
Introduction to Eclipse

Overview
•  Eclipse Background
•  Obtaining and Installing Eclipse
•  Creating a Workspaces / Projects
•  Creating Classes
•  Compiling and Running Code
•  Debugging Code
•  Sampling of Features
•  Summary

What is Eclipse?
•  Eclipse started as a proprietary IBM product (IBM Visual

age for Smalltalk/Java)
–  Embracing the open source model IBM opened the product up

•  Open Source
–  It is a general purpose open platform that facilitates and

encourages the development of third party plug-ins
•  Best known as an Integrated Development Environment

(IDE)
–  Provides tools for coding, building, running and debugging

applications
•  Originally designed for Java, now supports many other

languages
–  Good support for C, C++
–  Python, PHP, Ruby, etc…

Prerequisites for Running Eclipse
•  Eclipse is written in Java and will thus

need an installed JRE or JDK in which to
execute
– JDK recommended

Eclipse on GL
•  This years coordinated release (known as

Ganymede) of the Eclipse IDE for Java
Developers has been installed on GL
– From any of the Linux machines in the labs

simply run the command eclipse

Obtaining Eclipse
•  Eclipse can be downloaded from…

– http://www.eclipse.org/downloads/packages/
– Be sure to grab “Eclipse IDE for Java

Developers”
•  Eclipse comes bundled as a zip file

(Windows) or a tarball (all other operating
systems)
– Some versions of Linux (i.e. Fedora, Ubuntu)

offer Eclipse in their respective repositories
and can be downloaded using the appropriate
tool (i.e. yum, apt-get)

Installing Eclipse
•  Simply unwrap the zip file to some

directory where you want to store the
executables

•  On windows
–  I typically unwrap the zip file to C:\eclipse\
–  I then typically create a shortcut on my

desktop to the eclipse executable
•  C:\eclipse\eclipse.exe

•  Under Linux
–  I typically unwrap to /opt/eclipse/

Launching Eclipse
•  Once you have the environment setup, go ahead

and launch eclipse
•  You should see the following splash screen…

Selecting a Workspace
•  In Eclipse, all of your code will live under a workspace
•  A workspace is nothing more than a location where we

will store our source code and where Eclipse will write
out our preferences

•  Eclipse allows you to have multiple workspaces – each
tailored in its own way

•  Choose a location where you want to store your files,
then click OK

Welcome to Eclipse
•  The first time you

launch Eclipse, you
will be presented with
a welcome screen

•  From here you can
access an overview to
the platform, tutorials,
sample code, etc…

•  Click on the arrow on
the right to get to the
actual IDE

Eclipse IDE Components

Menubars

Full drop down menus plus quick
access to common functions

Editor Pane

This is where we edit
our source code

Perspective Switcher

We can switch between
various perspectives

here

Outline Pane

This contains a hierarchical
view of a source file

Package Explorer Pane

This is where our projects/
files are listed

Miscellaneous Pane

Various components can appear in this
pane – typically this contains a console

and a list of compiler problems

Task List Pane

This contains a list of
“tasks” to complete

Creating a New Project
•  All code in Eclipse needs to live under a project
•  To create a project: File  New  Java Project

Creating a New Project (continued)
•  Enter a name for the

project, then click
Finish

Creating a New Project (continued)
•  The newly created project should then appear

under the Package Explorer

The src folder
•  Eclipse automatically creates a folder to store

your source code in called src

Creating a Class
•  To create a class, simply click on the New

button, then select Class

Creating a Class (continued)
•  This brings up the new

class wizard
•  From here you can

specify the following...
–  Package
–  Class name
–  Superclass
–  Whether or not to include a

main
–  Etc…

•  Fill in necessary
information then click
Finish to continue

The Created Class
•  As you can see a number of things have now

happened…

Directory structure for
package and actual java file

created automatically
Source is loaded into the

editor pane, already
stubbed out Source displayed in a

hierarchical fashion listing
each method name

Compiling Source Code
•  One huge feature of Eclipse is that it

automatically compiles your code in the
background
–  You no longer need to go to the command prompt

and compile code directly
•  This means that errors can be corrected when

made
–  We all know that iterative development is the best

approach to developing code, but going to shell to do
a compile can interrupt the normal course of
development

–  This prevents going to compile and being surprised
with 100+ errors

Example Compilation Error
•  This code contains a typo in the println

statement…

Packages/Classes
with errors are

marked with a red X

Often Eclipse may have
suggestions on how to fix the
problem – if so, a small light

bulb will be displayed next to the
line of offending code

Error underlined with red
squiggly line (just like

spelling errors in many
word processors)

Methods with
errors are marked

with a red X

Position in file is
marked with a red
line – 1 click allows
you to jump to line

with error

The Problems tab will contain a
tabular representation of all errors
across all files of all open projects

Example Compilation Error (continued)
•  When clicking on the light bulb, Eclipse suggests

changing printn to either print or println

Running Code
•  An easy way to run code is to right click on the

class and select Run As  Java Application

Running Code (continued)
•  The output of running the code can be seen in

the Console tab in the bottom pane

Run Configuration
•  Advanced options for executing a program can be found

by right clicking the class then clicking Run As  Run…

Run Configuration (continued)
•  Here you can

change/add any of
the following:
–  JVM arguments
–  Command line

arguments
–  Classpath settings
–  Environment

variables
–  Which JVM to use

Re-Running Code
•  After you run the code a first time, you can re-run it just

by selecting it from the run drop down menu

Debugging Code
•  Eclipse comes with a pretty good built-in debugger
•  You can set break points in your code by double clicking in the left

hand margin – break points are represented by these blue bubbles

Debugging Code (continued)
•  An easy way to enter debug mode is to right click on the

class and select Debug As  Java Application

Debugging Code (Continued)
•  The first time you try to debug code you will be

presented with the following dialog

•  Eclipse is asking if you want to switch to a perspective
that is more suited for debugging, click Yes

•  Eclipse has many perspectives based on what you are
doing (by default we get the Java perspective)

Debug Perspective

List of breakpoints

These buttons allow you
to step through the code

Note new Debug
perspective – click Java to

return to normal

Variables in scope are listed here
along with their current values (by right

clicking you can change values of
variables as you program is running)

Current high level location
(class and method)

This pane shows the current
line of code we broke on

Output console, just like
in normal run mode

Sampling of Some Other Features
•  Import organization
•  Context assist
•  Javadoc assist
•  Getter/Setter generation
•  Add unimplemented methods
•  Exception handling
•  Reminders
•  Local history

Import Organization
•  Eclipse can automatically include import statements for any classes

you are using, just press Control + Shift + o (letter o)

Import Organization (continued)
•  If the class is ambiguous (more than one in the

API) then it will ask you to select the correct one

Import Organization (continued)
•  Import statements automatically included and organized

–  You can organize imports to clean them up at any time

Context Assist
•  If you are typing and press a “.” character and pause a second,

Eclipse will show you a list of all available methods for the class
–  Prevents having to browse javadocs to see what methods are available
–  Get context assist at any time by pressing Control + Space

Javadoc Assist
•  Eclipse can also help generate javadoc comments for you, simply

place the cursor before the method and then type “/**” then Enter

Javadoc Assist (continued)
•  Eclipse will automatically generate a javadoc header for the method

all stubbed out with the parameters, return type and exceptions

Getter/Setter Generation
•  Eclipse can automatically generate getters and

setters for member of a class…

Getter/Setter Generation (continued)
•  To generate getters and setters, right click in the main pane, then

select Source  Generate Getters and Setters

Getter/Setter Generation (continued)
•  Here you can

selectively choose
members for which to
generate getters and
setters

Getter/Setter Generation (continued)
•  Eclipse will then automatically generate the code

for the getters and setters

Add Unimplemented Methods
•  Eclipse can also stub out methods that need to be

present as a result of implementing an interface…

Add Unimplemented Methods (continued)

•  You can use the quick fix light bulb to add the
interfaces unimplemented methods to the class

Add Unimplemented Methods (continued)

•  Again Eclipse will go ahead and stub out the
method for us

Exception Handling
•  Eclipse will also pickup on unhandled exceptions

Exception Handling (continued)

•  By clicking on the quick fix light bulb, Eclipse can
suggest what to do to handle the exception

Exception Handling (continued)
•  Eclipse can automatically add a “throws

declaration” to the method signature

Exception Handling (continued)
•  Alternately, Eclipse can also wrap the code

inside a try/catch block

Tasks
•  Eclipse allows you to insert reminders into your code and

stores them for you to come back and revisit them
•  Eclipse recognizes

the following tags
inside comments…
–  TODO
–  FIXME
–  XXX

•  You can even add
your own custom
tasks through the
preferences menu

Tasks (continued)
•  To add a table of all reminders in all of your source code you can

add the Tasks view by clicking on Window  Show View  Tasks

Tasks (continued)
•  This neatly displays all tasks in a tabular form

Local History
•  Eclipse maintains a local history of file revisions which can be accessed by

right clicking on the class, then selecting Compare With  Local History…

Local History (continued)
•  Previous saved revisions are displayed in the History pane, double

click a revision to view in the built-in diff viewer

Summary
•  Benefits

–  Code completion
–  Faster code/compile/

run cycles (real time)
–  Open source (free)
–  Extensible (plugins)

•  Disadvantages
–  Pretty heavyweight
–  Requires JRE
–  Learning Curve

