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METHODOLOGIES AND APPLICATION

A comparative study of exact methods for the simple assembly line
balancing problem

Zixiang Li1,2 • Ibrahim Kucukkoc3 • Qiuhua Tang1

� Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Exact methods have shown advanced and promising performance in solving the simple assembly line balancing problem,

known as NP-hard. This research investigates the impact of various structural parameters on the performance of exact

methods, including branching methods, search direction, method to achieve upper bounds, utilized lower bounds, utilized

dominance rules and search strategy. In accordance with the structural parameter evaluation, utilized dominance rules and

search strategy have shown the most important effect on the exact methods’ performance. This research also improves and

re-implements three well-known exact methods [i.e., SALOME, bounded dynamic programming (BDP) heuristic and

branch, bound and remember (BBR) algorithm] using effective parameters. Computational study demonstrates that the

utilization of high-performance structural parameters enhances the performance of exact methods by a significant margin.

The re-implemented BBR method with proper parameters shows clear superiority over all the published exact methods and

might be regarded as the state-of-the-art exact methodology.

Keywords Assembly line balancing � Combinatorial optimization � Heuristics � Branch and bound

1 Introduction

Assembly lines, composed of a set of workstations, are

widely utilized in modern industry to assemble standard-

ized products. The workstations in such lines are connected

via a transportation system, e.g., a conveyer belt, and the

product is assembled from the former workstations to the

subsequent ones. Tasks in the latter workstations cannot be

operated unless all the tasks in the former workstations are

completed. To improve the efficiency of the assembly

lines, assembly line balancing problems attract increasing

attentions from both industry and academia (Scholl and

Becker 2006; Boysen et al. 2007; Battaı̈a and Dolgui

2013). The basic edition of the assembly line balancing

problem is the simple assembly line balancing problem

(SALBP), which is known as NP-hard (Scholl and Becker

2006). As far as the optimization criterion is concerned, the

SALBPs can be divided into three types as follows:

1. SALBP-I: Type I simple assembly line balancing

problem to minimize the number of workstations given

the cycle time;

2. SALBP-II: Type II simple assembly line balancing

problem to minimize the cycle time given the number

of workstations;

Communicated by V. Loia.

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s00500-019-04609-9) con-
tains supplementary material, which is available to autho-
rized users.

& Ibrahim Kucukkoc

ikucukkoc@balikesir.edu.tr

Zixiang Li

zixiangliwust@gmail.com

Qiuhua Tang

tangqiuhua@wust.edu.cn

1 Key Laboratory of Metallurgical Equipment and Control

Technology of Ministry of Education, Wuhan University of

Science and Technology, Wuhan, Hubei, China

2 Engineering Research Center for Metallurgical Automation

and Measurement Technology of Ministry of Education,

Wuhan University of Science and Technology, Wuhan,

Hubei, China

3 Industrial Engineering Department, Balikesir University,

Cagis Campus, 10145 Balikesir, Turkey

123

Soft Computing
https://doi.org/10.1007/s00500-019-04609-9(0123456789().,-volV)(0123456789().,- volV)

Author's personal copy

http://orcid.org/0000-0002-8570-8862
http://orcid.org/0000-0001-6042-6896
https://doi.org/10.1007/s00500-019-04609-9
http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-019-04609-9&amp;domain=pdf
https://doi.org/10.1007/s00500-019-04609-9


3. SALBP-E: Type E simple assembly line balancing

problem to maximize the line efficiency.

This study deals with the SALBP-I, where a set of tasks

is allocated to workstations with the aim of minimizing the

number of workstations. Each task has a positive operation

time, and there are precedence relations among tasks,

resulting in two main constraints needed to be fulfilled:

cycle time constraint and precedence constraint. Cycle time

constraint requires that the total operation time in each

workstation is smaller than or equal to the cycle time given.

Precedence constraint requires that the predecessors of a

task must be allocated to the former workstations or start

earlier when allocated to the same workstation.

1.1 Literature analysis

The applied methodologies to solve SALBP can be parti-

tioned into three categories: heuristic methods, meta-

heuristic methods and exact methods (Battaı̈a and Dolgui

2013). Among the heuristic methods, Hoffman heuristic

(Hoffmann 1963; Fleszar and Hindi 2003; Sternatz 2014)

and beam search (Blum and Miralles 2011; Borba and Ritt

2014; Çil et al. 2017; Borba et al. 2018) produce quite

effective performance in SALBP-I and its variants. As for

metaheuristic methods, there are many studies: genetic

algorithms (Sabuncuoglu et al. 2000), ant colony algo-

rithms (Bautista and Pereira 2007; Blum 2008), tabu search

algorithms (Scholl and Voß 1997; Lapierre et al. 2006) and

many others. Detailed review on algorithms refers to recent

review papers (Scholl and Becker 2006; Battaı̈a and Dolgui

2013). Among these methods, beam-ACO (Blum 2008)

and re-implemented tabu search (Pape 2015) on the basis

of Scholl and Voß (1997) are the best two performers

observed in the computational study in Pape (2015).

Regarding the exact methods, there are many studies:

FABLE (Johnson 1988), EUREKA (Hoffmann 1992) and

OptPack (Nourie and Venta 1991) before the well-known

SALOME (Scholl and Klein 1997, 1999). The comparative

study in Scholl and Klein (1999) showed that SALOME

outperforms the previous ones. After that, there are several

exact methods outperforming SALOME, including the

branch-and-bound algorithm (Liu et al. 2008), the bounded

dynamic programming (BDP) heuristic (Bautista and Per-

eira 2009), the enumeration procedure (Vilà and Pereira

2013) and the branch, bound and remember (BBR) algo-

rithm (Sewell and Jacobson 2012; Morrison et al. 2014).

BBR is a new exact method combining branch-and-bound

algorithm and dynamic programming method. It might be

regarded as the current best performer for SALBP-I since it

achieves the optimality for all the Scholl’s 269 instances in

short running times. This highly effective method has been

later extended to the variants of SALBP, including

U-shaped assembly lines (Yolmeh and Salehi 2017; Li

et al. 2018), integrated worker assignment and line bal-

ancing problem (Vilà and Pereira 2014), robust worker

assignment and line balancing problem (Pereira 2018),

robotic assembly line balancing problem (Borba et al.

2018) and robust assembly line balancing problem (Pereira

and Álvarez-Miranda 2018). There are also many resear-

ches on branch-and-bound methods for the variants of

SALBP: assembly line balancing with station paralleling

(Ege et al. 2009), two-sided assembly line balancing

problem (Wu et al. 2008; Xiaofeng et al. 2010), multi-

manned assembly line balancing problem (Kellegöz and

Toklu 2012), integrated worker assignment and line bal-

ancing problem (Miralles et al. 2008; Borba and Ritt 2014)

and U-shaped assembly line balancing problem with

equipment requirements (Ogan and Azizoglu 2015).

Regarding the SALBP-II, the applied methods could

also be divided into two categories: iterative solution

approaches and direct solution approaches (see Scholl and

Becker (2006) for a detailed review). The iterative solution

approaches are based on the SALBP-I solution methods,

and they solve the SALBP-II by iteratively solving a series

of SALBP-I instances. Among the published methods, the

iterative SALOME-2 (Klein and Scholl 1996) and iterative

beam search (Blum 2010) produce the best performance.

For SALBP-E, it is typically handled by iteratively solving

SALBP-I or SALBP-II instances (Wei and Chao 2011;

Esmaeilbeigi et al. 2015; Kucukkoc and Zhang 2015).

1.2 Motivations and contributions

There are multiple works on BBR methods for SALBP-I.

However, the reasons (parameters and strategies) which

lead to a better performance still need to be analyzed. As

suggested by Morrison et al. (2014), the first motivation of

this study is to carefully investigate the impact of various

structural parameters, where the bidirectional search rule

from SALOME is also tested as a structural parameter.

Notice that this research studies the structural parameters

following the procedure of BBR, since BBR is a hybrid

method combining branch-and-bound algorithm and

dynamic programming method. Variants of branch-and-

bound algorithms and dynamic programming methods can

be developed using different parameters following BBR’s

procedure. Another motivation comes from the fact that the

re-implementation of some exact methods might cause

quite different performances, leading to a possible confu-

sion. For instance, the re-implemented SALOME by Pape

(2015) produces superior performance than the original

SALOME by Scholl and Klein (1997). The analysis of

these structural parameters can help eliminate the possible

confusion. Despite being solved by many exact methods,

research on SALBP-I is needed as there are still many
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unsolved challenging instances in the new dataset intro-

duced in 2013 (Otto et al. 2013). Hence, another motiva-

tion is to develop a more effective method that is capable

of producing the state-of-the-art results and update part of

the current upper bounds. Additionally, the analysis of

these structural parameters can also provide some guide-

lines when extending the BBR to other assembly line

balancing problems.

This research presents a comparative study of exact

methods for the SALBP-I: The cycle time is given and the

goal is to minimize the number of stations. Hence, this

study provides the first attempt to investigate the impact of

various structural parameters on BBR algorithms’ perfor-

mance as suggested by Morrison et al. (2014). The

branching method, the search direction, method to achieve

upper bounds, utilized lower bounds, utilized dominance

rules and search strategy are also tested as the parameters

to reveal the reasons leading to superiority of BBR method.

The well-known SALOME or BDP can be achieved using

one of the combinations of these structural parameters.

This research also re-implements three well-known exact

methods (SALOME, BDP and BBR), and computational

study demonstrates that the utilization of high-performing

structural parameters significantly enhances the perfor-

mance of SALOME, BDP and BBR by a significant mar-

gin. The re-implemented BBR with proper parameters

shows clear superiority in comparison with all published

exact methods and might be regarded as the state-of-the-art

exact methodology. Finally, this research provides several

possible guidelines to extend this method to the variants of

SALBP.

The remainder of this research is organized as follows.

Section 2 provides a detailed description of the BBR

algorithm, and Sect. 3 tests the six structural parameters

along with comparative studies. Section 4 compares the

original exact methods and improved methods using better

parameters and carries out a comprehensive study to

identify the state-of-the-art methodology. Finally, Sect. 5

concludes this paper and provides several research venues.

2 Branch, bound and remember algorithm

BBR is a hybrid method combining the branch-and-bound

algorithm and the dynamic programming method (Sewell

and Jacobson 2012; Morrison et al. 2014; Li et al. 2018).

The main feature of this method is that it stores all the

subproblems searched and checks whether one subproblem

is dominated by a subproblem in memory before branch-

ing. This method produces quite promising results in

SALBP-I and other variants, and it quickly achieves the

optimality for all the Scholl’s 269 instances. Following

subsections present a detailed description of the BBR

method. Recall that BBR is selected to test the parameters

as it hybridizes the branch-and-bound algorithm and

dynamic programming method. The branch-and-bound

algorithms and dynamic programming method might be

achieved as the variants of BBR methods with different

parameters.

2.1 Main procedure of BBR method

The general procedure of BBR is outlined as follows. LB1,

LB2 and LB3 are the three well-known lower bounds (LB)

in Scholl and Klein (1997), and BPLB is the bin packing

lower bound achieved by branch-and-bound solver to solve

the bin packing problem optimally (Sewell and Jacobson

2012). This algorithm consists of three main phases, and

starts with obtaining an upper bound with high-performing

heuristic methods, e.g., modified Hoffman heuristic. Sub-

sequently, the cyclic best-first search in Phase II is con-

ducted, using lower bounds and dominance rules, to

attempt to find new better solutions and update the upper

bound (UB). If Phase II fails to prove the optimality of the

achieved solution, breadth-first search in Phase III is exe-

cuted to attempt to verify the optimality using lower

bounds and dominance rules.

Algorithm 1. The procedure of BBR method

Phase I 1 Determine the search direction

% Decide whether the problem is solved in the forward

direction or in the backward direction

2 Achieve UB with a high-performance heuristic

% Published BBR utilizes modified Hoffman heuristic

3 Calculate the lower bound at the root or LBroot

% LBroot is the maximum value of LB1, LB2, LB3 and

BPLB at the root in the published BBR, and it is also

applicable to employ other lower bounds.

Phase
II

4 If UB[LBroot

Execute cyclic best-first search and update UB when

necessary

% The published BBR employs cyclic best-first search,

and it is also applicable to employ other search

strategies, e.g., depth-first search strategy.

Endif

Phase
III

5 If UB[LBroot and termination criterion is not met

Execute breadth-first search and update UB when

necessary

% The breadth-first search attempts to verify the

optimality of the achieved solution, and only breadth-

first search is allowed.

Endif
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2.2 Branch-and-bound search procedure

This section illustrates the procedure to execute cyclic best-

first search or breadth-first search. In this research, a partial

solution (subproblem) is denoted as

} ¼ A;U; S1; S2; . . .; Smð Þ, where Sj is the set of tasks

assigned to workstation j (j ¼ 1; . . .;m), A refers to the set

of assigned tasks on the former m workstations

(A ¼
Sm

j¼1 Sj) and U is the set of unassigned tasks. In the

procedure, a new non-dominated partial solution

X A;U; S1; S2; . . .; Smð Þ is first selected based on the utilized

search strategy. Afterward, a number of offspring or new

partial solutions Y A0;U0; S1; S2; . . .; Sm; Smþ1ð Þ in deeper

depth are generated. Each new partial solution X is stored

only when it cannot be dominated by lower bounds and

dominance rules.

Algorithm 2. Branch-and-bound search procedure

1 While there is a non-explored partial solution in memory and

the termination criterion is not met

2 Select a new non-dominated partial solution

X A;U; S1; S2; . . .; Smð Þ according to the search strategy

3 While search tree is not empty or the number of generated

station-loads is not larger than a given number (10,000 in

Sewell and Jacobson (2012))

4 Generate a new partial solution

Y A0;U0; S1; S2; . . .; Sm; Smþ1ð Þ in deeper depth based on

subproblem X

5 If Y is a complete solution, update UB when necessary

6 Delete Y if max LB1;LB2; LB3;BPLBf g�UB

% Delete the partial solution which cannot achieve better

upper bound.

7 Delete Y if it is dominated by one of the dominance

rules (maximal load rule, extended Jackson rule, no-

successors rule and memory-based dominance rule)

% In the memory-based dominance rule, Y is dominated

when there is a subproblem Z in memory with the same

assigned task set and the same or smaller lower bound.

8 Store the subproblem Y

9 Endwhile

10 Endwhile

11 Output UB

In the BBR methods, different upper bounds, dominance

rules and search strategies might result in quite different

performances. In the following section, these structural

parameters are tested, including branching method, search

direction, the method to achieve upper bounds, utilized

lower bounds, utilized dominance rules and search strategy

in Phase II.

3 Structural parameter evaluation

This section tests the structural parameters on the BBR

method’s performance, where all the important parameters

are included. Three sets of well-known and hard instances

are solved: Scholl’s 269 instances (Scholl and Klein 1997),

Otto-100 with 100 tasks (Otto, Otto et al. 2013) and Otto-

1000 with 1000 tasks (Otto, Otto et al. 2013), where Otto-

100 has 525 instances and Otto-1000 has 525 instances,

leading to a total number of 1319 instances. The infor-

mation about these instances is available and provided in

the cited papers. The BBR method terminates when the

optimal solution is achieved and verified. It also terminates

if the elapsed computation time reaches 900 s.

To evaluate the performance of BBR method on dif-

ferent instances, this research utilizes several evaluation

criteria as follows. Here, the relative percentage deviation

(RPD) for one instance is calculated with

RPD ¼ 100 � UBsome � LBð Þ=LB, where UBsome is the

achieved UB by one configuration and LB is the maximum

value of lower bounds by all the tested methods and that

reported in Pape (2015).

#OPT The number of instances for which an optimal

solution is found

RPD-Avg The average of the RPD values for all the tested

instances

RPD-Max The maximum of the RPD values for all the tested

instances

RPD-Var The variance of the RPD values for all the tested

instances

CPU-Avg The average running time for the instances solved

During the parameter calibration, there are several set-

tings for each parameter, leading to too many combinations

of the parameters. Due to the hardness of the problem, it

takes a lot of computation time to test all the combinations

of these parameters. Hence, this study tests the parameters

one by one from Sects. 3.1–3.6 with other parameters fixed

to the values in the original BBR method in Morrison et al.

(2014) with minor modifications. The based parameters

remaining fixed are listed as follows.

Branching

methods

The station-oriented branching method with a

maximum number of 10,000 station-loads by

Morrison et al. (2014)

Search

directions

Direction selection method by Morrison et al.

(2014)

Upper bounds Modified Hoffmann heuristic with 10,000 station-

loads by Morrison et al. (2014)

Z. Li et al.
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Lower

bounds

LB1, LB2, LB3, LB6 and BPLB (see Sect. 3.4 for

a detailed description)

Dominance

rules

Maximal load rule, extended Jackson rule, no-

successors rule and memory-based dominance

rule by Morrison et al. (2014).

Search

strategies

Modified cyclic best-first search with b }ð Þ ¼
LB Uð Þ þ I=m� k Uj j (see Sect. 3.6 for a

detailed description)

Subsequently, Sect. 3.7 discusses the interactions

between parameters to achieve the best combinations of the

parameters. The details on tested parameters and compar-

ative study are presented in the following subsections.

3.1 Branching methods

There are two widely utilized branching methods: task-

oriented branching (Johnson 1988; Nourie and Venta 1991)

and station-oriented branching (Hoffmann 1992; Scholl

and Klein 1997, 1999). Regarding task-oriented branching

method, partial solutions are generated by allocating a task

to the current station if all constraints are satisfied or this

task is allocated to the latter station (a new workstation is

open). For station-oriented branching, partial solutions are

created by allocating a set of tasks or a complete station-

load to the next station. Suppose a partial solution

} ¼ A;U; S1; S2; . . .; Smð Þ, a new partial solution is

}0 ¼ A0;U0; S1; S2; . . .; Sm; Smþ1ð Þ. As station-oriented

branching method has shown clear superiority in the lit-

erature (Scholl and Klein 1997, 1999), this article studies

only variants of station-oriented branching method: dif-

ferent maximum numbers of generated station-loads at

each depth and different renumbering methods.

The tested branching methods are summarized in

Table 1, where the suffix denotes the maximum number of

generated station-loads. In this table, BM1 is the original

branching method where the sequence in enumeration

remains unchanged. BM2 renumbers tasks using task time

where the tasks with larger operation times are enumerated

first. BM3 renumbers tasks using positional weight where

the tasks with larger positional weights are enumerated

first. BM4 renumbers tasks using task time and positional

weight where the tasks with larger task times and larger

positional weights are enumerated first. These three

renumbering methods (i.e., BM2, BM3 and BM4) are taken

from a recent study by Li et al. (2018), and they are tested

as they are simple and straightforward. There are also other

renumbering methods [e.g., the renumbering method by

Scholl and Klein (1999)] not tested here.

Table 2 illustrates the detailed results by BBR methods

with different branching methods. It is observed that the

number of 10,000 station-loads produces the best perfor-

mance and it consumes less average computation time than

that of 50,000 station-loads. BM2-10,000, BM3-10,000 and

BM4-10,000 produce better performance than BM1-10,000

regarding the RPD-Avg value, indicating that renumbering

the tasks somewhat enhances the performance of BBR

method. It is also observed that BM3-10,000 is the best

performer in terms of the RPD-Avg indicator, whereas

BM4-10,000 is the best performer in terms of the #OPT

indicator. As RPD-Avg provides the information on solv-

ing all the instances and #OPT provides no information for

the instances that are not solved optimally, this study

selects the factor with the minimum RPD-Avg and RPD-

Var as the best performer. Hence, BM3-10,000 is selected

as the best value and utilized when re-implementing BBR

in Sects. 3.7 and 4.

3.2 Search directions

SALBP-I can be solved either in the forward direction

(tasks are allocated to workstation 1, workstation 2, etc.),

or in the backward direction (tasks are allocated to the last

workstation, the second last workstation, etc.). As some

instances might be easier to solve in the reverse direction,

Hoffmann (1992) spends half of the time searching in the

forward direction and then switches to the backward

direction. However, Scholl and Klein (1997) developed a

bidirectional branching rule to determine whether to per-

form a forward step or backward step to generate the new

partial solution Y A0;U0; S1; S2; . . .; Sm; Smþ1ð Þ based on a

selected subproblem X A;U; S1; S2; . . .; Smð Þ.
Different from bidirectional branching rule, the pub-

lished BBR method utilizes one simple formula to deter-

mine which direction to search (Sewell and Jacobson

2012). Recall that, the direction selection in BBR method

determines whether one problem is solved in forward or

backward direction at the root. In other words, this direc-

tion selection procedure is executed only once for the

whole problem when utilizing the direction selection

method; a mono-directional branching rule is carried out

for each selected partial solution when utilizing the bidi-

rectional branching rule. This section tests four search

directions summarized in Table 3, where the forward

(backward) direction refers to solving the instances in

forward (backward) direction.

Table 4 presents the computational results, and it is

clear that SD4 produces the best performance with the

minimum RPD-Avg value and minimum average compu-

tation time. SD1 is the second-best performer, SD3 is the

third-best performer, and SD2 is the worst performer. For

SD3, the search space is much larger than SD1, SD2 and

SD4 (only forward or backward direction is utilized) and

hence SD3 is outperformed by SD4 utilizing direction

A comparative study of exact methods for the simple assembly line balancing problem
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selection method by Sewell and Jacobson (2012). Notice

that the search directions SD1 and SD2 are theoretically

equivalent, and any difference in performance between

SD1 and SD2 is more attributable to the instances than the

search directions themselves. This comparative study

shows that SD4 is the best performer, indicating that it is

worthwhile to determine the proper search direction before

Table 1 Description of branching methods

Purpose Abbreviation Description

Calibrate the number of maximum

station-loads

BM1-1000 Do not renumber the tasks and the number of maximum station-loads is 1000

BM1-5000 Do not renumber the tasks and the number of maximum station-loads is 5000

BM1-10,000 Do not renumber the tasks and the number of maximum station-loads is 10,000 (this is

utilized in the original BBR method)

BM1-50,000 Do not renumber the tasks and the number of maximum station-loads is 50,000

Calibrate the method of

renumbering the tasks

BM1-10,000 Do not renumber the tasks and the number of maximum station-loads is 10,000 (this is

utilized in the original BBR method)

BM2-10,000 Renumber the tasks using task time

BM3-10,000 Renumber the tasks using positional weight

BM4-10,000 Renumber the tasks using task time and positional weight

Table 2 The results by BBR

methods utilizing different

branching methods

Evaluation criteria #OPT RPD-Avg RPD-Max RPD-Var CPU-Avg

BM1-1000 1135 0.3571 7.6923 1.0049 137.22

BM1-5000 1136 0.3510 6.1538 0.9848 136.81

BM1-10,000 1136 0.3504 6.1538 0.9835 136.86

BM1-50,000 1136 0.3508 6.1538 0.9845 137.47

BM1-10,000 1136 0.3504 6.1538 0.9835 136.86

BM2-10,000 1136 0.3481 5.9048 0.9769 137.19

BM3-10,000 1136 0.3432 6.1538 0.9619 136.58

BM4-10,000 1137 0.3477 6.1538 0.9754 136.78

Best value(s) in bold

Table 3 Description of utilized search directions

Purpose Abbreviation Description

Calibrate the search

direction

SD1 Forward direction

SD2 Backward direction

SD3 Bidirectional branching method by Scholl and Klein (1997)

SD4 Direction selection method by Sewell and Jacobson (2012) (this is utilized in the original BBR

method)

Table 4 The results by BBR

methods utilizing different

search directions

Evaluation criteria #OPT RPD-Avg RPD-Max RPD-Var CPU-Avg

SD1 1131 0.3602 6.1538 0.9931 155.08

SD2 1116 0.6519 7.9681 1.7106 185.76

SD3 1132 0.3862 6.0952 1.0661 155.75

SD4 1136 0.3504 6.1538 0.9835 136.86

Best value(s) in bold
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solving an instance. Hence, SD4 is selected and utilized

when re-implementing BBR in Sects. 3.7 and 4.

3.3 Upper bounds

Effective upper bounds help to decrease the number of

subproblems, and Hoffman heuristic (the original Hoffman

heuristic is referred to as OHH) is a well-known and

effective methodology. OHH builds a solution from station

to station; it generates a number of station-loads for each

station and selects the one with minimum idle time. There

are several other improved adaptations of OHH, and among

them, the modified Hoffmann heuristic (MHH) by Sewell

and Jacobson (2012) produces quite effective performance

with the cost of increased running time.

Suppose that a selected partial solution is

} ¼ A;U; S1; S2; . . .; Smð Þ, a new partial solution is

A0;U0; S1; S2; . . .; Sm; Sm þ 1ð Þ and MHH selects a station-

load with the maximum value of
P

i2Smþ1
ti þ a � wi þ b � Fij j � cð Þ for station mþ 1, where

Smþ1 is the set of tasks allocated to station mþ 1, Fi F
�
i

� �
is

the set of immediate (all) successors of task i, wi is the

positional weight of task i (wi ¼ ti þ
P

j2F�
i
tj), Fij j is the

number of tasks in set Fi, and a, b and c are three

parameters. The values of a, b and c are set as fol-

lows:a;b 2 0; 0:005; 0:010; 0:015; 0:020f g and

c 2 0; 0:01; 0:02; 0:03f g. All the possible combinations of

these factors are tested, and the best one among the

achieved station number is considered to be the UB by

MHH. This section also tests one simple constructive

heuristic as an example: the well-known ranked positional

weight method (Scholl and Becker 2006). This kind of

heuristic might lead to solutions of less quality, but it is

very quick to obtain complete solutions.

Table 5 lists the tested methods to achieve upper

bounds, where the suffix number denotes the maximum

number of generated station-loads, NUB means that no

method is employed to achieve upper bounds and RPW

denotes the ranked positional weight method applied to

achieve upper bounds.

Table 6 illustrates the quality of the solutions by these

methods, and Table 7 presents the results by BBR methods

using upper bounds by these methods, where the presented

time is the whole time by BBR methods and the consumed

time to achieve UB is also included. In Table 6, it is

observed that, among the methods to calibrate the number

of station-loads, the MHH1-50,000 is the best performer

and the utilization of a larger number of station-loads does

not necessarily improve the achieved RPD-Avg value.

Regarding calibrating the methods of obtaining upper

bound, MHH3-10,000 produces the peak performance. The

RPW and OHH-1000 achieve the worst RPD-Avg values,

but they require the minimum running times.

In Table 7, it is observed that the BBR methods with

different upper bounds show similar performance with the

running time increasing. For calibrating the number of

station-loads, MHH1-10,000 produces the best perfor-

mance. MHH1-100,000 produces the second-worst per-

formance as much time is consumed to achieve the upper

bounds, which suggests that the utilization of much time to

obtain the upper bounds is not a good option. For cali-

brating the method of obtaining upper bound, it is observed

that utilization of MHH methods outperforms NUB and

RPW, and the MHH1-10,000 again obtains the best per-

formance. Among the three renumbering methods, MHH3-

10,000 obtains the best performance. To select the best

combination of the number of station-loads and the

renumbering methods, the interaction between the number

of station-loads and the renumbering methods is further

studied in Sect. 3.7.

3.4 Lower bounds

Lower bounds are utilized to prune a partial solution that

cannot achieve a smaller number of stations. The available

lower bounds include the well-known seven lower bounds

(LB1, LB2, LB3, LB4, LB5, LB6 and LB7) (Scholl and

Klein 1997), the LB8 (Fleszar and Hindi 2003), the BPLB

by solving bin packing problem optimally and several other

improved variants (Pape 2015; Pereira 2015). Detailed

descriptions of these lower bounds refer to the cited papers.

This section mainly tests the combinations of the LB1,

LB2, LB3, LB6, BPLB and four other lower bounds as

illustrated in Table 8. LB1, LB2, LB3, LB6, LB4, LB5,

LB7 and LB8 are applied in sequence before utilizing

dominance rules, and BPLB is utilized after utilizing all the

dominance rules as BPLB costs much more time than other

lower bounding methods. Due to its relative ineffectiveness

and tremendous time in solving the very large-size

instances, the BPLB is not utilized when solving the Otto-

1000 with 1000 tasks as suggested by Morrison et al.

(2014).

Table 9 presents the detailed results obtained with the

utilization of different branching methods. It is observed

that the fast LBM4 produces the best result regarding

#OPT and RPD-Avg, and it outperforms LBM1 and LBM3

clearly in terms of #OPT and RPD-Avg. This finding

suggests that the utilization of LB6 and BPLB with the cost

of larger time is worthwhile. Nevertheless, the utilization

of LB4, LB5, LB7 or LB8 leads to poor performance as

much time is consumed to calculate the lower bounds.

Hence, LBM4 is selected and utilized when re-imple-

menting BBR in Sects. 3.7 and 4.
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Table 5 Description of the methods to achieve upper bounds

Purpose Abbreviation Description

Calibrate the number of station-loads MHH1-1000 MHH with 1000 station-loads

MHH1-5000 MHH with 5000 station-loads

MHH1-10,000 MHH with 10,000 station-loads (this is utilized in the original BBR method)

MHH1-50,000 MHH with 50,000 station-loads

MHH1-

100,000

MHH with 100,000 station-loads

Calibrate the method of obtaining upper bound NUB No method is applied to achieve UB

RPW Ranked positional weight method is applied to achieve UB

OHH-10,000 Original MHH with 10,000 station-loads

MHH1-10,000 MHH with 10,000 station-loads (this is utilized in the original BBR method)

MHH2-10,000 Renumber the tasks using task time

MHH3-10,000 Renumber the tasks using positional weight

MHH4-10,000 Renumber the tasks using task time and positional weight

Table 6 The quality of the

achieved upper bounds
Evaluation criteria #OPT RPD-Avg RPD-Max RPD-Var CPU-Avg

MHH1-1000 891 1.6403 20.0000 2.8001 0.42

MHH1-5000 893 1.6423 20.0000 2.8100 1.31

MHH1-10,000 893 1.6422 20.0000 2.8083 1.79

MHH1-50,000 894 1.6386 20.0000 2.8074 2.35

MHH1-100,000 893 1.6395 20.0000 2.8068 2.72

RPW 325 4.1932 50.0000 4.6077 0.00

OHH-10,000 764 2.2901 20.0000 3.3886 0.04

MHH1-10,000 893 1.6422 20.0000 2.8083 1.79

MHH2-10,000 891 1.6480 20.0000 2.8143 1.35

MHH3-10,000 899 1.6143 20.0000 2.7938 1.51

MHH4-10,000 893 1.6407 20.0000 2.8122 2.06

Best value(s) in bold

Table 7 The results by BBR

methods utilizing different

upper bounds

Evaluation criteria #OPT RPD-Avg RPD-Max RPD-Var CPU-Avg

MHH1-1000 1135 0.3528 6.1538 0.9882 136.93

MHH1-5000 1136 0.3507 6.1538 0.9840 137.58

MHH1-10,000 1136 0.3504 6.1538 0.9835 136.86

MHH1-50,000 1136 0.3505 6.1538 0.9839 137.54

MHH1-100,000 1135 0.3519 6.1538 0.9846 137.88

NUB 1135 0.3530 5.9615 0.9861 150.82

RPW 1133 0.3522 5.9813 0.9813 149.72

OHH-10,000 1136 0.3519 5.7540 0.9900 140.55

MHH1-10,000 1136 0.3504 6.1538 0.9835 136.86

MHH2-10,000 1134 0.3551 6.1538 0.9901 136.90

MHH3-10,000 1136 0.3508 6.1538 0.9844 137.71

MHH4-10,000 1136 0.3510 6.1538 0.9842 137.72

Best value(s) in bold
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3.5 Dominance rules

Dominance rules are employed to prune the dominated

partial solutions to reduce the search tree. Table 10 illus-

trates the tested dominance rules in Sewell and Jacobson

(2012) to test the effect of these dominance rules on the

performance of BBR. Detailed descriptions of these dom-

inance rules refer to Scholl and Klein (1997) and Sewell

and Jacobson (2012).

Table 11 illustrates the results by BBR methods utiliz-

ing different dominance rules. It is clear that the BBR

methods with memory-based dominance rule (DRM3 and

DRM4) outperform the BBR methods without memory-

based dominance rule (DRM1 and DRM2), indicating that

memory-based dominance rule enhances the performance

of BBR method by a significant margin. It is also observed

that the utilization of more dominance rules enhances the

performance of BBR method. Hence, DRM4 is selected

and utilized when re-implementing BBR in Sects. 3.7 and

4.

Table 8 Description of utilized lower bounds

Purpose Abbreviation Description

Calibrate the LB1, LB2, LB3, LB6 and

BPLB

LBM1 Only LB1, LB2 and LB3 are utilized

LBM2 LB1, LB2, LB3 and LB6 are utilized

LBM3 LB1, LB2, LB3 and BPLB are utilized (this is utilized in the original BBR

method)

LBM4 LB1, LB2, LB3, LB6 and BPLB are utilized

Calibrate other lower bounds LBM4 LB1, LB2, LB3, LB6 and BPLB are utilized

LBM5 LB1, LB2, LB3, LB6, BPLB and LB4 are utilized

LBM6 LB1, LB2, LB3, LB6, BPLB and LB5 are utilized

LBM7 LB1, LB2, LB3, LB6, BPLB and LB7 are utilized

LBM8 LB1, LB2, LB3, LB6, BPLB and LB8 are utilized

Table 9 The results by BBR

methods utilizing different

lower bounds

Evaluation criteria #OPT RPD-Avg RPD-Max RPD-Var CPU-Avg

LBM1 1120 0.3820 5.1331 0.9915 162.16

LBM2 1135 0.3519 6.1538 0.9845 137.16

LBM3 1131 0.3637 5.1331 0.9762 144.30

LBM4 1136 0.3504 6.1538 0.9835 136.86

LBM4 1136 0.3504 6.1538 0.9835 136.86

LBM5 1112 0.6474 9.9404 1.7209 164.60

LBM6 1112 0.6215 9.9404 1.6608 162.79

LBM7 1136 0.3529 5.6391 0.9892 137.53

LBM8 1110 0.9326 10.4762 2.3856 167.00

Best value(s) in bold

Table 10 Description of utilized dominance rules

Purpose Abbreviation Description

Calibrate the

dominance rules

DRM1 Only maximal load rule and extended Jackson rule are utilized

DRM2 Maximal load rule, extended Jackson rule and no-successors rule are utilized

DRM3 Maximal load rule and memory-based dominance rule are utilized

DRM4 Maximal load rule, extended Jackson rule, no-successors rule and memory-based dominance rule are

utilized (this is utilized in the original BBR method)
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3.6 Search strategies

Search strategies determine the order in which subprob-

lems are explored, and this order has an important impact

on the computation time of BBR method. There are several

well-known search strategies: depth-first search (DFS)

(Scholl and Klein 1997), best-first search (BFS) (Yolmeh

and Salehi 2017), breadth-first search (BrFS) and cyclic

best-first search (CBFS) (Sewell and Jacobson 2012).

DFS begins with selecting one subproblem at depth 1,

then selects one subproblem at depth 2 and subsequently

selects one subproblem successively at deeper depth until

the deepest depth is reached. DFS returns to the top of the

tree after exhausting all subproblems within that sub-tree.

Namely, DFS first exhausts the search at the deepest depths

before coming back to the previous ones. BFS always

searches the best node in terms of an evaluation function or

bound. BFS is heavily based on the selection criterion, and

improper selection criterion might lead to poor perfor-

mance or large running time to achieve a complete solu-

tion. BrFS is a heavy and slow search strategy; it generates

all subproblems at depth 1, depth 2 and finally at the

deepest depth until the complete optimal solution is

achieved. One clear drawback is that this method is very

slow and the search procedure might terminate due to the

time limit before a complete solution is achieved in solving

large-size instances. However, BrFS might be utilized to

prove the optimality of some hard instances when a tight

UB is achieved by other search strategies (Sewell and

Jacobson 2012).

CBFS is a hybrid of DFS and BFS, and it begins with

selecting one subproblem at depth 1, then selects one

subproblem at depth 2 and subsequently selects one sub-

problem successively at deeper depth until the deepest

depth is reached. When the deepest depth is reached, again

one subproblem at depth 1 is selected and this procedure is

repeated until the optimal solution is achieved or a termi-

nation criterion is satisfied. Namely, CBFS searches the

best node at a given depth and cyclically changes the

current depth. Li et al. (2018) developed a modified cyclic

best-first search, referred to as MCBFS, using a new

selection criterion, in which subproblem at depth l is not

chosen if there is plenty of promising subproblems (10,000

in this paper) at depth lþ 1. This modified edition avoids

too many subproblems at one depth and increases the speed

to achieve high-quality and complete solutions.

Apart from the aforementioned search strategies, there is

another search strategy applied in dynamic programming

method (Bautista and Pereira 2009). In this research, this

search strategy is denoted as beam search strategy (BSS) as

this strategy is quite similar to beam search heuristic. In

BSS, there are two parameters: the number of subproblems

selected at each depth and the maximum number of station-

loads for one selected subproblem. In other words, the BSS

differentiates from DFS and CBFS in that BSS selects

several best subproblems at each depth but DFS and CBFS

only select one best subproblem at each depth. All the DFS,

BFS, CBFS, MCBFS and BSS are tested in this section as

presented in Table 12. BrFS is not tested here as BrFS

cannot obtain a complete solution in solving very large-size

instances within an acceptable amount of time.

For DFS, BFS, CBFS and BSS, the selection criterion is

a necessary and important part and there are several dif-

ferent published selection criteria. Suppose that b }ð Þ is

utilized to evaluate one subproblem }

(} ¼ A;U; S1; S2; . . .; Smð Þ). The one, among the subprob-

lems, with the minimum value of b }ð Þ is regarded as the

best subproblem and selected. Table 12 presents the uti-

lized strategies along with several different selection cri-

teria, where CT is the given cycle time, ti is the operation

time of task i, I is the total idle time in the former m

stations, k is an input number (set to 0.02), LB Uð Þ is the

lower bound of unassigned task set U and Uj j is the number

of unassigned tasks. For MCBFS methods, the subproblem

at depth l is not selected if there are 10,000 subproblems at

depth lþ 1. Regarding the BSS-a-b, the first number a is

the maximum number of states, maintained from one stage

to the following stage, and the second number b is the

maximum number of states developed from a state. The

subproblem at depth l is not chosen if there are 10; 000

subproblems at depth lþ 1.

Table 13 presents the results utilizing different search

strategies. Regarding the station-load selection criterion, it

is clear that this is quite a big difference among different

station-load selection criteria. Among the six MCBFS

methods, MCBFS-S5 and MCBFS-S6 obtain the best per-

formance, whereas MCBFS1 and MCBFS3 show clearly

poor performance. Notice that the selection criterion S5 in

Table 11 The results by BBR

methods utilizing different

dominance rules

Evaluation criteria #OPT RPD-Avg RPD-Max RPD-Var CPU-Avg

DRM1 1075 0.6980 10.0760 1.7284 206.47

DRM2 1075 0.6601 9.9609 1.6614 206.35

DRM3 1135 0.3900 6.7308 1.0710 141.90

DRM4 1136 0.3504 6.1538 0.9835 136.86

Best value(s) in bold
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MCBFS-S5 and the selection criterion S6 in MCBFS-S6

are equivalent when utilizing DFS, CBFS and MCBFS.

However, these two different selection criteria might pro-

duce different performances when utilizing BFS strategy.

This finding suggests that the utilization of the effective

station-load selection criterion has great impact on the

performance of BBR algorithm. As for calibrating the two

parameters of beam search strategy, the BSS-S6-10-5000 is

the best performer in terms of the solution quality or CPU-

Avg. Specifically, BSS-S6-10-5000 outperforms BSS-S6-

5-1000, BSS-S6-10-1000, BSS-S6-5-5000 and BSS-S6-5-

10,000 in terms of solution quality and BSS-S6-10-10,000

in terms of CPU-Avg.

Regarding the search strategies, it is observed that BSS-

S6-10-5000 is the best performer in terms of RPD-Avg.

MCBFS-S6 is the second-best performer, and it shows

slightly better performance than CBFS-S6 in terms of

RPD-Avg and CPU-Avg. BFS6 and DFS-S6 are the worst

two performers in terms of #OPT and RPD-Avg. In this

study, both MCBFS6 and BSS-S6-10-5000 are selected and

tested when re-implementing BBR in Sects. 3.7 and 4.

3.7 The interaction between parameters

This section aims at testing the possible interactions

between the components and tries to find an effective

combination of the parameter values that achieves a better

performance. Nevertheless, there are many combinations

of the parameters and it is impractical to test all combi-

nations. Hence, this section mainly tests two sets of com-

binations as follows. For each parameter, only two or three

effective factors are selected and tested.

The first combinations are conducted to determine the

best method to achieve the upper bound, and Table 14

presents the detailed computational results utilizing the six

combinations of the number of the station-loads and the

utilization of the renumbering methods. It is observed that

the MHH1-10,000 is the best performer and MHH3-1000 is

the second-best performer. Nevertheless, the best method

might be different under different termination criteria. The

initial experiments show that MHH3-1000 produces the

better performance than MHH1-10,000 when the compu-

tation time is short (180 s and 500 s) as less time is utilized

for the branch-and-bound procedure when utilizing MHH1-

10,000. Hence, MHH3-1000 is selected when re-imple-

menting BBR in the latter part of Sects. 3.7 and 4 as the

algorithms are tested under three termination criteria

Table 12 Description of the utilized search strategies

Purpose Abbreviation Description

Calibrate the station-load

selection criterion

MCBFS-S1 Modified cyclic best-first search with b }ð Þ ¼ CT �
P

i2Sm ti

MCBFS-S2 Modified cyclic best-first search with b }ð Þ ¼ I

MCBFS-S3 Modified cyclic best-first search with b }ð Þ ¼ LB Uð Þ
MCBFS-S4 Modified cyclic best-first search with b }ð Þ ¼ I=m� k Uj j

(this load selection criterion is utilized in the

original BBR method)

MCBFS-S5 Modified cyclic best-first search with b }ð Þ ¼ LB Uð Þ � 10 � mþ I=m� k Uj j
MCBFS-S6 Modified cyclic best-first search with b }ð Þ ¼ LB Uð Þ þ I=m� k Uj j

Calibrate the two parameters

of beam search strategy

BSS-S6-5-1000 Beam search strategy with b }ð Þ ¼ LB Uð Þ þ I=m� k Uj j
BSS-S6-10-1000 Beam search strategy with b }ð Þ ¼ LB Uð Þ þ I=m� k Uj j
BSS-S6-5-5000 Beam search strategy with b }ð Þ ¼ LB Uð Þ þ I=m� k Uj j
BSS-S6-10-5000 Beam search strategy with b }ð Þ ¼ LB Uð Þ þ I=m� k Uj j
BSS-S6-5-10,000 Beam search strategy with b }ð Þ ¼ LB Uð Þ þ I=m� k Uj j
BSS-S6-10-10,000 Beam search strategy with b }ð Þ ¼ LB Uð Þ þ I=m� k Uj j

Calibrate the search strategy DFS-S6 Depth-first search with b }ð Þ ¼ LB Uð Þ þ I=m� k Uj j
BFS-S6 Best search strategy with b }ð Þ ¼ LB Uð Þ þ I=m� k Uj j
CBFS-S6 Cyclic best-first search with b }ð Þ ¼ LB Uð Þ þ I=m� k Uj j

(this search strategy is utilized in the original BBR method)

MCBFS-S6 Modified cyclic best-first search with b }ð Þ ¼ LB Uð Þ þ I=m� k Uj j
BSS-S6-10-1000 Beam search strategy with b }ð Þ ¼ LB Uð Þ þ I=m� k Uj j
BSS-S6-5-5000 Beam search strategy with b }ð Þ ¼ LB Uð Þ þ I=m� k Uj j
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(180 s, 500 s and 900 s). Notice that the gap between the

methods to obtain upper bounds is very small (within

0.01%) and hence it is acceptable to select any of these

tested MHH methods.

The second combinations are tested to study the inter-

actions between three important parameters: lower bounds,

station-load selection criteria and the search strategies.

Only the two effective factors are tested here, leading to a

total number of eight combinations. Table 15 provides the

combinations of these three parameters and computational

results utilizing the parameter combinations. From this

table, it is observed that the combination of LBM4 and

BSS-S6-10-5000 achieves the best performance in terms of

RPD-Avg. The combination of LBM4 and MCBFS-S6

shows the best performance in terms of #OPT and a similar

performance in terms of RPD-Avg.

From the above parameter evaluation, it might be con-

cluded that the superiority of the BBR method is mainly

attributed to two aspects: proper dominance rules (mainly

the utilization of the memory-based dominance rule) and a

proper search strategy (the search strategy with a proper

station-load selection criterion). The above findings also

reveal the reasons leading to the high performance of the

published BBR methods (Sewell and Jacobson 2012;

Morrison et al. 2014) (mainly due to the memory-based

dominance rule and a good search strategy). It also clarifies

the reasons why re-implemented SALOME and BDP by

Pape (2015) produce a clearly better performance (namely

good search strategy).

4 Computational study

This section improves and re-implements three well-known

exact methods (SALOME, BDP and BBR) using the

effective parameters as experimented in Sect. 3. To our

Table 13 The results by BBR

methods utilizing different

search strategies

Evaluation criteria #OPT RPD-Avg RPD-Max RPD-Var CPU-Avg

MCBF-S1 1118 0.8594 10.7692 2.2382 152.13

MCBF-S2 1136 0.5727 8.5938 1.5112 137.79

MCBF-S3 1105 0.5981 8.0078 1.5822 158.22

MCBF-S4 1136 0.5564 8.2031 1.4809 137.92

MCBF-S5 1136 0.3504 6.1538 0.9835 136.86

MCBF-S6 1136 0.3504 6.1538 0.9835 136.86

BSS-S6-5-1000 1134 0.3437 7.6923 0.9614 138.51

BSS-S6-10-1000 1135 0.3310 7.6923 0.9292 138.27

BSS-S6-5-5000 1135 0.3371 5.4206 0.9387 137.70

BSS-S6-10-5000 1136 0.3255 5.2336 0.9073 138.41

BSS-S6-5-10,000 1135 0.3376 5.4206 0.9400 138.16

BSS-S6-10-10,000 1136 0.3255 5.2336 0.9073 138.67

DFS-S6 1114 0.6575 9.9609 1.7728 154.42

BFS-S6 1094 0.7304 9.9404 1.8536 171.97

CBFS-S6 1136 0.3507 6.1538 0.9840 136.87

MCBFS-S6 1136 0.3504 6.1538 0.9835 136.86

BSS-S6-10-5000 1136 0.3255 5.2336 0.9073 138.41

Best value(s) in bold

Table 14 The six combinations

and results by BBR methods

utilizing these combinations

Evaluation criteria #OPT RPD-Avg RPD-Max RPD-Var CPU-Avg

MHH1-1000 1135 0.3476 6.1538 0.9697 136.66

MHH3-1000 1136 0.3441 6.1538 0.9636 136.42

MHH1-5000 1136 0.3470 6.1538 0.9706 137.53

MHH3-5000 1136 0.3470 6.1538 0.9706 137.38

MHH1-10,000 1136 0.3432 6.1538 0.9619 136.58

MHH3-10,000 1136 0.3461 5.9813 0.9740 136.54

Best value(s) in bold
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best knowledge, the best versions of SALOME and BDP

are reported in Pape (2015) which produce the best results;

however, the codes are not available. Hence, this study

presents two comparative studies to evaluate the re-im-

plemented methods as follows. (1) The results by the re-

implemented algorithms under three termination criteria

(180 s, 500 s and 900 s) are compared with the published

results in the literature. (2) The re-implemented algorithms

are compared with the original version (if the code is

available) and several versions utilizing the original

parameter settings. All the re-implemented algorithms are

coded in C ?? programming language, and experiments

are conducted on a set of virtual machines (each has one

virtual processor and 8 GB of RAM) in a tower type of

server. The server is equipped with two Intel Xeon E5-

2680 v2 processors (40 processor cores) at 2.8 GHz and

64 GB of RAM memory.

The details of these re-implemented methodologies are

clarified as follows. Regarding the re-implemented SAL-

OME, referred to ISALOME, the applied parameter values

are: branching method with a maximum number of 10,000

station-loads (BM1-10,000) as branching method, bidirec-

tional branching method (SD3) as search direction, MHH

with 1000 station-loads (MHH-1000) as upper bound, LB1,

LB2, LB3, LB6 and BPLB (LBM4) as lower bounds,

maximal load rule, extended Jackson rule, no-successors

rule and memory-based dominance rule (DRM4) as dom-

inance rules and modified cyclic best-first search with

b }ð Þ ¼ LB Uð Þ þ I=m� k Uj j (MCBFS-S6) as search

strategy. Regarding the re-implemented BDP, referred to as

IBDP, the applied parameter values are: branching method

with a maximum number of 10,000 station-loads (BM1-

10,000) as branching method, direction selection method

(SD4) as search direction, MHH with 1000 station-loads

(MHH-1000) as upper bound, LB1, LB2, LB3, LB6 and

BPLB (LBM4) as lower bounds, only memory-based

dominance rule as dominance rule and beam search

strategy with b }ð Þ ¼ LB Uð Þ þ I=m� k Uj j (BSS-S6-5-

5000) as search strategy.

Regarding the re-implemented BBR, this study develops

two versions, referred to as IBBR1 and IBBR2. Both

IBBR1 and IBBR2 utilize the branching method with a

maximum number of 10,000 station-loads and renumbering

the tasks using positional weight (BM3-10,000) as

branching method, direction selection method (SD4) as

search direction, MHH with 1000 station-loads (MHH-

1000) as upper bound, LB1, LB2, LB3, LB6 and BPLB

(LBM4) as lower bounds, maximal load rule, extended

Jackson rule, no-successors rule and memory-based dom-

inance rule (DRM4) as dominance rules. Nevertheless,

IBBR1 utilizes the modified cyclic best-first search with

b }ð Þ ¼ LB Uð Þ þ I=m� k Uj j (MCBFS-S6) as search

strategy, whereas IBBR2 utilizes the beam search strategy

with b }ð Þ ¼ LB Uð Þ þ I=m� k Uj j (BSS-S6-10-5000) as

search strategy.

4.1 Comparison with published results

To the authors’ best knowledge, the recently re-imple-

mented SALOME by Pape (2015), referred to as SAL-

OME-Pape, is currently the best version of the SALOME

algorithm. The re-implemented BDP by Pape (2015),

referred to as BDP-Pape, is the current best version among

the studies on BDP. The BBR by Morrison et al. (2014),

referred to as BBR-Morrison, is the current best version of

BBR method which also produces achieving competing

results. Hence, this section compares the results published

by these three methods with the results by re-implemented

methods in this paper. Notice that the SALOME-Pape and

BDP-Pape were run on a 2.8 GHz processor with 4 GB of

RAM, and the BBR-Morrison was run on a single core of

an Intel Core i7-930 2.8 GHz processor with 12 GB of

RAM.

Table 15 The combinations of three parameters and the corresponding results by BBR methods

Lower bound Search strategy with station-load selection criterion #OPT RPD-Avg RPD-Max RPD-Var CPU-Avg

LBM4 MCBFS-S4 1136 0.5517 8.3984 1.4648 136.98

LBM4 MCBFS-S6 1136 0.3441 6.1538 0.9636 136.42

LBM4 BSS-S4-10-5000 1135 0.5382 6.1753 1.3928 138.96

LBM4 BSS-S6-10-5000 1135 0.3221 5.2336 0.9011 139.11

LBM7 MCBFS-S4 1135 0.5561 7.4349 1.4692 137.76

LBM7 MCBFS-S6 1136 0.3444 6.1538 0.9651 136.94

LBM7 BSS-S4-10-5000 1135 0.5381 6.7308 1.3962 139.47

LBM7 BSS-S6-10-5000 1135 0.3231 5.4206 0.9060 139.53

Best value(s) in bold
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Table 16 presents the detailed results published and that

by re-implemented methods for Scholl’s 269 instance (re-

ferred to as Scholl-269), Otto-100 with 100 tasks and Otto-

1000 with 1000 tasks. Here, RPD reports the average of the

RPD values for all the tested instances and the tested

methods terminate when the optimal solution is found and

verified or the maximum computation time limit is reached.

From this table, it is clear that the re-implemented ISA-

LOME is enhanced greatly by using these high-performing

parameters and it achieves all the optimal solutions for

Scholl-269 instances for the first time. Additionally, it

outperforms the SALOME-Pape (Pape 2015) for both Otto-

100 and Otto-1000 by a significant margin with the allowed

maximum time of 900 s. Regarding the re-implemented

IBDP, it is also improved greatly by achieving all the

optimal solutions for Scholl-269 instances and outper-

forming BDP-Pape (Pape 2015) for both Otto-100 and

Otto-1000 with shorter running time. As for the two IBBR

methods, they outperform the BBR-Morrison (Morrison

et al. 2014) for both Otto-100 and Otto-1000 with shorter

running times. Surprisingly, IBBR1 improves the RPD

value from 1.21 to 0.84 for Otto-1000; IBBR1 improves

the RPD value from 1.21 to 0.78 for Otto-1000 with less

running times. Among all the exact methods in Table 16, it

is observed that BBR1 and BBR2 are the best two per-

formers, where the BBR2 with beam search strategy pro-

duces clearly better performance for Otto-1000.

4.2 Comparison among re-implemented
methods

To further evaluate the improvements proposed by the re-

implemented algorithms, this section compares the re-im-

plemented algorithms with the original version (if the code

is available) and several versions utilizing the original

parameter settings.

To evaluate the ISALOME, two versions of SALOME

are tested here: (1) SALOME-O1 where the depth-first

search in Scholl and Klein (1997) is utilized; (2) SAL-

OME-O2 where the station-load selection criterion in

Scholl and Klein (1997) (b }ð Þ ¼ LB Uð Þ) is utilized. The

proposed IBDP is compared with the two versions of the

BDP method: (1) BDP-O1 where all the instances are

solved in the forward direction as proposed in Bautista and

Pereira (2009); (2) BDP-O2 where the station-load selec-

tion criterion in Pape (2015) (b }ð Þ ¼ I) is utilized. The

proposed IBBR methods are compared with two versions

of the BBR method: (1) BBR-O1 where all the parameters

are set as that in Morrison et al. (2014); (2) BBR-O2 where

the original station-load selection criterion in Morrison

et al. (2014) (b }ð Þ ¼ I=m� k Uj j) is utilized. Notice that

the BBR-O1 corresponds to the original BBR method in

Morrison et al. (2014), which might be regarded as the

current best exact algorithm. BBR-O1 utilizes the branch-

ing method with a maximum number of 10,000 station-

loads (BM1-10,000) as branching method, direction

Table 16 Comparison between published results and the results by re-implemented methods

Instances Scholl-269 Otto-100 Otto-1000

Algorithm #OPT RPD Time limit (s) #OPT RPD Time limit (s) #OPT RPD Time limit (s)

SALOME-Pape 259 – 180 441 0.41 180 323 1.09 900

ISALOME 268 0.01 180 502 0.09 180 346 1.20 180

269 0.00 500 509 0.06 500 348 1.02 500

269 0.00 900 512 0.05 900 349 0.93 900

BDP-Pape 268 – 180 494 0.13 180 350 1.38 900

– – – 500 0.09 3600 350 1.20 3600

IBDP 269 0.00 180 504 0.10 180 344 1.09 180

269 0.00 500 514 0.04 500 350 0.96 500

269 0.00 900 514 0.04 900 350 0.90 900

BBR-Morrison 269 0.00 3600 515 0.04 3600 350 1.21 3600

IBBR1 269 0.00 180 510 0.06 180 350 1.09 180

269 0.00 500 517 0.03 500 350 0.93 500

269 0.00 900 517 0.03 900 350 0.84 900

IBBR2 269 0.00 180 506 0.08 180 348 1.17 180

269 0.00 500 516 0.03 500 350 0.86 500

269 0.00 900 516 0.03 900 350 0.78 900

Best value(s) in bold
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selection method (SD4) as search direction, MHH with

10,000 station-loads (MHH-10,000) as upper bound, LB1,

LB2, LB3 and BPLB (LBM3) as lower bounds, maximal

load rule, extended Jackson rule, no-successors rule and

memory-based dominance rule (DRM4) as dominance

rules and cyclic best-first search with b }ð Þ ¼ I=m� k Uj j
(CBFS-S4) as search strategy.

Table 17 presents the detailed results by all the re-im-

plemented methods. From this table, it is observed that the

proposed ISALOME outperforms SALOME-O1 and

SALOME-O2 under all the three termination criteria,

demonstrating the proper parameters enhance the perfor-

mance of SALOME by a significant margin. Similarly, the

proposed IBDP outperforms BDP-O1 and BDP-O2 and the

proposed IBBR1 and IBBR2 outperform BBR-O1 and

BBR-O2 under all the three termination criteria. In sum-

mary, all the re-implemented exact methods benefit from

the proper parameter setting, and these re-implemented

exact methods show clearly better performance than their

original editions. Moreover, re-implemented BBR methods

again achieve the best performance, and they might be

regarded as the new state-of-the-art exact methods for

SALBP-I.

5 Conclusion and future research

This study presents a comparative study of exact methods

in solving Type I simple assembly line balancing problem

(SALBP-I) to minimize the number of workstations within

the given cycle time. The various structural parameters

(including branching method, search direction, method to

achieve upper bounds, utilized lower bounds, utilized

dominance rules and search strategy) are carefully

Table 17 Comparison between

the SALOME methods, BDP

methods and BBR methods

Time limit Evaluation criteria #OPT RPD-Avg RPD-Max RPD-Var CPU-Avg

180 s SALOME-O1 1067 0.7651 10.3846 1.8775 39.92

SALOME-O2 1087 0.7474 10.2857 1.9334 39.15

ISALOME 1116 0.5150 8.1905 1.3619 35.24

BDP-O1 1105 0.4963 7.6923 1.2463 38.80

BDP-O2 1119 0.7441 7.8000 1.8560 34.36

IBDP 1117 0.4715 7.6923 1.2281 34.33

BBR-O1 1125 0.5983 7.9696 1.5471 32.14

BBR-O2 1128 0.6773 8.3984 1.7463 30.54

IBBR1 1129 0.4569 7.4144 1.2425 30.36

IBBR2 1123 0.4978 10.1392 1.3162 31.86

500 s SALOME-O1 1093 0.7067 10.3846 1.8331 103.43

SALOME-O2 1102 0.6737 9.1797 1.7938 99.85

ISALOME 1126 0.4322 7.0342 1.1759 90.99

BDP-O1 1125 0.4141 5.9813 1.0936 95.97

BDP-O2 1130 0.6778 7.8000 1.7249 85.49

IBDP 1133 0.4012 5.9813 1.0862 85.67

BBR-O1 1131 0.5381 7.9696 1.4144 82.68

BBR-O2 1136 0.5870 8.3984 1.5503 78.80

IBBR1 1136 0.3800 6.3462 1.0614 78.53

IBBR2 1135 0.3543 5.5888 0.9810 80.62

900 s SALOME-O1 1099 0.6910 10.3846 1.8159 177.37

SALOME-O2 1103 0.6382 8.8462 1.6960 172.64

ISALOME 1130 0.3882 6.4762 1.0709 156.71

BDP-O1 1128 0.3872 5.9813 1.0392 163.76

BDP-O2 1132 0.6465 7.2835 1.6567 146.04

IBDP 1133 0.3775 5.9813 1.0306 146.50

BBR-O1 1132 0.4965 7.6172 1.3033 144.09

BBR-O2 1136 0.5517 8.3984 1.4648 136.98

IBBR1 1136 0.3441 6.1538 0.9636 136.42

IBBR2 1135 0.3221 5.2336 0.9011 139.11

Best value(s) in bold
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investigated. Computational study shows that different

parameters lead to quite different performances and a

proper parameter setting significantly improves the per-

formance of an exact method. Based on the structural

parameter evaluation, three well-known exact methods are

improved and re-implemented [well-known SALOME,

bounded dynamic programming (BDP) heuristic and

branch, bound and remember (BBR) algorithm]. The

comparative study indicates that the re-implemented

algorithms show clearly better performance than the orig-

inal editions. Among these methods, the improved BBR is

the best performer by outperforming the published results

clearly and might be regarded as the new state-of-the-art

exact algorithm.

During the investigation of the structural parameters,

several conclusions are achieved as follows.

1. Regarding branching method, the branching method

with 10,000 station-loads produces the best perfor-

mance. The task renumbering methods show better

performance, where renumbering the tasks using

positional weight is the best performer.

2. Regarding the search direction, the direction selection

method by Sewell and Jacobson (2012) produces the

best results. The bidirectional branching method by

Scholl and Klein (1997) is outperformed by the

direction selection method probably due to the larger

search space needed by the bidirectional branching

method.

3. Regarding the methods to achieve upper bounds, they

show a similar performance when being embedded into

the BBR method although they obtain quite different

upper bounds. Also, utilizing much time to achieve

tighter upper bounds might result in increased overall

running time (time for obtaining an upper bound and

executing BBR procedure).

4. Regarding lower bound, the utilization of bin packing

lower bound and LB6 produces better results. Never-

theless, using LB4, LB5 and LB8 leads to a poor

performance as much time is consumed to calculate the

lower bounds.

5. Regarding the dominance rule, the memory-based

dominance rule is quite effective and the utilization

of the memory-based dominance rule improves BBR’s

performance. The utilization of more dominance rules

also enhances the performance of BBR method.

6. Regarding the search strategy, the station-load selec-

tion criterion is quite important and the criterion of

b }ð Þ ¼ LB Uð Þ þ I=m� k Uj j is the best performer,

where I is the total idle time in the former m stations, k
is an input number (set to 0.02), LB Uð Þ is the lower

bound of unassigned task set U, and Uj j is the number

of unassigned tasks. Cyclic best-first search, modified

cyclic best-first search and beam search strategy show

clear superiority over the depth-first search strategy

and the best-first search strategy.

In future, the findings of this research might be applied

to enhance the BBR methods in other variants of the

assembly line balancing problem, including U-shaped

assembly lines, two-sided assembly lines (Li et al. 2017),

multi-manned lines (Kucukkoc et al. 2019) and many

others. Future research might take into account other

tighter time consuming lower bounds summarized by

Scholl and Klein (1997) and Pereira (2015) and investigate

the sequence of utilizing the lower bounds and dominance

rules. The memory-based rule might be enhanced by

combining with other dominance rules to compare two sub-

solutions stored and eliminate the dominated one. It is also

suggested to study the relationship between the problem

complexity and the necessary number of station-loads at

each depth and subsequently develop more proper settings

of the number of station-loads (rather than 10,000 for all

instances).
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