number of tasks in the 47 instances ranges from a small
number of 7 to a large number of 148. Specifically, Mukherjee has 94 tasks, Arcus2 has 111 tasks and
Barthol2 has 148 tasks (see Section 4.3). Moreover, a set of eight algorithms are re-implemented their
performances are compared with the proposed ILS algorithm. These algorithms are hill-climbing
algorithm – HC (McGovern and Gupta 2007), late acceptance hill-climbing algorithm (Yuan, Zhang et
al. 2015), simulated annealing algorithm (SA), tabu search algorithm (TS), genetic algorithm (GA),
artificial bee colony algorithm (ABC), bees algorithm (BA) and particle swarm optimization algorithm
(PSO). The main procedures and utilized parameters of the implemented algorithms are omitted for space
reasons, but they are available upon request.
First of all, the solutions of two different scale cases are given in Section 4.1 and Section 4.2 to compare
the performance of the U-shaped line and the straight line and test the performance of the proposed ILS
algorithm. Subsequently, the improvements on the proposed algorithm are evaluated, where the
performance of the modified NEH heuristic is compared with four simple heuristics and the performance
of the local search is compared with four others. Afterwards, the performance of the proposed ILS is
compared with the model utilizing CPLEX solver or MINLP solver and eight other implemented
algorithms utilizing the first instance set (comparative study-1). Finally, the performance of the proposed
ILS is compared with the hybrid genetic algorithm (Kalayci, Polat et al. 2016) and eight re-implemented
algorithms utilizing the second instance set (comparative study-2).
Notice that, when solving the large-size instances, it is observed that the optimal station numbers cannot
be achieved for some ‘hard’ instances. The reason lies behind is that the line balance optimization is the
secondary objective and the solution with better line balance is preserved when utilizing the hierarchy
method. However, in preliminary experiments, it is observed that the secondary objective, on the contrary,
might be the obstacle to reduce the station number as it is difficult or even impossible to reduce the
station number when the loads are balanced. Also, there is a higher probability of transferring a solution
with less load on the last station into a solution with fewer stations with small modifications. Hence, this

study divides the algorithms into two phases when solving the large-size instances. Phase I utilizes the
objective of minimizing the , with the purpose of reducing the station ns + (𝑇𝑛𝑠 ― 1 + 𝑇𝑛𝑠) (2 ∙ 𝐶𝑇)
number by preserving the solution with less loads on the last two stations. Phase II utilizes the objectives
in Section 2.2 and further optimizes the latter three objectives on the basis of the solution achieved in
Phase I. All algorithms terminate with a computation time limit of 1000s, where Phase I terminates when
the optimal station number is achieved or the computation time reaches to the half of the time limit.
All the algorithms are executed for 20 times to solve each instance. The termination criterion is the CPU
time of 100s for small-size instances with less than 70 tasks and 300s for large-size instances with 70 or
more tasks. These algorithms are programmed in C++ language on an Intel Core i7-4790S 3.20 GHZ
CPU 8.0 GB RAM personal computer. The models are solved utilizing General Algebraic Modeling
System (GAMS) 23.0, and the MILP model is terminated when optimal solution is verified or the
execution time reaches to 3600 s and the MINLP model is terminated when the non-linear programming
(NLP) subproblems start to deteriorate or the execution time reaches to 3600 s.

4.1 Case study 1
The first instance contains 10 parts, referred to as P10, and it is taken from (Kalayci and Gupta 2013).
The precedence diagram of the 10-part product is illustrated in Figure 5 and the database is provided in
Table 3. The sequence dependencies of the 10-part instance are provided as follows: , ; 𝑠𝑑1,4 = 1 𝑠𝑑4,1 = 4

, ; , ; , ; , .𝑠𝑑2,3 = 2 𝑠𝑑3,2 = 3 𝑠𝑑4,5 = 4 𝑠𝑑5,4 = 2 𝑠𝑑5,6 = 2 𝑠𝑑6,5 = 4 𝑠𝑑6,9 = 3 𝑠𝑑9,6 = 1

9

6

5

4
8

3

2

7

1

10

Figure 5 The precedence diagram of 10-part product by (Kalayci and Gupta 2013)

Table 3 Database of the 10-part product by (Kalayci and Gupta 2013)
Task Part removal time Hazardous Demand

1 14 No 0
2 10 No 500
3 12 No 0
4 17 No 0
5 23 No 0
6 14 No 750
7 19 Yes 295
8 36 No 0
9 14 No 360
10 10 No 0

Table 4 presents the best value (Best), average value (Avg) and the standard deviation (S.D.) of the
results by the proposed ILS in solving SDLBP on the straight line and SUDLBP on the U-shaped line
with a cycle time of 40. Figure 6 illustrates the near-optimal task assignment in the straight line and the

U-shaped line. From this table, it is observed that the U-shaped line obtains the smaller value of , and 𝑓2

it is sufficient to conclude that U-shaped line obtains better line balance since the objectives are
considered hierarchically. ILS is capable of obtaining the current best results of SDLBP reported in (Liu
and Wang 2017) at each run, which suggests that the proposed ILS is quite effective and robust. Figure
6 might provide the reasons leading to the superiority of the U-shaped line. In the U-shaped line, tasks
can be allocated to the entrance side and exit side, whereas tasks in a straight line must be allocated to
the entrance side (the straight line can be regarded as the U-shaped line with only entrance side). Clearly,
U-shaped line has higher flexibility and thus obtains superior line balance.

Table 4 Results of P10 for straight line and U-shaped line
Layout Criteria 𝑓1 𝑓2 𝑓3 𝑓4

Best 5 67 5 9605
Avg 5.00 67.00 5.00 9605.00

Straight line

S.D. 0.00 0.00 0.00 0.00
Best 5 61 6 8880
Avg 5.00 61.00 6.00 8880.00

U-shaped line

S.D. 0.00 0.00 0.00 0.00

Station 4 Station 5

U-shaped disassembly line

Straight disassembly line

6 51 7 4

Station 1 Station 2 Station 3

Station 3Station 2Station 1

10 8 9 2 3

Station 4 Station 5

9 1 6 10 5 7 4 8

23

Figure 6 Task assignment of P10 for straight line and U-shaped line

4.2 Case study 2
The second case is a cellular telephone instance with 25 parts, referred to as P25 taken from (Kalayci
and Gupta 2013). The precedence diagram and the database of the 25-part cellular telephone instance are
given in Figure 7 and Table 5; respectively. The sequence dependencies of the cellular telephone instance
are provided as follows: , ; , ; , ; ,𝑠𝑑4,5 = 2 𝑠𝑑5,4 = 1 𝑠𝑑6,7 = 1 𝑠𝑑7,6 = 2 𝑠𝑑6,9 = 2 𝑠𝑑9,6 = 1 𝑠𝑑7,8 = 1

; , ; , ; , ; ,𝑠𝑑8,7 = 2 𝑠𝑑13,14 = 1 𝑠𝑑14,13 = 2 𝑠𝑑14,15 = 2 𝑠𝑑15,14 = 1 𝑠𝑑20,21 = 1 𝑠𝑑21,20 = 2 𝑠𝑑22,25 = 1
.𝑠𝑑25,22 = 2

1 3 9

6

7

8

2

13

14

15

16

A1

17 20

21 22

25

18 19 24

234

5 10 11 12

Figure 7 The precedence diagram of 25-part cellular telephone instance by (Kalayci and Gupta 2013)

Table 5 Database of the 25-part cellular telephone instance by (Kalayci and Gupta 2013)
Task Part name Part removal time Hazardous Demand

1 Antenna 3 Yes 4
2 Battery 2 Yes 7
3 Antenna guide 3 No 1
4 Bolt (Type 1) A 10 No 1
5 Bolt (Type1) B 10 No 1
6 Bolt (Type2) 1 15 No 1
7 Bolt (Type2) 2 15 No 1
8 Bolt (Type2) 3 15 No 1
9 Bolt (Type2) 4 15 No 1
10 Clip 2 No 2
11 Rubber seal 2 No 1
12 Speaker 2 Yes 4
13 White cable 2 No 1
14 Red/blue cable 2 No 1
15 Orange cable 2 No 1
16 Metal top 2 No 1
17 Front cover 2 No 2
18 Back cover 3 No 2
19 Circuit board 18 Yes 8
20 Plastic screen 5 No 1
21 Keyboard 1 No 4
22 LCD 5 No 6
23 Sub-keyboard 15 Yes 7
24 Internal IC board 2 No 1
25 Microphone 2 Yes 4

Table 6 illustrates the detailed results by ILS on both straight line and U-shaped line with a cycle time
of 18. It is clear that the solutions for the straight line and the U-shaped line have the same values of 𝑓1

and , whereas U-shaped line has the smaller value of . This finding suggests that the U-shaped line 𝑓2 𝑓3

is capable of removing the hazardous parts at first. Again, the proposed ILS obtains the current best
results reported in (Liu and Wang 2017) each time in solving the SDLBP, verifying the effectiveness of
the proposed ILS algorithm once again.

Table 6 Results of P25 for straight line and U-shaped line
Layout Criteria 𝑓1 𝑓2 𝑓3 𝑓4

Best 10 9 80 925
Avg 10.00 9.00 80.00 925.00

Straight line

S.D. 0.00 0.00 0.00 0.00
Best 10 9 76 909
Avg 10.00 9.00 77.65 913.40

U-shaped line

S.D. 0.00 0.00 1.53 4.08

4.3 Evaluation of the improvements
This section utilizes the second instance set to evaluate the improvements presented in Section 3. In order
to evaluate the improvements statistically, the non-parametric Friedman rank-based analysis as the
normality of the residuals is violated, where the obtained (average) result for each instance is regarded
as the response variable. Supposed that there are five factors, the best result is provided with a rank of 1
and the worst result is given a rank of 5, and the factor with the smallest rank is regarded as the best
performer.
The modified NEH heuristic is compared with four simple heuristics: ranked positional weight (RPW),
number of successors (NOS), longest operation time (LPT) and smallest task number (STN). Figure 8
illustrates the average ranks regarding and , where the Friedman rank-based analysis shows that 𝑓1 𝑓2

there is a statistically significant difference between the factors in terms of or . As you can see, 𝑓1 𝑓2

the proposed NEH shows a similar performance to RPW, NOS and LPT and the better performance than
STN in terms of . Nevertheless, NEH outperforms other four simple heuristics by a significant margin 𝑓1

in terms of . In summary, this comparative study demonstrates that the proposed NEH has a superior 𝑓2

performance with the cost of more computational effort.

R
an

ks

RPW
NOS

LPT
STN

NEH
0

2

4

6

(a) Ranks in terms of 𝑓1

R
an

ks

RPW
NOS

LPT
STN

NEH
0

2

4

6

(b) Ranks in terms of 𝑓2

Figure 8 Means plot of the average ranks and 95% confidence intervals of the heuristics

R
an

ks

OLS1
OLS2

OLS3
OLS4 LS

0

2

4

6

(a) Ranks in terms of 𝑓1

R
an

ks

OLS1
OLS2

OLS3
OLS4 LS

0

2

4

6

(b) Ranks in terms of 𝑓2

Figure 9 Means plot of the average ranks and 95% confidence intervals of the local search operators

Figure 9 presents the ranks in terms of and by ILS with different local search operators in Section 𝑓1 𝑓2

3.3, where all the algorithms are executed for 20 times. Notice that, as this study utilizes the hierarchy
method in (McGovern and Gupta 2006) and these local search operators have shown clear difference,

the results in terms of other objectives are omitted for space reasons, but they are available upon request.
As you can see, LS outperforms the published two local search methods: OLS1 and OLS2, demonstrating
the effectiveness of the improvements. Also, LS outperforms OLS4 clearly, proving that the utilization
of two neighbor operators is efficient.

4.4 Comparative study-1
This section illustrates the detailed results by all the implemented algorithms for the first instance set in
Table 7. From this table, it is observed that ILS, SA, TS, GA, ABC, BA and PSO are seven best
performers in solving P10, and they outperform all the other algorithms regarding by means of . The 𝑓2

local search algorithm, HC and LAHC, show the worst performance due to being trapped into local
optima. Regarding P25, ILS obtains the best results each time with a standard deviation of 0.0.
Specifically, ILS outperforms HC, LAHC, SA and GA in terms of and outperforms all the other 𝑓2

algorithms in terms of . In order to evaluate the algorithms statistically, this study also carries out the 𝑓3

non-parametric Friedman rank-based analysis, where the obtained result in each run is regarded as the
response variable. The average ranks regarding and in solving P25 are illustrated in Figure 10 𝑓2 𝑓3

as the algorithms achieve the same results in terms of . The statistical analysis suggests that there is a 𝑓1

statistically significant difference (see Figures 10(a) and 10(b)) and the proposed ILS outperforms HC,
LAHC, SA and GA statistically in terms of and TS and ABC statistically in terms of . The 𝑓2 𝑓3

comparative results show that ILS outperform all the algorithms or obtain the same results when solving
P10 and P25, which demonstrates that ILS is quite effective and efficient for the SUDLBP.

Table 7 Results by implemented algorithms
Instances Objectives Criteria HC LAHC SA TS GA ABC BA PSO ILS

Best 5 5 5 5 5 5 5 5 5
Avg 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 𝑓1
S.D. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Best 61 61 61 61 61 61 61 61 61
Avg 63.35 62.60 61.00 61.00 61.00 61.00 61.00 61.00 61.00 𝑓2
S.D. 5.30 2.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Best 6 4 6 6 6 6 6 6 6
Avg 6.25 6.10 6.00 6.00 6.00 6.00 6.00 6.00 6.00 𝑓3
S.D. 0.43 0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Best 8880 8590 8880 8880 8880 8880 8880 8880 8880
Avg 9425.75 9259.00 8880.00 8880.00 8880.00 8880.00 8880.00 8880.00 8880.00

P10

𝑓4
S.D. 945.68 809.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Best 10 10 10 10 10 10 10 10 10
Avg 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 𝑓1
S.D. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Best 9 9 9 9 9 9 9 9 9
Avg 13.70 13.80 10.05 9.00 12.20 9.00 9.00 9.00 9.00 𝑓2
S.D. 2.19 2.50 1.20 0.00 1.60 0.00 0.00 0.00 0.00
Best 75 75 76 77 75 80 76 76 76
Avg 78.95 80.30 80.15 80.95 80.35 81.70 76.40 77.25 76.00 𝑓3
S.D. 3.54 2.90 4.84 2.94 2.15 1.55 0.92 2.28 0.00
Best 873 872 884 916 845 925 909 910 909
Avg 892.15 887.40 906.00 929.30 886.05 932.95 911.35 913.80 909.00

P25

𝑓4
S.D. 15.69 16.20 8.93 7.80 16.78 5.92 3.89 5.98 0.00

Table 8 presents the computational results by the model and ILS algorithm to solve the two models with
different objectives, where N/A means no integer solution found within the time limit given. The first
model is a MILP model to minimize ; the second model is a MINLP to minimize . From 𝑓1 100 × 𝑓1 + 𝑓2

this table, it is observed that CPLEX and ILS obtain the same value of , whereas CPLEX costs a large 𝑓1

amount of time (3600s) when solving P25. Regarding the minimization of , the MINLP 100 × 𝑓1 + 𝑓2

model achieves worse results than ILS when solving P10 and P25 and terminates as the objective function

of the NLP subproblems start to deteriorate. As and have higher priorities and the results are 𝑓1 𝑓2

capable of differentiating the performances of the developed model and ILS algorithm, the objective 𝑓3

and objective are not tested here for simplicity.𝑓4
R

an
ks

HC
LAHC SA TS GA

ABC BA
PSO IL

S
0

2

4

6

8

10

(a) Ranks in terms of 𝑓2
R

an
ks

TS
ABC BA

PSO IL
S

0

2

4

6

(b) Ranks in terms of 𝑓3

Figure 10 Means plot of the average ranks and 95% confidence intervals of algorithms regarding 𝑓2

and when solving the P25𝑓3

Table 8 Results by the developed model and ILS algorithm
Objectives Instance Method 𝑓1 𝑓2 Time (s)

Min 𝑓1 P8 CPLEX 4 - 0.555

ILS 4 - -

P10 CPLEX 5 - 0.701

ILS 5 - -

P25 CPLEX 10 - 3600

ILS 10 - -
Min 100 × 𝑓1 + 𝑓2 P8 MINLP solver 4 20 2.735*

ILS 4 20 -

P10 MINLP solver 5 69 35.637*

ILS 5 67 -

P25 MINLP solver N/A N/A 3600

ILS 10 9 -

*Terminated due to that the objective function of the NLP subproblems started to deteriorate

In summary, the two case studies demonstrate that the U-shaped line is capable of obtaining a better line
balance than traditional straight line due to higher flexibility. The comparative study shows that the
proposed ILS outperforms five other implemented algorithms and the developed models, demonstrating
that ILS is quite effective for the SUDLBP despite being simple.

4.5 Comparative study-2
This section presents the computational results for the second instance set. Table 9 reports the best results
of SDLBP by genetic algorithm with a variable neighborhood search method (VNSGA) (Kalayci, Polat
et al. 2016), the best results of SDLBP by the proposed ILS method and the best results of SUDLBP by
the proposed ILS method in terms of and . Notice that the results by VNSGA is taken from 𝑓1 𝑓2

(Kalayci, Polat et al. 2016) directly and the results in terms of other objectives are available upon request.
It is observed that ILS obtains respectively better and the same results for 7 and 40 instances in term of

 compared with VNSGA. ILS obtains better, the same and worse results for 20, 10 and 17 instances, 𝑓1

respectively, in term of . As this study utilizes the hierarchy method for performance evaluation, it 𝑓2

might be concluded that the proposed ILS performs superior performance. It is also observed that the U-
shaped line is capable of obtaining better line balance than the traditional straight line for most instances.
Specifically, U-shaped line utilizes less station number () for 14 cases and obtains better line balance 𝑓1

() for 40 cases.𝑓2

Table 9 Comparison between VNSGA and ILS
Results of SDLBP by VNSGA Results of SDLBP by ILS Results of SUDLBP by ILSInstances CT f1 f2 f1 f2 f1 f2

Mertens 7 5 10 5 10 5 10
Bowman 20 5 149 5 149 4 13
Jaeschke 7 7 26 7 28 7 28
Jackson 10 5 6 5 6 5 4
Mansoor 94 2 5 2 5 2 5
Mitchell 15 8 31 8 43 8 29
Roszieg 16 8 5 8 5 8 3

Heskiaoff 216 5 628 5 630 5 628
Buxey 30 12 118 12 122 11 6
Lutz1 2,357 7 8.13E+05 7 8.47E+05 7 7.99E+05

Gunther 41 14 1519 14 1735 12 13
Kilbridge 62 9 6 9 6 9 6

Hahn 2,806 6 1.87E+06 6 1.91E+06 5 6
Tonge 168 22 2152 22 1756 22 1672

170 22 3002 22 2660 21 204
173 22 5196 21 1081 21 745
179 21 3459 20 312 20 262
182 20 968 20 912 20 854

Wee-Mag 46 35 983 34 399 34 349
47 33 148 33 116 33 106
49 32 189 32 163 32 155
50 32 347 32 333 32 327
52 31 455 31 443 31 431

Arcus1 3,985 20 9.34E+05 20 9.22E+05 20 8.14E+05
5,048 16 1.76E+06 16 1.76E+06 16 1.67E+06
5,853 14 2.79E+06 14 2.79E+06 13 1.16E+04
6,842 12 4.26E+06 12 4.25E+06 12 3.43E+06
7,571 11 5.37E+06 11 5.54E+06 11 5.37E+06
8,412 10 7.09E+06 10 7.83E+06 10 7.93E+06
8,898 9 2.14E+06 9 2.15E+06 9 2.13E+06
10,816 8 1.49E+07 8 3.75E+07 7 1.10E+01

Lutz2 15 34 63 34 61 33 10
Lutz3 150 12 2050 12 2256 11 6

Mukherjee 201 23 12057 23 14853 21 13
301 15 10137 15 10137 14 6

Arcus2 5,755 27 2.58E+06 27 2.40E+06 27 1.06E+06
7,520 21 3.00E+06 21 2.97E+06 21 2.75E+06
8,847 18 4.38E+06 18 4.59E+06 18 4.41E+06
10,027 16 6.33E+06 16 6.39E+06 16 6.42E+06
10,743 15 7.76E+06 15 7.82E+06 15 7.81E+06
11,378 14 5.76E+06 14 5.72E+06 14 5.68E+06
11,570 14 9.86E+06 14 1.02E+07 14 9.63E+06
17,067 9 1.14E+06 9 1.14E+06 9 1.14E+06

Barthol2 85 52 906 51 293 51 243
89 50 1174 49 425 48 74
91 49 1179 48 504 47 67

　 95 47 1279 46 454 45 53

Table 10 and Table 11 present the results of SUDLBP by the nine implemented algorithms in terms of
and ; respectively. Note that the detailed results for other objectives are also available upon request. 𝑓1 𝑓2

From Table 10, it is observed that ILS obtains the peak performance when solving the largest-size

instance Barthol2. This study also conducts the Friedman rank-based analysis to evaluate these
algorithms, and the statistical analysis shows that there is a statistically significant difference between
the performances of the algorithms. Figure 11 illustrates the ranks in term of , where Figure 11(a) 𝑓1

presents the average ranks for all the instances and Figure 11(b) presents the average ranks for the
instance which algorithms show different performance to highlight the difference. From the Friedman
rank-based analysis, it is observed that ILS is the best performer in terms of , and it outperforms TS, 𝑓1

GA, ABC and BA by a significant margin.

Table 10 Results of SUDLBP in term of by nine implemented algorithms𝑓1
Instances CT HC LAHC SA TS GA ABC BA PSO ILS
Mertens 7 5 5 5 5 5 5 5 5 5
Bowman 20 4 4 4 4 4 4 4 4 4
Jaeschke 7 7 7 7 7 7 7 7 7 7
Jackson 10 5 5 5 5 5 5 5 5 5
Mansoor 94 2 2 2 2 2 2 2 2 2
Mitchell 15 8 8 8 8 8 8 8 8 8
Roszieg 16 8 8 8 8 8 8 8 8 8

Heskiaoff 216 5 5 5 5 5 5 5 5 5
Buxey 30 11 11.05 11 11 11 11 11 11 11
Lutz1 2,357 7 7 7 7 7 7 7 7 7

Gunther 41 12 12 12 12 12.15 12 12 12 12
Kilbridge 62 9 9 9 9 9 9 9 9 9

Hahn 2,806 5.7 5.65 5.6 5.55 5.9 5.85 5.8 6 5.2
Tonge 168 22 22 22 22 22 22 22 21.85 22

170 21.95 21.95 21.95 21.95 22 22 21.9 21 21.8
173 21 21 21 21 21.3 21 21 21 21
179 20 20 20 20 20.5 20 20 20 20
182 20 20 20 20 20 20 20 20 20

Wee-Mag 46 34 34 34 34 34.3 34.95 34 34 34
47 33 33 33 33 33 33 33 33 33
49 32 32 32 32 32 32 32 32 32
50 32 32 32 32 32 32 32 32 32
52 31 31 31 31 31 31 31 31 31

Arcus1 3,985 20 20 20 20 20 20 20 20 20
5,048 16 16 16 16 16 16 16 16 16
5,853 13 13 13 13 13.7 14 13.85 13.4 13
6,842 12 12 12 12 12 12 12 12 12
7,571 11 11 11 11 11 11 11 11 11
8,412 10 10 10 10 10 10 10 10 10
8,898 9 9 9 9 9 9 9 9 9
10,816 8 8 7.95 8 8 8 8 8 7.8

Lutz2 15 33 33 33 33 33.25 33.15 33 33 33
Lutz3 150 11 11 11 11 11.4 11.25 11 11 11

Mukherjee 201 21.25 21.2 21.05 21.95 22 22 22 21.85 21.25
301 14 14 14 14.1 14.9 15 14.85 14.25 14

Arcus2 5,755 27 27 27 27 27 27 27 27 27
7,520 21 21 21 21 21 21 21 21 21
8,847 18 18 18 18 18 18 18 18 18
10,027 16 16 16 16 16 16 16 16 16
10,743 15 15 15 15 15 15 15 15 15
11,378 14 14 14 14 14 14 14 14 14
11,570 14 14 14 14 14 14 14 14 14
17,067 9 9 9 9 9 9 9 9 9

Barthol2 85 51 51 51 51.05 51.9 51.95 51 51 51
89 49 48.9 48.95 49 49.15 49 49 49 48.75
91 48 47.8 47.7 48 48 48 48 48 47.6
95 45.9 45.85 45.95 46 46 46 46 46 45.65

*Best in bold

R
an

ks

HC
LAHC SA TS GA

ABC BA
PSO IL

S
0

2

4

6

8

10

(a) Ranks in term of for all instances𝑓1

R
an

ks

HC
LAHC SA TS GA

ABC BA
PSO IL

S
0

2

4

6

8

10

(b) Ranks in term of for the instances where 𝑓1

algorithms show different performance
Figure 11 Means plot of the average ranks and 95% confidence intervals of the tested algorithm

Table 11 Results of SUDLBP in term of by nine implemented algorithms𝑓2
Instances CT HC LAHC SA TS GA ABC BA PSO ILS
Mertens 7 10 10 10 10 10 10 10 10 10
Bowman 20 13 13 13 13 13 13 13 13 13
Jaeschke 7 28 28 28 28 28 28 28 28 28
Jackson 10 4 4 4 4 4 4 4 4 4
Mansoor 94 5 5 5 5 5 5 5 5 5
Mitchell 15 30.7 31 29.2 30.2 29.7 29 29 30.7 29.1
Roszieg 16 3.2 3.9 3 3 3 3 3 3 3

Heskiaoff 216 634.8 636.4 628.5 631 629.1 628 628 628.4 629.1
Buxey 30 8.4 15.8 9.1 7.7 6.9 6.2 6 6 6.5
Lutz1 2,357 838157 830279 822809 818854 809410 803854 803083 884961 804475

Gunther 41 13 13.4 13 13 55.35 13 13 12.9 13.1
Kilbridge 62 6.2 8.9 6.3 6 6 6 6 6 6

Hahn 2,806 1E+06 1E+06 947087 983009 1E+06 1E+06 1E+06 2E+06 344411
Tonge 168 1805.5 1811.3 3327.5 1716.4 1764.9 1855.9 1701.7 1549.9 1783

170 2690.9 2651.8 3222.4 2443.9 2617 2728.7 2317.1 230.8 2159.8
173 1088.8 1719.7 947.8 800.7 1950.1 1180.5 804.8 830.9 954.1
179 325.6 518.5 291.8 282.7 1848.7 423.3 269.5 280.3 290.8
182 934 1685.7 887.6 882.9 915.1 1024.4 879.9 896.8 879.9

Wee-Mag 46 475.4 457.5 365 375.7 603.6 1174.4 373 404.1 426.7
47 128.5 118 107.3 109.5 114.8 141.9 106.2 129.3 117.3
49 159.9 159.5 156.4 156.1 159.8 182.2 156.4 176.5 159.3
50 337.8 331.5 326.4 326.7 331.5 361.4 327.6 363.4 330.5
52 446.9 444.4 429.8 431.2 439.8 500.2 431.1 474.5 437.8

Arcus1 3,985 838896 835347 830507 815064 843913 914218 821147 907529 827898
5,048 2E+06 2E+06 2E+06 2E+06 2E+06 2E+06 2E+06 2E+06 2E+06
5,853 13515 19389 12100 12551 2E+06 3E+06 2E+06 1E+06 12786
6,842 4E+06 4E+06 3E+06 3E+06 3E+06 4E+06 3E+06 3E+06 4E+06
7,571 6E+06 6E+06 6E+06 6E+06 6E+06 6E+06 5E+06 8E+06 6E+06
8,412 1E+07 1E+07 9E+06 9E+06 9E+06 8E+06 8E+06 1E+07 1E+07
8,898 2E+06 2E+06 2E+06 2E+06 2E+06 2E+06 2E+06 2E+06 2E+06
10,816 4E+07 4E+07 3E+07 3E+07 4E+07 3E+07 3E+07 5E+07 3E+07

Lutz2 15 10.3 16.5 10 10.3 15.05 16.65 10.1 10 10.1
Lutz3 150 6.4 10.7 6 6.7 846.2 545.9 6.1 7.3 6.6

Mukherjee 201 588.25 475.1 121.65 2049.2 2231 2377.9 2155.8 2394.4 564.35
301 14.4 16.5 16.2 646.8 5881 6878.6 5468.2 2253.8 9.6

Arcus2 5,755 1E+06 2E+06 1E+06 1E+06 1E+06 1E+06 1E+06 1E+06 1E+06
7,520 3E+06 3E+06 3E+06 3E+06 3E+06 3E+06 3E+06 4E+06 3E+06
8,847 5E+06 5E+06 5E+06 5E+06 5E+06 5E+06 5E+06 6E+06 5E+06
10,027 7E+06 7E+06 7E+06 7E+06 7E+06 7E+06 6E+06 9E+06 7E+06
10,743 8E+06 8E+06 8E+06 8E+06 8E+06 8E+06 8E+06 1E+07 8E+06
11,378 6E+06 6E+06 6E+06 6E+06 6E+06 6E+06 6E+06 6E+06 6E+06
11,570 1E+07 1E+07 1E+07 1E+07 1E+07 1E+07 1E+07 1E+07 1E+07
17,067 1E+06 1E+06 1E+06 1E+06 1E+06 1E+06 1E+06 1E+06 1E+06

Barthol2 85 259.8 258.4 720.8 276.45 732.9 917.35 259.1 303.6 257.4
89 371.2 346 1045.4 371.1 520.25 704.6 370.1 430.4 294.65
91 414 362.4 678.2 415.5 479.4 727.8 413.2 480 281.3
95 419.4 396.95 1271.1 446 518.3 698.6 433.7 502.6 311.65

Ra
nk

s
HC

LAHC SA TS
PSO IL

S
0

2

4

6

8

Figure 12 Means plot of the average ranks and 95% confidence intervals of the tested algorithm in
term of 𝑓2

From Table 11, it is observed that ILS also obtains the peak performance in term of when solving the 𝑓2
largest-size instance Barthol2. This section also conducts the Friedman rank-based analysis to evaluate
these algorithms and there is a statistically significant difference between the performances of the
algorithms. Figure 12 presents the average ranks in term of , where the six best performers in Figure 𝑓2

11 are tested. Recall that the hierarchy method is applied when evaluating the objectives and ILS has
shown a superior performance in term of over the remaining ones. Clearly, the Friedman rank-based 𝑓1

analysis suggests that the proposed ILS achieves the best performance. In summary, this comparative
study demonstrates that the proposed algorithm achieves a competing performance in comparison with
the other eight re-implemented algorithms.

5. Conclusions and future research
Disassembly lines are widely utilized in disassembling end-of-life products effectively, where sequence-
dependent time increments occur in real-world applications. This research provides the first study to
solve the multi-objective sequence-dependent disassembly line balancing problem in U-shaped lines,
referred to as sequence-dependent U-shaped disassembly line balancing problem (SUDLBP). A mixed-
integer programming model is developed to formulate the SUDLBP. The proposed model utilizes new
expressions to deal with the AND/OR precedence relations by dividing one station into two sub-stations.
It is capable of solving the small-size instances optimally. Due to the NP-hard structure of the considered
problem, a simple and effective iterated local search (ILS) algorithm is developed to tackle the SUDLBP.
The proposed ILS algorithm utilizes a new decoding procedure to obtain a feasible solution, where the
assigned task set is divided into two sub-sets on the entrance side and the exit side. It also utilizes the
modified NEH heuristic to achieve a high-quality initial solution. A new local search procedure with
referenced permutation and two neighbor structures is also employed to emphasize intensification.
Computational results show that the U-shaped layout provides advantages over the traditional straight
lines to maximize line efficiency. The proposed ILS achieves competing performance in comparison
with the eight re-implemented algorithms in the comparative study on two sets of instances. ILS also
outperforms the developed MILP model in search speed and outperforms the MINLP model in terms of
the search speed and the solution quality.
The methodology proposed in this research can easily be adopted by practitioners to have an efficient
disassembly line system. The solution algorithm is easy to implement and can be used for balancing
existing U-shaped disassembly lines. In the case that the problem size is very large in the real case
applications (with hundreds of tasks), the number of neighbor solutions and insert-swap operators may

be increased to escape the local optima. Due to the superiority of the U-shaped layout over the straight
line configuration (as shown in the computational study in this research), straight lines may also be
converted to a U-shaped line and ILS can be used again to optimize the task assignments. However, this
may have some practical difficulties as it may not be possible due to the restrictions caused by some
organizational and/or technological circumstances.
Future research stems from applying this simple and effective ILS algorithm to other disassembly line
balancing problems to study more realistic SUDLBPs. It is also suggested to study the stochastic
SUDLBP, the fuzzy SUDLBP or other uncertainties in real-world applications. Money values for parts
and some cost functions may also be included in the model with the aim of maximizing the total revenue.
It is also interesting to develop some Pareto algorithms (Zhang, Wang et al. 2017, Zhu, Zhang et al. 2018)
to solve multi-objective SUDLBP, and develop some exact methods, such as branch and bound algorithm
(Li, Kucukkoc et al. 2018), to solve the large-size instances optimally.

References
Agrawal, S. and M. K. Tiwari (2008). "A collaborative ant colony algorithm to stochastic mixed-model U-

shaped disassembly line balancing and sequencing problem." International Journal of Production Research

46(6): 1405-1429.

Altekin, F. T. and C. Akkan (2012). "Task-failure-driven rebalancing of disassembly lines." International

Journal of Production Research 50(18): 4955-4976.

Altekin, F. T., L. Kandiller and N. E. Ozdemirel (2008). "Profit-oriented disassembly-line balancing."

International Journal of Production Research 46(10): 2675-2693.

Avikal, S., R. Jain and P. Mishra (2013). "A heuristic for U-shaped disassembly line balancing problems."

MIT International Journal of Mechanical Engineering 3(1): 51-56.

Avikal, S. and P. Mishra (2012). "A new U-shaped heuristic for disassembly line balancing problems."

Internaional Journal of Science 1(1): 2277-7261.

Ding, L.-P., Y.-X. Feng, J.-R. Tan and Y.-C. Gao (2010). "A new multi-objective ant colony algorithm for

solving the disassembly line balancing problem." The International Journal of Advanced Manufacturing

Technology 48(5): 761-771.

Gharaei, A., S. A. Hoseini Shekarabi and M. Karimi (2019). "Modelling And optimal lot-sizing of the

replenishments in constrained, multi-product and bi-objective EPQ models with defective products:

Generalised Cross Decomposition." International Journal of Systems Science: Operations & Logistics: 1-

13.

Gharaei, A., M. Karimi and S. A. Hoseini Shekarabi (2019). "An integrated multi-product, multi-buyer supply

chain under penalty, green, and quality control polices and a vendor managed inventory with consignment

stock agreement: The outer approximation with equality relaxation and augmented penalty algorithm."

Applied Mathematical Modelling 69: 223-254.

Gharaei, A., M. Karimi and S. A. Hoseini Shekarabi (2019). "Joint Economic Lot-sizing in Multi-product

Multi-level Integrated Supply Chains: Generalized Benders Decomposition." International Journal of

Systems Science: Operations & Logistics: 1-17.

Gungor, A. and S. M. Gupta (2001). "A solution approach to the disassembly line balancing problem in the

presence of task failures." International Journal of Production Research 39(7): 1427-1467.

Güngör, A. and S. M. Gupta (1999). Disassembly Line Balancing. Proceedings of the Annual Meeting of the

Northeast Decision Sciences Institute, Newport, RI.

Güngör, A. and S. M. Gupta (2002). "Disassembly line in product recovery." International Journal of

Production Research 40(11): 2569-2589.

Hoseini Shekarabi, S. A., A. Gharaei and M. Karimi (2019). "Modelling and optimal lot-sizing of integrated

multi-level multi-wholesaler supply chains under the shortage and limited warehouse space: generalised

outer approximation." International Journal of Systems Science: Operations & Logistics 6(3): 237-257.

Kalayci, C. B. and S. M. Gupta (2013). "A particle swarm optimization algorithm with neighborhood-based

mutation for sequence-dependent disassembly line balancing problem." The International Journal of

Advanced Manufacturing Technology 69(1): 197-209.

Kalayci, C. B. and S. M. Gupta (2013). "Ant colony optimization for sequence‐dependent disassembly line

balancing problem." Journal of Manufacturing Technology Management 24(3): 413-427.

Kalayci, C. B. and S. M. Gupta (2013). "Artificial bee colony algorithm for solving sequence-dependent

disassembly line balancing problem." Expert Systems with Applications 40(18): 7231-7241.

Kalayci, C. B. and S. M. Gupta (2014). "A tabu search algorithm for balancing a sequence-dependent

disassembly line." Production Planning & Control 25(2): 149-160.

Kalayci, C. B., A. Hancilar, A. Gungor and S. M. Gupta (2015). "Multi-objective fuzzy disassembly line

balancing using a hybrid discrete artificial bee colony algorithm." Journal of Manufacturing Systems 37:

672-682.

Kalayci, C. B., O. Polat and S. M. Gupta (2016). "A hybrid genetic algorithm for sequence-dependent

disassembly line balancing problem." Annals of Operations Research 242(2): 321-354.

Kazemi, N., S. H. Abdul-Rashid, R. A. R. Ghazilla, E. Shekarian and S. Zanoni (2018). "Economic order

quantity models for items with imperfect quality and emission considerations." International Journal of

Systems Science: Operations & Logistics 5(2): 99-115.

Koc, A., I. Sabuncuoglu and E. Erel (2009). "Two exact formulations for disassembly line balancing problems

with task precedence diagram construction using an AND/OR graph." IIE Transactions 41(10): 866-881.

Li, Z., I. Kucukkoc and Z. Zhang (2018). "Branch, bound and remember algorithm for U-shaped assembly

line balancing problem." Computers & Industrial Engineering 124: 24-35.

Liu, J. and S. Wang (2017). "Balancing Disassembly Line in Product Recovery to Promote the Coordinated

Development of Economy and Environment." Sustainability 9(2): 309.

Liu, J., Z. Zhou, D. T. Pham, W. Xu, J. Yan, A. Liu, C. Ji and Q. Liu (2018). "An improved multi-objective

discrete bees algorithm for robotic disassembly line balancing problem in remanufacturing." International

Journal of Advanced Manufacturing Technology 97(9-12): 3937-3962.

Lourenço, H. R., O. C. Martin and T. Stützle (2003). Iterated Local Search. Handbook of Metaheuristics. F.

Glover and G. A. Kochenberger. Boston, MA, Springer US: 320-353.

McGovern, S. M. and S. M. Gupta (2003). 2-opt heuristic for the disassembly line balancing problem.

Proceedings of the SPIE International Conference on Environmentally Conscious Manufacturing III,

Providence, RI.

McGovern, S. M. and S. M. Gupta (2006). "Ant colony optimization for disassembly sequencing with multiple

objectives." The International Journal of Advanced Manufacturing Technology 30(5): 481-496.

McGovern, S. M. and S. M. Gupta (2007). "A balancing method and genetic algorithm for disassembly line

balancing." European Journal of Operational Research 179(3): 692-708.

McGovern, S. M. and S. M. Gupta (2007). "Combinatorial optimization analysis of the unary NP-complete

disassembly line balancing problem." International Journal of Production Research 45(18-19): 4485-4511.

Mete, S., Z. A. Çil, K. Ağpak, E. Özceylan and A. Dolgui (2016). "A solution approach based on beam search

algorithm for disassembly line balancing problem." Journal of Manufacturing Systems 41: 188-200.

Mete, S., Z. A. Çil, E. Özceylan, K. Ağpak and O. Battaïa (2018). "An optimisation support for the design of

hybrid production lines including assembly and disassembly tasks." International Journal of Production

Research 56(24): 7375-7389.

Paksoy, T., A. Güngör, E. Özceylan and A. Hancilar (2013). "Mixed model disassembly line balancing

problem with fuzzy goals." International Journal of Production Research 51(20): 6082-6096.

Pan, Q.-K. and R. Ruiz (2012). "Local search methods for the flowshop scheduling problem with flowtime

minimization." European Journal of Operational Research 222(1): 31-43.

Pan, Q.-K. and R. Ruiz (2014). "An effective iterated greedy algorithm for the mixed no-idle permutation

flowshop scheduling problem." Omega 44: 41-50.

Rabbani, M., N. Foroozesh, S. M. Mousavi and H. Farrokhi-Asl (2019). "Sustainable supplier selection by a

new decision model based on interval-valued fuzzy sets and possibilistic statistical reference point systems

under uncertainty." International Journal of Systems Science: Operations & Logistics 6(2): 162-178.

Rabbani, M., S. A. A. Hosseini-Mokhallesun, A. H. Ordibazar and H. Farrokhi-Asl (2018). "A hybrid robust

possibilistic approach for a sustainable supply chain location-allocation network design." International

Journal of Systems Science: Operations & Logistics: 1-16.

Ren, Y., D. Yu, C. Zhang, G. Tian, L. Meng and X. Zhou (2017). "An improved gravitational search algorithm

for profit-oriented partial disassembly line balancing problem." International Journal of Production

Research 55(24): 7302-7316.

Ren, Y., C. Zhang, F. Zhao, G. Tian, W. Lin, L. Meng and H. Li (2018). "Disassembly line balancing problem

using interdependent weights-based multi-criteria decision making and 2-Optimal algorithm." Journal of

Cleaner Production 174: 1475-1486.

Ren, Y., C. Zhang, F. Zhao, M. J. Triebe and L. Meng (2018). "An MCDM-Based Multiobjective General

Variable Neighborhood Search Approach for Disassembly Line Balancing Problem." IEEE Transactions

on Systems, Man, and Cybernetics: Systems: 1-14.

Ren, Y., C. Zhang, F. Zhao, H. Xiao and G. Tian (2018). "An asynchronous parallel disassembly planning

based on genetic algorithm." European Journal of Operational Research 269(2): 647-660.

Ruiz, R. and T. Stützle (2007). "A simple and effective iterated greedy algorithm for the permutation flowshop

scheduling problem." European Journal of Operational Research 177(3): 2033-2049.

Stützle, T. (2006). "Iterated local search for the quadratic assignment problem." European Journal of

Operational Research 174(3): 1519-1539.

Tsao, Y.-C. (2015). "Design of a carbon-efficient supply-chain network under trade credits." International

Journal of Systems Science: Operations & Logistics 2(3): 177-186.

Urban, T. L. (1998). "Note. Optimal Balancing of U-Shaped Assembly Lines." Management Science 44(5):

738-741.

Urban, T. L. and W.-C. Chiang (2006). "An optimal piecewise-linear program for the U-line balancing

problem with stochastic task times." European Journal of Operational Research 168(3): 771-782.

Wang, S., X. Guo and J. Liu (2019). "An efficient hybrid artificial bee colony algorithm for disassembly line

balancing problem with sequence-dependent part removal times." Engineering Optimization: 1-18.

Xiao, S., Y. Wang, H. Yu and S. Nie (2017). "An Entropy-Based Adaptive Hybrid Particle Swarm

Optimization for Disassembly Line Balancing Problems." Entropy 19(11): 596.

Yuan, B., C. Zhang and X. Shao (2015). "A late acceptance hill-climbing algorithm for balancing two-sided

assembly lines with multiple constraints." Journal of Intelligent Manufacturing 26(1): 159-168.

Zhang, Z., K. Wang, L. Zhu and Y. Wang (2017). "A Pareto improved artificial fish swarm algorithm for

solving a multi-objective fuzzy disassembly line balancing problem." Expert Systems with Applications

86: 165-176.

Zhu, L., Z. Zhang and Y. Wang (2018). "A Pareto firefly algorithm for multi-objective disassembly line

balancing problems with hazard evaluation." International Journal of Production Research 56(24): 7354-

7374.

Özceylan, E., C. B. Kalayci, A. Güngör and S. M. Gupta (2018). "Disassembly line balancing problem: a

review of the state of the art and future directions." International Journal of Production Research: 1-23.

Highlights

 Sequence-dependent U-shaped disassembly line balancing problem (SUDLBP) is introduced

 SUDLBP is modelled mathematically and iterated local search (ILS) is developed

 Efficiency of disassembly lines can be improved converting them into a U-line

 A comprehensive study is carried out to test the performance of the proposed models

 ILS outperforms well-known meta-heuristics including SA, TS, GA, PSO and ABC

Graphical Abstract

4 7 8 5 6 3 1 2

1 2 3 6 5 8 7 4

Task permutation

Solution sequence

Task assignment Station 3Station 1 Station 4

54 7

Station 2

8 6

1 2

3

Sub-station 1 Sub-station 2 Sub-station 3 Sub-station 4

Sub-station 8 Sub-station 7 Sub-station 6 Sub-station 5

