
© Copyright IBM Corporation 2010, 2017 Trademarks
Introduction to Java programming, Part 1: Java language basics Page 1 of 53

Introduction to Java programming, Part 1: Java
language basics
Object-oriented programming on the Java platform

J Steven Perry August 24, 2017
(First published July 19, 2010)

Get an introduction to the structure, syntax, and programming paradigm of the Java™ language
and platform in this two-part tutorial. Learn the Java syntax that youre most likely to encounter
professionally and Java programming idioms you can use to build robust, maintainable Java
applications. In Part 1, master the essentials of object-oriented programming on the Java
platform, including fundamental Java syntax. Get started with creating Java objects and adding
behavior to them, and conclude with a summary of Java coding best practices, covering ample
ground in-between.

View more content in this series

Find out what to expect from this tutorial and how to get the most out of it.

About this tutorial

The two-part Introduction to Java programming tutorial is meant for software developers who
are new to Java technology. Work through both parts to get up and running with object-oriented
programming (OOP) and real-world application development using the Java language and
platform.

This first part is a step-by-step introduction to OOP using the Java language. The tutorial begins
with an overview of the Java platform and language, followed by instructions for setting up a
development environment consisting of a Java Development Kit (JDK) and the Eclipse IDE. After
you're introduced to your development environment's components, you begin learning basic Java
syntax hands-on.

Part 2 covers more-advanced language features, including regular expressions, generics, I/O,
and serialization. Programming examples in Part 2 build on the Person object that you begin
developing in Part 1.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
https://developer.ibm.com/author/steve.perry/
http://www.ibm.com/developerworks/views/java/libraryview.jsp?search_by=tutorial%2C+perry&Submit.x=0&Submit.y=0
http://www.ibm.com/developerworks/java/tutorials/j-introtojava2/index.html
http://www.ibm.com/developerworks/java/tutorials/j-introtojava2/index.html

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 2 of 53

Objectives
When you finish Part 1, you'll be familiar with basic Java language syntax and able to write simple
Java programs. Follow up with "Introduction to Java programming, Part 2: Constructs for real-world
applications" to build on this foundation.

Prerequisites
This tutorial is for software developers who are not yet experienced with Java code or the Java
platform. The tutorial includes an overview of OOP concepts.

System requirements
To complete the exercises in this tutorial, you will install and set up a development environment
consisting of:

• JDK 8 from Oracle
• Eclipse IDE for Java Developers

Download and installation instructions for both are included in the tutorial.

The recommended system configuration is:

• A system supporting Java SE 8 with at least 2GB of memory. Java 8 is supported on Linux®,
Windows®, Solaris®, and Mac OS X.

• At least 200MB of disk space to install the software components and examples.

Java platform overview
Java technology is used to develop applications for a wide range of environments, from consumer
devices to heterogeneous enterprise systems. In this section, get a high-level view of the Java
platform and its components.

The Java language
Get to know the Java APIs

Most Java developers constantly reference the official online Java API documentation—
also called the Javadoc. By default, you see three panes in the Javadoc. The top-left pane
shows all of the packages in the API, and the bottom-left pane shows the classes in each
package. The main pane (to the right) shows details for the currently selected package or
class. For example, if you click the java.util package in the top-left pane and then click
the ArrayList class listed below it, you see details about ArrayList in the right pane,
including a description of what it does, how to use it, and its methods.

Like any programming language, the Java language has its own structure, syntax rules, and
programming paradigm. The Java language's programming paradigm is based on the concept of
OOP, which the language's features support.

The Java language is a C-language derivative, so its syntax rules look much like C's. For example,
code blocks are modularized into methods and delimited by braces ({ and }), and variables are
declared before they are used.

http://www.ibm.com/developerworks/java/tutorials/j-introtojava2/index.html
http://www.ibm.com/developerworks/java/tutorials/j-introtojava2/index.html
http://docs.oracle.com/javase/8/docs/api/

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 3 of 53

Structurally, the Java language starts with packages. A package is the Java language's
namespace mechanism. Within packages are classes, and within classes are methods, variables,
constants, and more. You learn about the parts of the Java language in this tutorial.

The Java compiler
When you program for the Java platform, you write source code in .java files and then compile
them. The compiler checks your code against the language's syntax rules, then writes out
bytecode in .class files. Bytecode is a set of instructions targeted to run on a Java virtual machine
(JVM). In adding this level of abstraction, the Java compiler differs from other language compilers,
which write out instructions suitable for the CPU chipset the program will run on.

The JVM
At runtime, the JVM reads and interprets .class files and executes the program's instructions on
the native hardware platform for which the JVM was written. The JVM interprets the bytecode
just as a CPU would interpret assembly-language instructions. The difference is that the JVM is
a piece of software written specifically for a particular platform. The JVM is the heart of the Java
language's "write-once, run-anywhere" principle. Your code can run on any chipset for which a
suitable JVM implementation is available. JVMs are available for major platforms like Linux and
Windows, and subsets of the Java language have been implemented in JVMs for mobile phones
and hobbyist chips.

The garbage collector
Rather than forcing you to keep up with memory allocation (or use a third-party library to do so),
the Java platform provides memory management out of the box. When your Java application
creates an object instance at runtime, the JVM automatically allocates memory space for that
object from the heap— a pool of memory set aside for your program to use. The Java garbage
collector runs in the background, keeping track of which objects the application no longer needs
and reclaiming memory from them. This approach to memory handling is called implicit memory
management because it doesn't require you to write any memory-handling code. Garbage
collection is one of the essential features of Java platform performance.

The Java Development Kit
When you download a Java Development Kit (JDK), you get — in addition to the compiler and
other tools — a complete class library of prebuilt utilities that help you accomplish most common
application-development tasks. The best way to get an idea of the scope of the JDK packages and
libraries is to check out the JDK API documentation.

The Java Runtime Environment
The Java Runtime Environment (JRE; also known as the Java runtime) includes the JVM, code
libraries, and components that are necessary for running programs that are written in the Java
language. The JRE is available for multiple platforms. You can freely redistribute the JRE with your
applications, according to the terms of the JRE license, to give the application's users a platform
on which to run your software. The JRE is included in the JDK.

http://docs.oracle.com/javase/8/docs/api/

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 4 of 53

Setting up your Java development environment
In this section, you'll download and install the JDK and the current release of the Eclipse IDE, and
you'll set up your Eclipse development environment.

If you already have the JDK and Eclipse IDE installed, you might want to skip to the "Getting
started with Eclipse" section or to the one after that, "Object-oriented programming concepts."

Your development environment
The JDK includes a set of command-line tools for compiling and running your Java code, including
a complete copy of the JRE. Although you can use these tools to develop your applications, most
developers appreciate the additional functionality, task management, and visual interface of an
IDE.

Eclipse is a popular open source IDE for Java development. Eclipse handles basic tasks, such as
code compilation and debugging, so that you can focus on writing and testing code. In addition,
you can use Eclipse to organize source code files into projects, compile and test those projects,
and store project files in any number of source repositories. You need an installed JDK to use
Eclipse for Java development. If you download one of the Eclipse bundles, it will come with the
JDK already.

Install the JDK
Follow these steps to download and install the JDK:

1. Browse to Java SE Downloads and click the Java Platform (JDK) box to display the
download page for the latest version of the JDK.

2. Agree to the license terms for the version you want to download.
3. Choose the download that matches your operating system and chip architecture.

Windows
1. Save the file to your hard drive when prompted.
2. When the download is complete, run the install program. Install the JDK to your hard drive in

an easy-to-remember location such as C:\home\Java\jdk1.8.0_92. (As in this example, it's a
good idea to encode the update number in the name of the install directory that you choose.)

OS X
1. When the download is complete, double-click it to mount it.
2. Run the install program. You do not get to choose where the JDK is installed. You can run

/usr/libexec/java_home -1.8 to see the location of JDK 8 on your Mac. The path that's
displayed is similar to /Library/Java/JavaVirtualMachines/jdk1.8.0_92.jdk/Contents/Home.

See JDK 8 and JRE 8 Installation for more information, including instructions for installing on
Solaris or Linux.

You now have a Java environment on your computer. Next, you'll install the Eclipse IDE.

Install Eclipse
To download and install Eclipse, follow these steps:

http://www.oracle.com/technetwork/java/javase/downloads
http://docs.oracle.com/javase/8/docs/technotes/guides/install/install_overview.html

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 5 of 53

1. Browse to the Eclipse packages downloads page.
2. Click Eclipse IDE for Java Developers.
3. Under Download Links on the right side, choose your platform (the site might already have

sniffed out your OS type).
4. Click the mirror you want to download from; then, save the file to your hard drive.
5. When the download finishes, open the file and run the installation program, accepting the

defaults.

Set up Eclipse

The Eclipse IDE sits atop the JDK as a useful abstraction, but it still needs to access the JDK and
its various tools. Before you can use Eclipse to write Java code, you must tell it where the JDK is
located.

To set up your Eclipse development environment:

1. Launch Eclipse from your local hard disk. (In my case, the location is /Users/sperry/eclipse/
java-neon.)

2. When asked which workspace you want to open, choose the default.
3. Close the Welcome to Eclipse window. (The welcome window is displayed each time you

enter a new workspace. You can disable this behavior by deselecting the "Always show
Welcome at start up" check box.)

4. Select Preferences > Java > Installed JREs. Figure 1 shows this selection highlighted in the
Eclipse setup window for the JRE.

Figure 1. Configuring the JDK that Eclipse uses

http://www.eclipse.org/downloads/eclipse-packages/

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 6 of 53

5. Make sure that Eclipse points to the JRE that you downloaded with the JDK. If Eclipse does
not automatically detect the JDK that you installed, click Add..., and in the next dialog box,
click Standard VM and then click Next.

6. Specify the JDK's home directory (such as C:\home\jdk1.8.0_92 on Windows), and then click
Finish.

7. Confirm that the JDK that you want to use is selected and click OK.

Eclipse is now set up and ready for you to create projects, and compile and run Java code. The
next section familiarizes you with Eclipse.

Getting started with Eclipse

Eclipse is more than an IDE; it's an entire development ecosystem. This section is a brief hands-on
introduction to using Eclipse for Java development.

The Eclipse development environment

The Eclipse development environment has four main components:

• Workspace
• Projects
• Perspectives
• Views

The primary unit of organization in Eclipse is the workspace. A workspace contains all of your
projects. A perspective is a way of looking at each project (hence the name), and within a
perspective are one or more views.

Figure 2 shows the Java perspective, which is the default perspective for Eclipse. You see this
perspective when you start Eclipse.

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 7 of 53

Figure 2. Eclipse Java perspective

The Java perspective contains the tools that you need to begin writing Java applications. Each
tabbed window shown in Figure 2 is a view for the Java perspective. Package Explorer and Outline
are two particularly useful views.

The Eclipse environment is highly configurable. Each view is dockable, so you can move it around
in the Java perspective and place it where you want it. For now, though, stick with the default
perspective and view setup.

Create a project

Follow these steps to create a new Java project:

1. Click File > New > Java Project... to start the New Java Project wizard, shown in Figure 3.

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 8 of 53

Figure 3. New Java Project wizard

2. Enter Tutorial as the project name and use the workspace location that you opened when
you opened Eclipse.

3. Verify the JDK that you're using.
4. Click Finish to accept the project setup and create the project.

You have now created a new Eclipse Java project and source folder. Your development
environment is ready for action. However, an understanding of the OOP paradigm — covered in
this tutorial's next section — is essential.

Object-oriented programming concepts and principles
The Java language is (mostly) object oriented. This section is an introduction to OOP language
concepts, using structured programming as a point of contrast.

What is an object?
Object-oriented languages follow a different programming pattern from structured programming
languages like C and COBOL. The structured-programming paradigm is highly data oriented: You

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 9 of 53

have data structures, and then program instructions act on that data. Object-oriented languages
such as the Java language combine data and program instructions into objects.

An object is a self-contained entity that contains attributes and behavior, and nothing more. Instead
of having a data structure with fields (attributes) and passing that structure around to all of the
program logic that acts on it (behavior), in an object-oriented language, data and program logic
are combined. This combination can occur at vastly different levels of granularity, from fine-grained
objects such as a Number, to coarse-grained objects, such as a FundsTransfer service in a large
banking application.

Parent and child objects

A parent object is one that serves as the structural basis for deriving more-complex child objects.
A child object looks like its parent but is more specialized. With the object-oriented paradigm, you
can reuse the common attributes and behavior of the parent object, adding to its child objects
attributes and behavior that differ.

Object communication and coordination

Objects talk to other objects by sending messages (method calls, in Java parlance). Furthermore,
in an object-oriented application, program code coordinates the activities among objects to perform
tasks within the context of the specific application domain.

Object summary

A well-written object:

• Has well-defined boundaries
• Performs a finite set of activities
• Knows only about its data and any other objects that it needs to accomplish its activities

In essence, an object is a discrete entity that has only the necessary dependencies on other
objects to perform its tasks.

It's time to see what a Java object looks like.

Example: A person object
This first example is based on a common application-development scenario: an individual being
represented by a Person object.

You know from the definition of an object that an object has two primary elements: attributes and
behavior. Here's how these elements apply to the Person object.

As a rule of thumb, think of the attributes of an object as nouns and behavior as verbs.

Attributes (nouns)

What attributes can a person have? Some common ones include:

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 10 of 53

• Name
• Age
• Height
• Weight
• Eye color
• Gender

You can probably think of more (and you can always add more attributes later), but this list is a
good start.

Behavior (verbs)
An actual person can do all sorts of things, but object behaviors usually relate to application
context of some kind. In a business-application context, for instance, you might want to ask your
Person object, "What is your body mass index (BMI)?" In response, Person would use the values of
its height and weight attributes to calculate the BMI.

More-complex logic can be hidden inside of the Person object, but for now, suppose that Person
has the following behavior:

• Calculate BMI
• Print all attributes

State and string
State is an important concept in OOP. An object's state is represented at any moment in time by
the values of its attributes.

In the case of Person, its state is defined by attributes such as name, age, height, and weight. If
you wanted to present a list of several of those attributes, you might do so by using a String class,
which you'll learn more about later.

Using the concepts of state and string together, you can say to Person, "Tell me all about you by
giving me a listing (or String) of your attributes."

Principles of OOP
If you come from a structured-programming background, the OOP value proposition might not
be clear yet. After all, the attributes of a person and any logic to retrieve (and convert) those
values can be written in C or COBOL. The benefits of the OOP paradigm become clearer if you
understand its defining principles: encapsulation, inheritance, and polymorphism.

Encapsulation
Recall that an object is above all discrete, or self-contained. This characteristic is the principle of
encapsulation at work. Hiding is another term that's sometimes used to express the self-contained,
protected nature of objects.

Regardless of terminology, what's important is that the object maintains a boundary between its
state and behavior and the outside world. Like objects in the real world, objects used in computer

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 11 of 53

programming have various types of relationships with different categories of objects in the
applications that use them.

On the Java platform, you can use access modifiers (which you'll learn about later) to vary the
nature of object relationships from public to private. Public access is wide open, whereas private
access means the object's attributes are accessible only within the object itself.

The public/private boundary enforces the object-oriented principle of encapsulation. On the Java
platform, you can vary the strength of that boundary on an object-by-object basis. Encapsulation is
a powerful feature of the Java language.

Inheritance
In structured programming, it's common to copy a structure, give it a new name, and add or modify
the attributes that make the new entity (such as an Account record) different from its original
source. Over time, this approach generates a great deal of duplicated code, which can create
maintenance issues.

OOP introduces the concept of inheritance, whereby specialized classes — without additional
code — can "copy" the attributes and behavior of the source classes that they specialize. If some
of those attributes or behaviors need to change, you override them. The only source code you
change is the code needed for creating specialized classes. The source object is called the parent,
and the new specialization is called the child— terms that you've already been introduced to.

Suppose that you're writing a human-resources application and want to use the Person class as
the basis (also called the super class) for a new class called Employee. Being the child of Person,
Employee would have all of the attributes of a Person class, along with additional ones, such as:

• Taxpayer identification number
• Employee number
• Salary

Inheritance makes it easy to create the new Employee class without needing to copy all of the
Person code manually.

Polymorphism
Polymorphism is a harder concept to grasp than encapsulation and inheritance. In essence,
polymorphism means that objects that belong to the same branch of a hierarchy, when sent the
same message (that is, when told to do the same thing), can manifest that behavior differently.

To understand how polymorphism applies to a business-application context, return to the Person
example. Remember telling Person to format its attributes into a String? Polymorphism makes it
possible for Person to represent its attributes in various ways depending on the type of Person it is.

Polymorphism, one of the more complex concepts you'll encounter in OOP on the Java platform, is
beyond the scope of this introductory tutorial. You'll explore encapsulation and inheritance in more
depth in subsequent sections.

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 12 of 53

Not a purely object-oriented language
Two qualities differentiate the Java language from purely object-oriented languages such as
Smalltalk. First, the Java language is a mixture of objects and primitive types. Second, with Java,
you can write code that exposes the inner workings of one object to any other object that uses it.

The Java language does give you the tools necessary to follow sound OOP principles and produce
sound object-oriented code. Because Java is not purely object oriented, you must exercise
discipline in how you write code — the language doesn't force you to do the right thing, so you
must do it yourself. You'll get tips in the "Writing good Java code" section.

Getting started with the Java language
It would be impossible to introduce the entire Java language syntax in a single tutorial. The
remainder of Part 1 focuses on the basics of the language, leaving you with enough knowledge
and practice to write simple programs. OOP is all about objects, so this section starts with two
topics specifically related to how the Java language handles them: reserved words and the
structure of a Java object.

Reserved words
Like any programming language, the Java language designates certain words that the compiler
recognizes as special. For that reason, you're not allowed to use them for naming your Java
constructs. The list of reserved words (also called keywords) is surprisingly short:

abstract
assert
boolean
break
byte
case
catch
char
class
const
continue
default
do
double
else
enum
extends
final
finally
float
for
goto
if
implements
import
instanceof
int
interface
long
native
new
package
private

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 13 of 53

protected
public
return
short
static
strictfp
super
switch
synchronized
this
throw
throws
transient
try
void
volatile
while

You also may not use true, false, and null (technically, literals rather than keywords) to name
Java constructs

One advantage of programming with an IDE is that it can use syntax coloring for reserved words.

Structure of a Java class

A class is a blueprint for a discrete entity (object) that contains attributes and behavior. The class
defines the object's basic structure; at runtime, your application creates an instance of the object.
An object has a well-defined boundary and a state, and it can do things when correctly asked.
Every object-oriented language has rules about how to define a class.

In the Java language, classes are defined as shown in Listing 1:

Listing 1. Class definition
package packageName;
import ClassNameToImport;
accessSpecifier class ClassName {
 accessSpecifier dataType variableName [= initialValue];
 accessSpecifier ClassName([argumentList]) {
 constructorStatement(s)
 }
 accessSpecifier returnType methodName ([argumentList]) {
 methodStatement(s)
 }
 // This is a comment
 /* This is a comment too */
 /* This is a
 multiline
 comment */
}

Note
In Listing 1 and some other code examples in this section, square brackets indicate that the
constructs within them are not required. The brackets (unlike { and }) are not part of the
Java syntax.

Listing 1 contains various types of constructs, including package in line 1, import in line 2, and
class in line 3. Those three constructs are in the list of reserved words, so they must be exactly

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 14 of 53

what they are in Listing 1. The names that I've given the other constructs in Listing 1 describe the
concepts that they represent.

Notice that lines 11 through 15 in Listing 1 are comment lines. In most programming languages,
programmers can add comments to help document the code. Java syntax allows for both single-
line and multiline comments:

// This is a comment
/* This is a comment too */
/* This is a
multiline
comment */

A single-line comment must be contained on one line, although you can use adjacent single-line
comments to form a block. A multiline comment begins with /*, must be terminated with */, and
can span any number of lines.

Next, I'll walk you through the constructs in Listing 1 in detail, starting with package.

Packaging classes
With the Java language, you can choose the names for your classes, such as Account, Person,
or LizardMan. At times, you might end up using the same name to express two slightly different
concepts. This situation, called a name collision, happens frequently. The Java language uses
packages to resolve these conflicts.

A Java package is a mechanism for providing a namespace— an area inside of which names
are unique, but outside of which they might not be. To identify a construct uniquely, you must fully
qualify it by including its namespace.

Packages also give you a nice way to build more-complex applications with discrete units of
functionality.

To define a package, use the package keyword followed by a legal package name, ending with a
semicolon. Often package names follow this de facto standard scheme:

package orgType.orgName.appName.compName;

This package definition breaks down as:

• orgType is the organization type, such as com, org, or net.
• orgName is the name of the organization's domain, such as makotojava, oracle, or ibm.
• appName is the name of the application, abbreviated.
• compName is the name of the component.

You'll use this convention throughout this tutorial, and I recommend that you keep using it to define
all of your Java classes in packages. (The Java language doesn't force you to follow this package
convention. You don't need to specify a package at all, in which case all of your classes must have
unique names and are in the default package.)

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 15 of 53

Import statements

Eclipse simplifies imports
When you write code in the Eclipse editor, you can type the name of a class you want to
use, followed by Ctrl+Shift+O. Eclipse figures out which imports you need and adds them
automatically. If Eclipse finds two classes with the same name, Eclipse asks you which class
you want to add imports for.

Up next in the class definition (referring back to Listing 1) is the import statement. An import
statement tells the Java compiler where to find classes that you reference inside of your code. Any
nontrivial class uses other classes for some functionality, and the import statement is how you tell
the Java compiler about them.

An import statement usually looks like this:

import ClassNameToImport;

You specify the import keyword, followed by the class that you want to import, followed by a
semicolon. The class name should be fully qualified, meaning that it should include its package.

To import all classes within a package, you can put .* after the package name. For example, this
statement imports every class in the com.makotojava package:

import com.makotojava.*;

Importing an entire package can make your code less readable, however, so I recommend that
you import only the classes that you need, using their fully qualified names.

Class declaration

To define an object in the Java language, you must declare a class. Think of a class as a template
for an object, like a cookie cutter.

Listing 1 includes this class declaration:

accessSpecifier class ClassName {
 accessSpecifier dataType variableName [= initialValue];
 accessSpecifier ClassName([argumentList]) {
 constructorStatement(s)
 }
 accessSpecifier returnType methodName([argumentList]) {
 methodStatement(s)
 }
}

A class's accessSpecifier can have several values, but usually it's public. You'll look at other
values of accessSpecifier soon.

You can name classes pretty much however you want, but the convention is to use camel case:
Start with an uppercase letter, put the first letter of each concatenated word in uppercase, and
make all the other letters lowercase. Class names should contain only letters and numbers.

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 16 of 53

Sticking to these guidelines ensures that your code is more accessible to other developers who
are following the same conventions.

Variables and methods

Classes can have two types of members—variables and methods.

Variables

The values of a class's variables distinguish each instance of that class and define its state. These
values are often referred to as instance variables. A variable has:

• An accessSpecifier
• A dataType
• A variableName
• Optionally, an initialValue

The possible accessSpecifier values are:

Public variables
It's never a good idea to use public variables, but in extremely rare cases it can be
necessary, so the option exists. The Java platform doesn't constrain your use cases, so
it's up to you to be disciplined about using good coding conventions, even if tempted to do
otherwise.

• public: Any object in any package can see the variable. (Don't ever use this value; see the
Public variables sidebar.)

• protected: Any object defined in the same package, or a subclass (defined in any package),
can see the variable.

• No specifier (also called friendly or package private access): Only objects whose classes are
defined in the same package can see the variable.

• private: Only the class containing the variable can see it.

A variable's dataType depends on what the variable is — it might be a primitive type or another
class type (more about this later).

The variableName is up to you, but by convention, variable names use the camel case convention,
except that they begin with a lowercase letter. (This style is sometimes called lower camel case.)

Don't worry about the initialValue for now; just know that you can initialize an instance variable
when you declare it. (Otherwise, the compiler generates a default for you that is set when the class
is instantiated.)

Example: Class definition for Person

Here's an example that summarizes what you've learned so far. Listing 2 is a class definition for
Person.

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 17 of 53

Listing 2. Basic class definition for Person

package com.makotojava.intro;

public class Person {
 private String name;
 private int age;
 private int height;
 private int weight;
 private String eyeColor;
 private String gender;
}

This basic class definition for Person isn't useful at this point, because it defines only Person's
attributes (and private ones at that). To be more complete, the Person class needs behavior — and
that means methods.

Methods

A class's methods define its behavior.

Methods fall into two main categories: constructors; and all other methods, which come in many
types. A constructor method is used only to create an instance of a class. Other types of methods
can be used for virtually any application behavior.

The class definition back in Listing 1 shows the way to define the structure of a method, which
includes elements like:

• accessSpecifier
• returnType
• methodName
• argumentList

The combination of these structural elements in a method's definition is called the method's
signature.

Now take a closer look at the two method categories, starting with constructors.

Constructor methods

You use constructors to specify how to instantiate a class. Listing 1 shows the constructor-
declaration syntax in abstract form, and here it is again:

accessSpecifier ClassName([argumentList]) {
 constructorStatement(s)
}

Constructors are optional
If you don't use a constructor, the compiler provides one for you, called the default (or no-
argument or no-arg) constructor. If you use a constructor other than a no-arg constructor, the
compiler doesn't automatically generate one for you.

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 18 of 53

A constructor's accessSpecifier is the same as for variables. The name of the constructor must
match the name of the class. So if you call your class Person, the name of the constructor must
also be Person.

For any constructor other than the default constructor (see the Constructors are optional
sidebar), you pass an argumentList, which is one or more of:

argumentType argumentName

Arguments in an argumentList are separated by commas, and no two arguments can have the
same name. argumentType is either a primitive type or another class type (the same as with
variable types).

Class definition with a constructor

Now, see what happens when you add the capability to create a Person object in two ways: by
using a no-arg constructor and by initializing a partial list of attributes.

Listing 3 shows how to create constructors and also how to use argumentList:

Listing 3. Person class definition with a constructor

package com.makotojava.intro;
public class Person {
 private String name;
 private int age;
 private int height;
 private int weight;
 private String eyeColor;

 private String gender;
 public Person() {
 // Nothing to do...
 }

 public Person(String name, int age, int height, int weight String eyeColor, String gender) {
 this.name = name;
 this.age = age;
 this.height = height;
 this.weight = weight;
 this.eyeColor = eyeColor;
 this.gender = gender;
 }
}

Note the use of the this keyword in making the variable assignments in Listing 3. The this
keyword is Java shorthand for "this object," and you must use it when you reference two variables
with the same name. In this case, age is both a constructor parameter and a class variable, so the
this keyword helps the compiler to tell which is which.

The Person object is getting more interesting, but it needs more behavior. And for that, you need
more methods.

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 19 of 53

Other methods
A constructor is a particular kind of method with a particular function. Similarly, many other types of
methods perform particular functions in Java programs. Exploration of other method types begins
in this section and continues throughout the tutorial.

Back in Listing 1, you saw how to declare a method:

accessSpecifier returnType methodName ([argumentList]) {
 methodStatement(s)
}

Other methods look much like constructors, with a couple of exceptions. First, you can name other
methods whatever you like (though, of course, certain rules apply). I recommend the following
conventions:

• Start with a lowercase letter.
• Avoid numbers unless they are absolutely necessary.
• Use only alphabetic characters.

Second, unlike constructors, other methods have an optional return type.

Person's other methods
Armed with this basic information, you can see in Listing 4 what happens when you add a few
more methods to the Person object. (I've omitted constructors for brevity.)

Listing 4. Person with a few new methods
package com.makotojava.intro;

public class Person {
 private String name;
 private int age;
 private int height;
 private int weight;
 private String eyeColor;
 private String gender;

 public String getName() { return name; }
 public void setName(String value) { name = value; }
 // Other getter/setter combinations...
}

Notice the comment in Listing 4 about "getter/setter combinations." You'll work more with getters
and setters later. For now, all you need to know is that a getter is a method for retrieving the value
of an attribute, and a setter is a method for modifying that value. Listing 4 shows only one getter/
setter combination (for the Name attribute), but you can define more in a similar fashion.

Note in Listing 4 that if a method doesn't return a value, you must tell the compiler by specifying
the void return type in its signature.

Static and instance methods
Generally, two types of (nonconstructor) methods are used: instance methods and static methods.
Instance methods depend on the state of a specific object instance for their behavior. Static

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 20 of 53

methods are also sometimes called class methods, because their behavior isn't dependent on any
single object's state. A static method's behavior happens at the class level.

Static methods are used largely for utility; you can think of them as being global methods (à la C)
while keeping the code for the method with the class that defines it.

For example, throughout this tutorial, you'll use the JDK Logger class to output information to
the console. To create a Logger class instance, you don't instantiate a Logger class; instead, you
invoke a static method named getLogger().

The syntax for invoking a static method on a class is different from the syntax used to invoke a
method on an object. You also use the name of the class that contains the static method, as shown
in this invocation:

Logger l = Logger.getLogger("NewLogger");

In this example, Logger is the name of the class, and getLogger(...) is the name of the method.
So to invoke a static method, you don't need an object instance, just the name of the class.

Your first Java class

It's time to pull together what you've learned in the previous sections and start writing some code.
This section walks you through declaring a class and adding variables and methods to it using
the Eclipse Package Explorer. You learn how to use the Logger class to keep an eye on your
application's behavior, and also how to use a main() method as a test harness.

Creating a package

If you're not already there, get to the Package Explorer view (in the Java perspective) in Eclipse
through Window > Perspective > Open Perspective. You're going to get set up to create your
first Java class. The first step is to create a place for the class to live. Packages are namespace
constructs, and they also conveniently map directly to the file system's directory structure.

Rather than use the default package (almost always a bad idea), you create one specifically for
the code you are writing. Click File > New > Package to start the Java Package wizard, shown in
Figure 4.

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 21 of 53

Figure 4. The Eclipse Java Package wizard

Type com.makotojava.intro into the Name text box and click Finish. You can see the new
package created in the Package Explorer.

Declaring the class

You can create a class from the Package Explorer in more than one way, but the easiest way is
to right-click the package you just created and choose New > Class.... The New Class dialog box
opens.

In the Name text box, type Person and then click Finish.

The new class is displayed in your edit window. I recommend closing a few of the views
(Problems, Javadoc, and others) that open by default in the Java Perspective the first time you
open it to make it easier to see your source code. (Eclipse remembers that you don't want to see
those views the next time you open Eclipse and go to the Java perspective.) Figure 5 shows a
workspace with the essential views open.

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 22 of 53

Figure 5. A well-ordered workspace

Eclipse generates a shell class for you and includes the package statement at the top. You just
need to flesh out the class now. You can configure how Eclipse generates new classes through
Window > Preferences > Java > Code Style > Code Templates. For simplicity, go with Eclipse's
out-of-the-box code generation.

In Figure 5, notice the asterisk (*) next to the new source-code file name, indicating that I've
made a modification. And notice that the code is unsaved. Next, notice that I made a mistake
when declaring the Name attribute: I declared Name's type to be Strin. The compiler could not
find a reference to such a class and flagged it as a compile error (that's the wavy red line
underneath Strin). Of course, I can fix my mistake by adding a g to the end of Strin. This is a
small demonstration of the power of using an IDE instead of command-line tools for software
development. Go ahead and correct the error by changing the type to String.

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 23 of 53

Adding class variables
In Listing 3, you began to flesh out the Person class, but I didn't explain much of the syntax. Now,
I'll formally define how to add class variables.

Recall that a variable has an accessSpecifier, a dataType, a variableName, and, optionally, an
initialValue. Earlier, you looked briefly at how to define the accessSpecifier and variableName.
Now, you see the dataType that a variable can have.

A dataType can be either a primitive type or a reference to another object. For example, notice that
Age is an int (a primitive type) and that Name is a String (an object). The JDK comes packed full
of useful classes like java.lang.String, and those in the java.lang package do not need to be
imported (a shorthand courtesy of the Java compiler). But whether the dataType is a JDK class
such as String or a user-defined class, the syntax is essentially the same.

Table 1 shows the eight primitive data types you're likely to see on a regular basis, including the
default values that primitives take on if you do not explicitly initialize a member variable's value.

Table 1. Primitive data types
Type Size Default value Range of values

boolean n/a false true or false

byte 8 bits 0 -128 to 127

char 16 bits (unsigned) \u0000' \u0000' to \uffff' or 0 to
65535

short 16 bits 0 -32768 to 32767

int 32 bits 0 -2147483648 to 2147483647

long 64 bits 0 -9223372036854775808 to
9223372036854775807

float 32 bits 0.0 1.17549435e-38 to 3.4028235e
+38

double 64 bits 0.0 4.9e-324 to
1.7976931348623157e+308

Built-in logging
Before going further into coding, you need to know how your programs tell you what they are
doing.

The Java platform includes the java.util.logging package, a built-in logging mechanism for
gathering program information in a readable form. Loggers are named entities that you create
through a static method call to the Logger class:

import java.util.logging.Logger;
//...
Logger l = Logger.getLogger(getClass().getName());

When calling the getLogger() method, you pass it a String. For now, just get in the habit of
passing the name of the class that the code you're writing is located in. From any regular (that is,

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 24 of 53

nonstatic) method, the preceding code always references the name of the class and passes that to
the Logger.

If you are making a Logger call inside of a static method, reference the name of the class you're
inside of:

Logger l = Logger.getLogger(Person.class.getName());

In this example, the code you're inside of is the Person class, so you reference a special literal
called class that retrieves the Class object (more on this later) and gets its Name attribute.

This tutorial's "Writing good Java code" section includes a tip on how not to do logging.

Before we get into the meat of testing, first go into the Eclipse source-code editor for Person and
add this code just after public class Person { from Listing 3 so that it looks like this:

package com.makotojava.intro;

public class Person {
 private String name;
 private int age;
 private int height;
 private int weight;
 private String eyeColor;
 private String gender;
}

Eclipse has a handy code generator to generate getters and setters (among other things). To try
out the code generator, put your mouse caret on the Person class definition (that is, on the word
Person in the class definition) and click Source > Generate Getters and Setters.... When the
dialog box opens, click Select All, as shown in Figure 6.

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 25 of 53

Figure 6. Eclipse generating getters and setters

For the insertion point, choose Last member and click OK.

Now, add a constructor to Person by typing the code from Listing 5 into your source window just
below the top part of the class definition (the line immediately beneath public class Person ()).

Listing 5. Person constructor

public Person(String name, int age, int height, int weight, String eyeColor, String gender) {
 this.name = name;
 this.age = age;
 this.height = height;
 this.weight = weight;
 this.eyeColor = eyeColor;
 this.gender = gender;
}

Make sure that you have no wavy lines indicating compile errors.

Using main() as a test harness

main() is a special method that you can include in any class so that the JRE can execute
its code. A class is not required to have a main() method — in fact, most never will — and
a class can have at most one main() method. main() is a handy method to have because
it gives you a quick test harness for the class. In enterprise development, you would use test

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 26 of 53

libraries such as JUnit, but using main() as your test harness can be a quick-and-dirty way
to create a test harness.

Generate a JUnit test case

Now you generate a JUnit test case where you instantiate a Person, using the constructor in Listing
5, and then print the state of the object to the console. In this sense, the "test" makes sure that the
order of the attributes on the constructor call are correct (that is, that they are set to the correct
attributes).

In the Package Explorer, right-click your Person class and then click New > JUnit Test Case. The
first page of the New JUnit Test Case wizard opens, as shown in Figure 7.

Figure 7. Creating a JUnit test case

Accept the defaults by clicking Next. You see the Test Methods dialog box, shown in Figure 8.

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 27 of 53

Figure 8. Select methods for the wizard to generate test cases

In this dialog box, you select the method or methods that you want the wizard to build tests for. In
this case, select just the constructor, as shown in Figure 8. Click Finish, and Eclipse generates the
JUnit test case.

Next, open PersonTest, go into the testPerson() method, and make it look like Listing 6.

Listing 6. The testPerson() method
@Test
public void testPerson() {
 Person p = new Person("Joe Q Author", 42, 173, 82, "Brown", "MALE");
 Logger l = Logger.getLogger(Person.class.getName());
 l.info("Name: " + p.getName());
 l.info("Age:" + p.getAge());
 l.info("Height (cm):" + p.getHeight());
 l.info("Weight (kg):" + p.getWeight());
 l.info("Eye Color:" + p.getEyeColor());
 l.info("Gender:" + p.getGender());
 assertEquals("Joe Q Author", p.getName());
 assertEquals(42, p.getAge());
 assertEquals(173, p.getHeight());
 assertEquals(82, p.getWeight());
 assertEquals("Brown", p.getEyeColor());
 assertEquals("MALE", p.getGender());
}

Don't worry about the Logger class for now. Just enter the code as you see it in Listing 6. You're
now ready to run your first Java program (and JUnit test case).

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 28 of 53

Running your unit test in Eclipse
In Eclipse, right-click PersonTest.java in the Package Explore and select Run As > JUnit Test.
Figure 9 shows what happens.

Figure 9. See Person run

The Console view opens automatically to show Logger output, and the JUnit view indicates that the
test ran without errors.

Adding behavior to a Java class
Person is looking good so far, but it can use some additional behavior to make it more interesting.
Creating behavior means adding methods. This section looks more closely at accessor methods—
namely, the getters and setters you've already seen in action.

Accessor methods
The getters and setters that you saw in action at the end of the preceding section are called
accessor methods. (Quick review: A getter is a method for retrieving the value of an attribute; a

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 29 of 53

setter is a method for modifying that value.) To encapsulate a class's data from other objects, you
declare its variables to be private and then provide accessor methods.

The naming of accessors follows a strict convention known as the JavaBeans pattern. In
this pattern, any attribute Foo has a getter called getFoo() and a setter called setFoo(). The
JavaBeans pattern is so common that support for it is built into the Eclipse IDE, as you saw when
you generated getters and setters for Person.

Accessors follow these guidelines:

• The attribute is always declared with private access.
• The access specifier for getters and setters is public.
• A getter doesn't take any parameters, and it returns a value whose type is the same as the

attribute it accesses.
• Setters take only one parameter, of the type of the attribute, and do not return a value.

Declaring accessors
By far the easiest way to declare accessors is to let Eclipse do it for you. But you also need to
know how to hand-code a getter-and-setter pair.

Suppose I have an attribute, Foo, whose type is java.lang.String. My complete declaration for
Foo (following the accessor guidelines) is:

private String foo;
public String getFoo() {
 return foo;
}
public void setFoo(String value) {
 foo = value;
}

Notice that the parameter value passed to the setter is named differently than if it had been
Eclipse-generated (where the parameter name would be the same as the attribute name — for
example, public void setFoo(String foo)). On the rare occasions when I hand-code a setter, I
always use value as the name of the parameter value to the setter. This eye-catcher — my own
convention, and one that I recommend to other developers — reminds me that I hand-coded the
setter. If I don't use Eclipse to generate getters and setters for me, I have a good reason. Using
value as the setter's parameter value reminds me that this setter is special. (Code comments can
serve the same purpose.)

Calling methods
Invoking — or calling— methods is easy. The testPerson method in Listing 6, for example, invokes
the various getters of Person to return their values. Now you'll learn the formal mechanics of
making method calls.

Method invocation with and without parameters
To invoke a method on an object, you need a reference to that object. Method-invocation syntax
comprises:

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 30 of 53

• The object reference
• A literal dot
• The method name
• Any parameters that need to be passed

The syntax for a method invocation without parameters is:

objectReference.someMethod();

Here's an example:

Person p = new Person("Joe Q Author", 42, 173, 82, "Brown", "MALE");
p.getName();

The syntax for a method invocation with parameters is:

objectReference.someOtherMethod(parameter1, parameter2, . . ., parameterN);

And here's an example (setting the Name attribute of Person):

Person p = new Person("Joe Q Author", 42, 173, 82, "Brown", "MALE");
p.setName("Jane Q Author");

Remember that constructors are methods, too. And you can separate the parameters with spaces
and newlines. The Java compiler doesn't care. These next two method invocations are equivalent:

new Person("Joe Q Author", 42, 173, 82, "Brown", "MALE");

new Person("Joe Q Author",// Name
 42, // Age
 173, // Height in cm
 82, // Weight in kg
 "Brown",// Eye Color
 "MALE");// Gender

Notice how the comments in the second constructor invocation make it more readable for the next
person who might work with this code. At a glance, that developer can tell what each parameter is
for.

Nested method invocation

Method invocations can also be nested:

Logger l = Logger.getLogger(Person.class.getName());
l.info("Name: " + p.getName());

Here you pass the return value of Person.class.getName() to the getLogger() method.
Remember that the getLogger() method call is a static method call, so its syntax differs slightly.
(You don't need a Logger reference to make the invocation; instead, you use the name of the class
as the left side of the invocation.)

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 31 of 53

That's all there is to method invocation.

Strings and operators
The tutorial has so far introduced several variables of type String, but without much explanation.
You learn more about strings in this section, and also find out when and how to use operators.

Strings
In C, string handling is labor intensive because strings are null-terminated arrays of 8-bit
characters that you must manipulate. The closest Java code gets to the C world with regard
to strings is the char primitive data type, which can hold a single Unicode character, such as
a.

In the Java language, strings are first-class objects of type String, with methods that help you
manipulate them.

Here are a couple of ways to create a String, using the example of creating a String instance
named greeting with a value of hello:

greeting = new String("hello");

String greeting = "hello";

Because Strings are first-class objects, you can use new to instantiate them. Setting a variable of
type String to a string literal has the same result, because the Java language creates a String
object to hold the literal, and then assigns that object to the instance variable.

Concatenating strings

You can do many things with String, and the class has many helpful methods. Without even
using a method, you've already done something interesting within the Person class's testPerson()
method by concatenating, or combining, two Strings:

l.info("Name: " + p.getName());

The plus (+) sign is shorthand for concatenating Strings in the Java language. (You incur a
performance penalty for doing this type of concatenation inside a loop, but for now, you don't need
to worry about that.)

Concatenation exercise

Now, you can try concatenating two more Strings inside of the Person class. At this point, you
have a name instance variable, but it would be more realistic in a business application to have a
firstName and lastName. You can then concatenate them when another object requests Person's
full name.

Return to your Eclipse project, and start by adding the new instance variables (at the same
location in the source code where name is currently defined):

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 32 of 53

//private String name;
private String firstName;
private String lastName;

Comment out the name definition; you don't need it anymore, because you're replacing it with
firstName and lastName.

Chaining method calls
Now, tell the Eclipse code generator to generate getters and setters for firstName and lastName
(refer back to the "Your first Java class" section if necessary). Then, remove the setName() and
getName() methods, and add a new getFullName() method to look like this:

public String getFullName() {
 return getFirstName().concat(" ").concat(getLastName());
}

This code illustrates chaining of method calls. Chaining is a technique commonly used with
immutable objects like String, where a modification to an immutable object always returns the
modification (but doesn't change the original). You then operate on the returned, changed value.

Operators
You've already seen that the Java language uses the = operator to assign values to variables. As
you might expect, the Java language can do arithmetic, and it uses operators for that purpose
too. Now, I give you a brief look at some of the Java language operators you need as your skills
improve.

The Java language uses two types of operators:

• Unary: Only one operand is needed.
• Binary: Two operands are needed.

Table 2 summarizes the Java language's arithmetic operators:

Table 2. Java language's arithmetic operators
Operator Usage Description

+ a + b Adds a and b

+ +a Promotes a to int if it's a byte, short, or
char

- a - b Subtracts b from a

- -a Arithmetically negates a

* a * b Multiplies a and b

/ a / b Divides a by b

% a % b Returns the remainder of dividing a by b (the
modulus operator)

++ a++ Increments a by 1; computes the value of a
before incrementing

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 33 of 53

++ ++a Increments a by 1; computes the value of a
after incrementing

-- a-- Decrements a by 1; computes the value of a
before decrementing

-- --a Decrements a by 1; computes the value of a
after decrementing

+= a += b Shorthand for a = a + b

-= a -= b Shorthand for a = a - b

*= a *= b Shorthand for a = a * b

%= a %= b Shorthand for a = a % b

Additional operators
In addition to the operators in Table 2, you've seen several other symbols that are called operators
in the Java language, including:

• Period (.), which qualifies names of packages and invokes methods
• Parentheses (()), which delimit a comma-separated list of parameters to a method
• new, which (when followed by a constructor name) instantiates an object

The Java language syntax also includes several operators that are used specifically for conditional
programming — that is, programs that respond differently based on different input. You look at
those in the next section.

Conditional operators and control statements
In this section, you learn about the various statements and operators you can use to tell your Java
programs how you want them to act based on different input.

Relational and conditional operators
The Java language gives you operators and control statements that you can use to make
decisions in your code. Most often, a decision in code starts with a Boolean expression— that
is, one that evaluates to either true or false. Such expressions use relational operators, which
compare one operand to another, and conditional operators.

Table 3 lists the relational and conditional operators of the Java language.

Table 3. Relational and conditional operators
Operator Usage Returns true if...

> a > b a is greater than b

>= a >= b a is greater than or equal to b

< a < b a is less than b

<= a <= b a is less than or equal to b

== a == b a is equal to b

!= a != b a is not equal to b

&& a && b a and b are both true, conditionally evaluates b
(if a is false, b is not evaluated)

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 34 of 53

|| a || b a or b is true, conditionally evaluates b (if a is
true, b is not evaluated)

! !a a is false

& a & b a and b are both true, always evaluates b

| a | b a or b is true, always evaluates b

^ a ^ b a and b are different

The if statement

Now that you have a bunch of operators, it's time to use them. This code shows what happens
when you add some logic to the Person object's getHeight() accessor:

public int getHeight() {
 int ret = height;
 // If locale of the computer this code is running on is U.S.,
 if (Locale.getDefault().equals(Locale.US))
 ret /= 2.54;// convert from cm to inches
 return ret;
}

If the current locale is in the United States (where the metric system isn't in use), it might make
sense to convert the internal value of height (in centimeters) to inches. This (somewhat contrived)
example illustrates the use of the if statement, which evaluates a Boolean expression inside
parentheses. If that expression evaluates to true, the program executes the next statement.

In this case, you only need to execute one statement if the Locale of the computer the code is
running on is Locale.US. If you need to execute more than one statement, you can use curly
braces to form a compound statement. A compound statement groups many statements into one
— and compound statements can also contain other compound statements.

Variable scope

Every variable in a Java application has scope, or localized namespace, where you can access it
by name within the code. Outside that space the variable is out of scope, and you get a compile
error if you try to access it. Scope levels in the Java language are defined by where a variable is
declared, as shown in Listing 7.

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 35 of 53

Listing 7. Variable scope

public class SomeClass {
 private String someClassVariable;
 public void someMethod(String someParameter) {
 String someLocalVariable = "Hello";

 if (true) {
 String someOtherLocalVariable = "Howdy";
 }
 someClassVariable = someParameter; // legal
 someLocalVariable = someClassVariable; // also legal
 someOtherLocalVariable = someLocalVariable;// Variable out of scope!
 }
 public void someOtherMethod() {
 someLocalVariable = "Hello there";// That variable is out of scope!

 }
}

Within SomeClass, someClassVariable is accessible by all instance (that is, nonstatic) methods.
Within someMethod, someParameter is visible, but outside of that method it isn't, and the same is true
for someLocalVariable. Within the if block, someOtherLocalVariable is declared, and outside of
that if block it's out of scope. For this reason, we say that Java has block scope, because blocks
(delimited by { and }) define the scope boundaries.

Scope has many rules, but Listing 7 shows the most common ones. Take a few minutes to
familiarize yourself with them.

The else statement

Sometimes in a program's control flow, you want to take action only if a particular expression fails
to evaluate to true. That's when else comes in handy:

public int getHeight() {
 int ret;
 if (gender.equals("MALE"))
 ret = height + 2;
 else {
 ret = height;
 Logger.getLogger("Person").info("Being honest about height...");
 }
 return ret;
}

The else statement works the same way as if, in that the program executes only the next
statement that it encounters. In this case, two statements are grouped into a compound statement
(notice the curly braces), which the program then executes.

You can also use else to perform an additional if check:

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 36 of 53

if (conditional) {
 // Block 1
} else if (conditional2) {
 // Block 2
} else if (conditional3) {
 // Block 3
} else {
 // Block 4
} // End

If conditional evaluates to true, Block 1 is executed and the program jumps to the next
statement after the final curly brace (which is indicated by // End). If conditional does not
evaluate to true, then conditional2 is evaluated. If conditional2 is true, then Block 2 is
executed, and the program jumps to the next statement after the final curly brace. If conditional2
is not true, then the program moves on to conditional3, and so on. Only if all three conditionals
fail is Block 4 executed.

The ternary operator
The Java language provides a handy operator for doing simple if / else statement checks. This
operator's syntax is:

(conditional) ? statementIfTrue : statementIfFalse;

If conditional evaluates to true, statementIfTrue is executed; otherwise, statementIfFalse is
executed. Compound statements are not allowed for either statement.

The ternary operator comes in handy when you know that you need to execute one statement as
the result of the conditional evaluating to true, and another if it doesn't. Ternary operators are most
often used to initialize a variable (such as a return value), like so:

public int getHeight() {
 return (gender.equals("MALE")) ? (height + 2) : height;
}

The parentheses following the question mark aren't strictly required, but they do make the code
more readable.

Loops
In addition to being able to apply conditions to your programs and see different outcomes based
on various if/then scenarios, you sometimes want your code to do the same thing over and over
again until the job is done. In this section, learn about constructs used to iterate over code or
execute it more than once.

What is a loop?
A loop is a programming construct that executes repeatedly while a specific condition (or set of
conditions) is met. For instance, you might ask a program to read all records until the end of a data
file, or to process each element of an array in turn. (You'll learn about arrays in the next section.)

Three loop constructs make it possible to iterate over code or execute it more than once:

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 37 of 53

• for loops
• while loops
• do...while loops

for loops

The basic loop construct in the Java language is the for statement. You can use a for statement
to iterate over a range of values to determine how many times to execute a loop. The abstract
syntax for a for loop is:

for (initialization; loopWhileTrue; executeAtBottomOfEachLoop) {
 statementsToExecute
}

At the beginning of the loop, the initialization statement is executed (multiple initialization
statements can be separated by commas). Provided that loopWhileTrue (a Java conditional
expression that must evaluate to either true or false) is true, the loop executes. At the bottom of
the loop, executeAtBottomOfEachLoop executes.

For example, if you wanted the code in the main() method in Listing 8 to execute three times, you
can use a for loop.

Listing 8. A for loop
public static void main(String[] args) {
 Logger l = Logger.getLogger(Person.class.getName());
 for (int aa = 0; aa < 3; aa++)
 Person p = new Person("Joe Q Author", 42, 173, 82, "Brown", "MALE");
 l.info("Loop executing iteration# " + aa);
 l.info("Name: " + p.getName());
 l.info("Age:" + p.getAge());
 l.info("Height (cm):" + p.getHeight());
 l.info("Weight (kg):" + p.getWeight());
 l.info("Eye Color:" + p.getEyeColor());
 l.info("Gender:" + p.getGender());
 }
}

The local variable aa is initialized to zero at the beginning of Listing 8. This statement executes
only once, when the loop is initialized. The loop then continues three times, and each time aa is
incremented by one.

You'll see in the next section that an alternative for loop syntax is available for looping over
constructs that implement the Iterable interface (such as arrays and other Java utility classes).
For now, just note the use of the for loop syntax in Listing 8.

while loops

The syntax for a while loop is:

while (condition) {
 statementsToExecute
}

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 38 of 53

As you might suspect, if condition evaluates to true, the loop executes. At the top of each iteration
(that is, before any statements execute), the condition is evaluated. If the condition evaluates
to true, the loop executes. So it's possible that a while loop will never execute if its conditional
expression is not true at least once.

Look again at the for loop in Listing 8. For comparison, Listing 9 uses a while loop to obtain the
same result.

Listing 9. A while loop
public static void main(String[] args) {
 Logger l = Logger.getLogger(Person.class.getName());
 int aa = 0;
 while (aa < 3) {
 Person p = new Person("Joe Q Author", 42, 173, 82, "Brown", "MALE");
 l.info("Loop executing iteration# " + aa);
 l.info("Name: " + p.getName());
 l.info("Age:" + p.getAge());
 l.info("Height (cm):" + p.getHeight());
 l.info("Weight (kg):" + p.getWeight());
 l.info("Eye Color:" + p.getEyeColor());
 l.info("Gender:" + p.getGender());
 aa++;
 }
}

As you can see, a while loop requires a bit more housekeeping than a for loop. You must initialize
the aa variable and also remember to increment it at the bottom of the loop.

do...while loops
If you want a loop that always executes once and then checks its conditional expression, you can
use a do...while loop, as shown in Listing 10.

Listing 10. A do...while loop
int aa = 0;
do {
 Person p = new Person("Joe Q Author", 42, 173, 82, "Brown", "MALE");
 l.info("Loop executing iteration# " + aa);
 l.info("Name: " + p.getName());
 l.info("Age:" + p.getAge());
 l.info("Height (cm):" + p.getHeight());
 l.info("Weight (kg):" + p.getWeight());
 l.info("Eye Color:" + p.getEyeColor());
 l.info("Gender:" + p.getGender());
 aa++;
} while (aa < 3);

The conditional expression (aa < 3) is not checked until the end of the loop.

Loop termination
At times, you need to bail out of — or terminate— a loop before the conditional expression
evaluates to false. This situation can occur if you're searching an array of Strings for a particular
value, and once you find it, you don't care about the other elements of the array. For the times
when you want to bail, the Java language provides the break statement, shown in Listing 11.

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 39 of 53

Listing 11. A break statement
public static void main(String[] args) {
 Logger l = Logger.getLogger(Person.class.getName());
 int aa = 0;
 while (aa < 3) {
 if (aa == 1)
 break;
 Person p = new Person("Joe Q Author", 42, 173, 82, "Brown", "MALE");
 l.info("Loop executing iteration# " + aa);
 l.info("Name: " + p.getName());
 l.info("Age:" + p.getAge());
 l.info("Height (cm):" + p.getHeight());
 l.info("Weight (kg):" + p.getWeight());
 l.info("Eye Color:" + p.getEyeColor());
 l.info("Gender:" + p.getGender());
 aa++;
 }
}

The break statement takes you to the next executable statement outside of the loop in which it's
located.

Loop continuation
In the (simplistic) example in Listing 11, you want to execute the loop only once and then bail. You
can also skip a single iteration of a loop but continue executing the loop. For that purpose, you
need the continue statement, shown in Listing 12.

Listing 12. A continue statement
public static void main(String[] args) {
 Logger l = Logger.getLogger(Person.class.getName());
 int aa = 0;
 while (aa < 3) {
 aa++;
 if (aa == 2)
 continue;
 Person p = new Person("Joe Q Author", 42, 173, 82, "Brown", "MALE");
 l.info("Loop executing iteration# " + aa);
 l.info("Name: " + p.getName());
 l.info("Age:" + p.getAge());
 l.info("Height (cm):" + p.getHeight());
 l.info("Weight (kg):" + p.getWeight());
 l.info("Eye Color:" + p.getEyeColor());
 l.info("Gender:" +
 p.getGender());
 }
}

In Listing 12, you skip the second iteration of a loop but continue to the third. continue comes
in handy when you are, say, processing records and come across a record you don't want to
process. You can skip that record and move on to the next one.

Java Collections
Most real-world applications deal with collections of things like files, variables, records from files,
or database result sets. The Java language has a sophisticated Collections Framework that you
can use to create and manage collections of objects of various types. This section introduces you
to the most commonly used collection classes and gets you started with using them.

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 40 of 53

Arrays

Note: The square brackets in this section's code examples are part of the required syntax for
Java arrays, not indicators of optional elements.

Most programming languages include the concept of an array to hold a collection of things, and the
Java language is no exception. An array is basically a collection of elements of the same type.

You can declare an array in one of two ways:

• Create the array with a certain size, which is fixed for the life of the array.
• Create the array with a certain set of initial values. The size of this set determines the size of

the array — it's exactly large enough to hold all of those values, and its size is fixed for the life
of the array.

Declaring an array

In general, you declare an array like this:

new elementType [arraySize]

You can create an integer array of elements in two ways. This statement creates an array that has
space for five elements but is empty:

// creates an empty array of 5 elements:
int[] integers = new int[5];

This statement creates the array and initializes it all at once:

// creates an array of 5 elements with values:
int[] integers = new int[] { 1, 2, 3, 4, 5 };

or

// creates an array of 5 elements with values (without the new operator):
int[] integers = { 1, 2, 3, 4, 5 };

The initial values go between the curly braces and are separated by commas.

Another way to create an array is to create it and then code a loop to initialize it:

int[] integers = new int[5];
for (int aa = 0; aa < integers.length; aa++) {
 integers[aa] = aa+1;
}

The preceding code declares an integer array of five elements. If you try to put more than five
elements in the array, the Java runtime will throw an exception. You'll learn about exceptions and
how to handle them in Part 2.

http://www.ibm.com/developerworks/java/tutorials/j-introtojava2/index.html

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 41 of 53

Loading an array

To load the array, you loop through the integers from 1 through the length of the array (which you
get by calling .length on the array — more about that in a minute). In this case, you stop when
you hit 5.

Once the array is loaded, you can access it as before:

Logger l = Logger.getLogger("Test");
for (int aa = 0; aa < integers.length; aa++) {
 l.info("This little integer's value is: " + integers[aa]);
}

This syntax also works, and (because it's simpler to work with) I use it throughout this section:

Logger l = Logger.getLogger("Test");
for (int i : integers) {
 l.info("This little integer's value is: " + i);
}

The element index

Think of an array as a series of buckets, and into each bucket goes an element of a certain type.
Access to each bucket is gained via an element index:

element = arrayName [elementIndex];

To access an element, you need the reference to the array (its name) and the index that contains
the element that you want.

The length attribute

Every array has a length attribute, which has public visibility, that you can use to find out how
many elements can fit in the array. To access this attribute, use the array reference, a dot (.), and
the word length, like this:

int arraySize = arrayName.length;

Arrays in the Java language are zero-based. That is, for any array, the first element in the array is
always at arrayName[0], and the last is at arrayName[arrayName.length - 1].

An array of objects

You've seen how arrays can hold primitive types, but it's worth mentioning that they can also hold
objects. Creating an array of java.lang.Integer objects isn't much different from creating an array
of primitive types and, again, you can do it in two ways:

// creates an empty array of 5 elements:
Integer[] integers = new Integer[5];

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 42 of 53

// creates an array of 5 elements with values:
Integer[] integers = new Integer[] {
Integer.valueOf(1),
Integer.valueOf(2),
Integer.valueOf(3),
Integer.valueOf(4),
Integer.valueOf(5)
};

Boxing and unboxing

Every primitive type in the Java language has a JDK counterpart class, as shown in Table 4.

Table 4. Primitives and JDK counterparts

Primitive JDK counterpart

boolean java.lang.Boolean

byte java.lang.Byte

char java.lang.Character

short java.lang.Short

int java.lang.Integer

long java.lang.Long

float java.lang.Float

double java.lang.Double

Each JDK class provides methods to parse and convert from its internal representation to a
corresponding primitive type. For example, this code converts the decimal value 238 to an
Integer:

int value = 238;
Integer boxedValue = Integer.valueOf(value);

This technique is known as boxing, because you're putting the primitive into a wrapper, or box.

Similarly, to convert the Integer representation back to its int counterpart, you unbox it:

Integer boxedValue = Integer.valueOf(238);
int intValue = boxedValue.intValue();

Autoboxing and auto-unboxing

Strictly speaking, you don't need to box and unbox primitives explicitly. Instead, you can use the
Java language's autoboxing and auto-unboxing features:

int intValue = 238;

Integer boxedValue = intValue;
//
intValue = boxedValue;

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 43 of 53

I recommend that you avoid autoboxing and auto-unboxing, however, because it can lead to code-
readability issues. The code in the boxing and unboxing snippets is more obvious, and thus more
readable, than the autoboxed code; I believe that's worth the extra effort.

Parsing and converting boxed types

You've seen how to obtain a boxed type, but what about parsing a numeric String that you
suspect has a boxed type into its correct box? The JDK wrapper classes have methods for that,
too:

String characterNumeric = "238";
Integer convertedValue = Integer.parseInt(characterNumeric);

You can also convert the contents of a JDK wrapper type to a String:

Integer boxedValue = Integer.valueOf(238);
String characterNumeric = boxedValue.toString();

Note that when you use the concatenation operator in a String expression (you've already seen
this in calls to Logger), the primitive type is autoboxed, and wrapper types automatically have
toString() invoked on them. Pretty handy.

Lists

A List is an ordered collection, also known as a sequence. Because a List is ordered, you have
complete control over where in the List items go. A Java List collection can only hold objects (not
primitive types like int), and it defines a strict contract about how it behaves.

List is an interface, so you can't instantiate it directly. (You'll learn about interfaces in Part 2.) You'll
work here with its most commonly used implementation, ArrayList. You can make the declaration
in two ways. The first uses the explicit syntax:

List<String> listOfStrings = new ArrayList<String>();

The second way uses the "diamond" operator (introduced in JDK 7):

List<String> listOfStrings = new ArrayList<>();

Notice that the type of the object in the ArrayList instantiation isn't specified. This is the case
because the type of the class on the right side of the expression must match that of the left side.
Throughout the remainder of this tutorial, I use both types, because you're likely to see both
usages in practice.

Note that I assigned the ArrayList object to a variable of type List. With Java programming,
you can assign a variable of one type to another, provided the variable being assigned to is a
superclass or interface implemented by the variable being assigned from. In a later section, you'll
look more at the rules governing these types of variable assignments.

http://www.ibm.com/developerworks/java/tutorials/j-introtojava2/index.html

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 44 of 53

Formal type
The <Object> in the preceding code snippet is called the formal type. <Object> tells the compiler
that this List contains a collection of type Object, which means you can pretty much put whatever
you like in the List.

If you want to tighten up the constraints on what can or cannot go into the List, you can define the
formal type differently:

List<Person> listOfPersons = new ArrayList<Person>();

Now your List can only hold Person instances.

Using lists
Using Lists — like using Java collections in general — is super easy. Here are some of the things
you can do with Lists:

• Put something in the List.
• Ask the List how big it currently is.
• Get something out of the List.

To put something in a List, call the add() method:

List<Integer> listOfIntegers = new ArrayList<>();
listOfIntegers.add(Integer.valueOf(238));

The add() method adds the element to the end of the List.

To ask the List how big it is, call size():

List<Integer> listOfIntegers = new ArrayList<>();

listOfIntegers.add(Integer.valueOf(238));
Logger l = Logger.getLogger("Test");
l.info("Current List size: " + listOfIntegers.size());

To retrieve an item from the List, call get() and pass it the index of the item you want:

List<Integer> listOfIntegers = new ArrayList<>();
listOfIntegers.add(Integer.valueOf(238));
Logger l = Logger.getLogger("Test");
l.info("Item at index 0 is: " listOfIntegers.get(0));

In a real-world application, a List would contain records, or business objects, and you'd possibly
want to look over them all as part of your processing. How do you do that in a generic fashion?
Answer: You want to iterate over the collection, which you can do because List implements the
java.lang.Iterable interface.

Iterable
If a collection implements java.lang.Iterable, it's called an iterable collection. You can start at
one end and walk through the collection item-by-item until you run out of items.

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 45 of 53

In the "Loops section, I briefly mentioned the special syntax for iterating over collections that
implement the Iterable interface. Here it is again in more detail:

for (objectType varName : collectionReference) {
 // Start using objectType (via varName) right away...
}

The preceding code is abstract; here's a more realistic example:

List<Integer> listOfIntegers = obtainSomehow();
Logger l = Logger.getLogger("Test");
for (Integer i : listOfIntegers) {
 l.info("Integer value is : " + i);
}

That little code snippet does the same thing as this longer one:

List<Integer> listOfIntegers = obtainSomehow();
Logger l = Logger.getLogger("Test");
for (int aa = 0; aa < listOfIntegers.size(); aa++) {
 Integer I = listOfIntegers.get(aa);
 l.info("Integer value is : " + i);
}

The first snippet uses shorthand syntax: It has no index variable (aa in this case) to initialize, and
no call to the List 's get() method.

Because List extends java.util.Collection, which implements Iterable, you can use the
shorthand syntax to iterate over any List.

Sets

A Set is a collections construct that by definition contains unique elements — that is, no duplicates.
Whereas a List can contain the same object maybe hundreds of times, a Set can contain a
particular instance only once. A Java Set collection can only hold objects, and it defines a strict
contract about how it behaves.

Because Set is an interface, you can't instantiate it directly. One of my favorite implementations is
HashSet, which is easy to use and similar to List.

Here are some things you do with a Set:

• Put something in the Set.
• Ask the Set how big it currently is.
• Get something out of the Set.

A Set's distinguishing attribute is that it guarantees uniqueness among its elements but doesn't
care about the order of the elements. Consider the following code:

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 46 of 53

Set<Integer> setOfIntegers = new HashSet<Integer>();
setOfIntegers.add(Integer.valueOf(10));
setOfIntegers.add(Integer.valueOf(11));
setOfIntegers.add(Integer.valueOf(10));
for (Integer i : setOfIntegers) {
 l.info("Integer value is: " + i);
}

You might expect that the Set would have three elements in it, but it only has two because the
Integer object that contains the value 10 is added only once.

Keep this behavior in mind when iterating over a Set, like so:

Set<Integer> setOfIntegers = new HashSet();
setOfIntegers.add(Integer.valueOf(10));
setOfIntegers.add(Integer.valueOf(20));
setOfIntegers.add(Integer.valueOf(30));
setOfIntegers.add(Integer.valueOf(40));
setOfIntegers.add(Integer.valueOf(50));
Logger l = Logger.getLogger("Test");
for (Integer i : setOfIntegers) {
 l.info("Integer value is : " + i);
}

Chances are that the objects print out in a different order from the order you added them in,
because a Set guarantees uniqueness, not order. You can see this result if you paste the
preceding code into the main() method of your Person class and run it.

Maps

A Map is a handy collection construct that you can use to associate one object (the key) with
another (the value). As you might imagine, the key to the Map must be unique, and it's used to
retrieve the value at a later time. A Java Map collection can only hold objects, and it defines a strict
contract about how it behaves.

Because Map is an interface, you can't instantiate it directly. One of my favorite implementations is
HashMap.

Things you do with Maps include:

• Put something in the Map.
• Get something out of the Map.
• Get a Set of keys to the Map— for iterating over it.

To put something into a Map, you need to have an object that represents its key and an object that
represents its value:

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 47 of 53

public Map<String, Integer> createMapOfIntegers() {
 Map<String, Integer> mapOfIntegers = new HashMap<>();
 mapOfIntegers.put("1", Integer.valueOf(1));
 mapOfIntegers.put("2", Integer.valueOf(2));
 mapOfIntegers.put("3", Integer.valueOf(3));
 //...
 mapOfIntegers.put("168", Integer.valueOf(168));
return mapOfIntegers;
}

In this example, Map contains Integer s, keyed by a String, which happens to be their String
representation. To retrieve a particular Integer value, you need its String representation:

mapOfIntegers = createMapOfIntegers();
Integer oneHundred68 = mapOfIntegers.get("168");

Using Set with Map

On occasion, you might find yourself with a reference to a Map, and you want to walk over its entire
set of contents. In this case, you need a Set of the keys to the Map:

Set<String> keys = mapOfIntegers.keySet();
Logger l = Logger.getLogger("Test");
for (String key : keys) {
 Integer value = mapOfIntegers.get(key);
 l.info("Value keyed by '" + key + "' is '" + value + "'");
}

Note that the toString() method of the Integer retrieved from the Map is automatically called
when used in the Logger call. Map returns a Set of its keys because the Map is keyed, and each key
is unique. Uniqueness (not order) is the distinguishing characteristic of a Set (which might explain
why there's no keyList() method).

Archiving Java code

Now that you've learned a bit about writing Java applications, you might be wondering how to
package them up so that other developers can use them, or how to import other developers' code
into your applications. This section shows you how.

JARs

The JDK ships with a tool called JAR, which stands for Java Archive. You use this tool to create
JAR files. After you package your code into a JAR file, other developers can drop the JAR file into
their projects and configure their projects to use your code.

Creating a JAR file in Eclipse is easy. In your workspace, right-click the com.makotojava.intro
package and click File > Export. You see the dialog box shown in Figure 10. Choose Java > JAR
file and click Next.

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 48 of 53

Figure 10. Export dialog box

When the next dialog box opens, browse to the location where you want to store your JAR file and
name the file whatever you like. The .jar extension is the default, which I recommend using. Click
Finish.

You see your JAR file in the location you selected. You can use the classes in it from your code if
you put the JAR in your build path in Eclipse. Doing that is easy, too, as you see next.

Using third-party applications

The JDK is comprehensive, but it doesn't do everything you need for writing great Java code. As
you grow more comfortable with writing Java applications, you might want to use more and more
third-party applications to support your code. The Java open source community provides many
libraries to help shore up these gaps.

Suppose, for example, that you want to use Apache Commons Lang, a JDK replacement library
for manipulating the core Java classes. The classes provided by Commons Lang help you
manipulate arrays, create random numbers, and perform string manipulation.

Let's assume you've already downloaded Commons Lang, which is stored in a JAR file. To use the
classes, your first step is to create a lib directory in your project and drop the JAR file into it:

1. Right-click the Intro root folder in the Eclipse Project Explorer view.
2. Click New > Folder and call the folder lib.
3. Click Finish.

https://commons.apache.org/proper/commons-lang/

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 49 of 53

The new folder shows up at the same level as src. Now copy the Commons Lang JAR file into
your new lib directory. For this example, the file is called commons-lang3-3.4.jar. (It's common in
naming a JAR file to include the version number, in this case 3.4.)

Now all you need to do is tell Eclipse to include the classes in the commons-lang3-3.4.jar file into
your project:

1. In Package Explorer, select the lib folder, right-click, and select Refresh.
2.

Verify that the JAR shows up in the lib folder:
3. Right-click commons-lang3-3.4 and choose Build Path > Add to Build Path.

After Eclipse processes the code (that is, the class files) in the JAR file, they're available to
reference (import) from your Java code. Notice in Project Explorer that you have a new folder
called Referenced Libraries that contains the commons-lang3-3.4.jar file.

Writing good Java code
You've got enough Java syntax under your belt to write basic Java programs, which means that
the first half of this tutorial is about to conclude. This final section lays out a few best practices that
can help you write cleaner, more maintainable Java code.

Keep classes small
So far you've created a few classes. After generating getter/setter pairs for even the small number
(by the standards of a real-world Java class) of attributes, the Person class has 150 lines of code.
At that size, Person is a small class. It's not uncommon (and it's unfortunate) to see classes with 50
or 100 methods and a thousand lines or more of source. Some classes might be that large out of
necessity, but most likely they need to be refactored. Refactoring is changing the design of existing
code without changing its results. I recommend that you follow this best practice.

In general, a class represents a conceptual entity in your application, and a class's size should
reflect only the functionality to do whatever that entity needs to do. Keep your classes tightly
focused to do a small number of things and do them well.

Keep only the methods that you need. If you need several helper methods that do essentially the
same thing but take different parameters (such as the printAudit() method), that's a fine choice.
But be sure to limit the list of methods to what you need, and no more.

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 50 of 53

Name methods carefully
A good coding pattern when it comes to method names is the intention-revealing method-names
pattern. This pattern is easiest to understand with a simple example. Which of the following
method names is easier to decipher at a glance?

• a()
• computeInterest()

The answer should be obvious, yet for some reason, programmers have a tendency to give
methods (and variables, for that matter) small, abbreviated names. Certainly, a ridiculously long
name can be inconvenient, but a name that conveys what a method does needn't be ridiculously
long. Six months after you write a bunch of code, you might not remember what you meant to do
with a method called compInt(), but it's obvious that a method called computeInterest(), well,
probably computes interest.

Keep methods small
Small methods are as preferable as small classes, for similar reasons. One idiom I try to follow
is to keep the size of a method to one page as I look at it on my screen. This practice makes my
application classes more maintainable.

In the footsteps of Fowler
The best book in the industry (in my opinion, and I'm not alone) is Refactoring: Improving the
Design of Existing Code by Martin Fowler et al. This book is even fun to read. The authors
talk about "code smells" that beg for refactoring, and they go into great detail about the
various techniques for fixing them.

If a method grows beyond one page, I refactor it. Eclipse has a wonderful set of refactoring
tools. Usually, a long method contains subgroups of functionality bunched together. Take this
functionality and move it to another method (naming it accordingly) and pass in parameters as
needed.

Limit each method to a single job. I've found that a method doing only one thing well doesn't
usually take more than about 30 lines of code.

Refactoring and the ability to write test-first code are the most important skills for new
programmers to learn. If everybody were good at both, it would revolutionize the industry. If you
become good at both, you will ultimately produce cleaner code and more-functional applications
than many of your peers.

Use comments
Please, use comments. The people who follow along behind you (or even you, yourself, six
months down the road) will thank you. You might have heard the old adage Well-written code is
self-documenting, so who needs comments? I'll give you two reasons why I believe this adage is
false:

• Most code is not well written.

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 51 of 53

• Try as we might, our code probably isn't as well written as we'd like to think.

So, comment your code. Period.

Use a consistent style

Coding style is a matter of personal preference, but I advise you to use standard Java syntax for
braces:

public static void main(String[] args) {
}

Don't use this style:

public static void main(String[] args)
{
}

Or this one:

public static void main(String[] args)
 {
 }

Why? Well, it's standard, so most code you run across (as in, code you didn't write but might be
paid to maintain) will most likely be written that way. Eclipse does allow you to define code styles
and format your code any way you like. But, being new to Java, you probably don't have a style
yet. So I suggest you adopt the Java standard from the start.

Use built-in logging

Before Java 1.4 introduced built-in logging, the canonical way to find out what your program was
doing was to make a system call like this one:

public void someMethod() {
 // Do some stuff...
 // Now tell all about it
 System.out.println("Telling you all about it:");
 // Etc...
}

The Java language's built-in logging facility (refer back to the "Your first Java class" section) is
a better alternative. I never use System.out.println() in my code, and I suggest you don't use
it either. Another alternative is the commonly used log4j replacement library, part of the Apache
umbrella project.

Conclusion to Part 1
In this tutorial, you learned about object-oriented programming, discovered Java syntax that you
can use to create useful objects, and familiarized yourself with an IDE that helps you control your
development environment. You know how to create and run Java objects that can do a good

http://logging.apache.org/log4j/2.x/

developerWorks® ibm.com/developerWorks/

Introduction to Java programming, Part 1: Java language basics Page 52 of 53

number of things, including doing different things based on different input. You also know how to
JAR up your applications for other developers to use in their programs, and you've got some basic
best Java programming practices under your belt.

What's next

In the second half of this tutorial, you begin learning about some of the more advanced constructs
of Java programming, although the overall discussion is still introductory in scope. Java
programming topics covered in that tutorial include:

• Exception handling
• Inheritance and abstraction
• Interfaces
• Nested classes
• Regular expressions
• Generics
• Enum types
• I/O
• Serialization

Read "Introduction to Java programming, Part 2: Constructs for real-world applications."

http://www.ibm.com/developerworks/java/tutorials/j-introtojava2/index.html
http://www.ibm.com/developerworks/java/tutorials/j-introtojava2/index.html

ibm.com/developerWorks/ developerWorks®

Introduction to Java programming, Part 1: Java language basics Page 53 of 53

Related topics

• developerWorks Java development
• IBM developer kits
• OO Design Process: The object primer
• 5 things you didn't know about ... the Java Collections API, Part 1
• 5 things you didn't know about ... the Java Collections API, Part 2
• 5 things you didn't know about ... JARs
• Speaking the Java language without an accent
• IBM Code: Java journeys

© Copyright IBM Corporation 2010, 2017
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.ibm.com/developerworks/learn/java/index.html
https://developer.ibm.com/javasdk
https://www.ibm.com/developerworks/library/ws-using-oo/
http://www.ibm.com/developerworks/java/library/j-5things2/index.html
http://www.ibm.com/developerworks/java/library/j-5things3/index.html
http://www.ibm.com/developerworks/java/library/j-5things6/index.html
http://www.ibm.com/developerworks/java/library/j-noaccent/index.html
https://developer.ibm.com/code/technologies/java/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Java platform overview
	The Java language
	The Java compiler
	The JVM
	The garbage collector
	The Java Development Kit
	The Java Runtime Environment

	Setting up your Java development environment
	Your development environment
	Install the JDK
	Install Eclipse
	Set up Eclipse

	Getting started with Eclipse
	The Eclipse development environment
	Create a project

	Object-oriented programming concepts and principles
	What is an object?
	Example: A person object
	Principles of OOP
	Not a purely object-oriented language

	Getting started with the Java language
	Reserved words
	Structure of a Java class
	Packaging classes
	Import statements
	Class declaration
	Variables and methods

	Your first Java class
	Creating a package
	Declaring the class
	Adding class variables
	Built-in logging
	Running your unit test in Eclipse

	Adding behavior to a Java class
	Accessor methods
	Declaring accessors
	Calling methods

	Strings and operators
	Strings
	Operators

	Conditional operators and control statements
	Relational and conditional operators
	The if statement
	Variable scope
	The else statement
	The ternary operator

	Loops
	What is a loop?
	Loop termination
	Loop continuation

	Java Collections
	Arrays
	Boxing and unboxing
	Lists
	Iterable
	Sets
	Maps
	Using Set with Map

	Archiving Java code
	JARs

	Writing good Java code
	Keep classes small
	Name methods carefully
	Keep methods small
	Use comments
	Use a consistent style
	Use built-in logging

	Conclusion to Part 1
	What's next

	Trademarks

