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Preface  
 
This book deals with the field of sequencing and scheduling algorithms. Sequencing 

and scheduling is a form of decision-making that plays a crucial role in manufacturing 

and service industries. Scheduling is one of the most mathematically involved and 

developed fields in Industrial Engineering and Operations Research. In fact, scheduling 

began to be taken seriously in manufacturing at the beginning of 20th century with the 

work of Henry Gantt and other pioneers. However, the first scheduling algorithms were 

formulated in the mid of 20th century. Since then there has been a growing interest in 

scheduling. A rich body of knowledge composed of scientific papers and books has 

been built by scheduling academicians and practitioners. From this rich literature, I 

selected the classical scheduling algorithms that are taught in most industrial operations 

scheduling courses. The book is not intended to cover most of the algorithms available 

in the scheduling literature since a complete treatment of this scientifically rich field is 

impossible in given time and effort constraints. Compared to existing textbooks, this 

book provides a more comprehensive and expanded coverage of these algorithms. The 

book can be recommended as a primary or supplementary text for undergraduate level 

courses in Industrial operations scheduling. 

I intended this book to be used as a textbook in upper-division and graduate-level 

Scheduling courses. I was also aware that this book has been an important resource for 

scheduling professionals. To balance these two purposes, I have emphasized the 

empirical research basis of operations scheduling, I have stressed basic concepts and 

the operation scheduling considerations involved in the topics covered, and I have 

supplied references for those who wish to delve into particular area. I tried to maintain 

a scholarly approach to the field. Unfortunately, there are times when my presentation 

may be little technical especially when I am presenting information that would be more 

appropriate for the practicing Scheduling specialist than for student. But I hope the 

book will be one student want to keep as a valuable reference. 

Despite the huge number of books available on the theory and algorithms for 

Sequencing and scheduling problems. This book is the result of the development of 

courses in scheduling theory and applications at King Saud University. The book serves 



Algorithms for Sequencing & Scheduling 

the teaching process plus puts together all theories and algorithm in one reference.  The 

book deals primarily with machine scheduling and project resources allocation models. 

The book can be viewed as consisting of four major parts. The first part, Chapter 1, 

covers basics like an introduction to and classification of scheduling problems, methods 

of optimization that are relevant for the solution procedures. The second part, Chapters 

2 through 5, covers classical scheduling algorithms for solving single machine 

problems, parallel machine problems, and shop scheduling problems. The third part, 

Chapters 7 and 6, covers the project scheduling problems for allocating resources. The 

fourth and final part, Chapters 8 and 9, is devoted to Met-Heuristics which have 

attacked scheduling problems such as Simulated Annealing, Tabu search, and Genetic 

Algorithms. Hopefully there will be in a couple of years a second edition in which the 

applications part will be expanded, showing a stronger connection with the more 

theoretical parts of the text. Hopefully, the book will contribute to the effort of 

enhancing the understanding of the mathematically complicated sequencing and 

scheduling Algorithms. 

 

 

Ibrahim Alharkan 
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 The scheduling process most often arises in a situation where resource 
availabilities are essentially fixed by the long term commitments of a prior planning 
decision. With this background in mind, we can describe the steps by which scheduling 
decisions are reached as the systems approach. In this regard, the four primary stages 
include: formulation, analysis, synthesis and evaluation. In the first stage, basically, a 
problem is identified and the criteria that should guide decision making are determined. 
Analysis is the detailed process of examining the elements of a problem and their inter-
relationships. This stage is aimed at identifying the decision variables and also at 
specifying the relationships among them and the constraints they must obey. Synthesis 
is the process of building alternative solutions to the problem. Its role is to characterize 
the feasible options that are available. Finally, evaluation is the process of comparing 
these feasible alternatives and selecting a desirable course of action. 
 

1.1    INTRODUCTION 
 

 Scheduling is the task of determining when each operation is to start and finish. 
Since each operation is in possible competition with other operations for scarce 
resources of time and capacity, the job of scheduling is neither simple nor easy. 
 Scheduling is the allocation of resources over time to perform a collection of 
tasks. This rather general definition of the term does convey two different meanings. 
First scheduling is a decision making function. Second scheduling is a body of theory 
as it is a collection of principles, models, techniques and logical conclusions that 
provide insight into the scheduling function.  
 It may be worth mentioning here to distinguish between terms "Scheduling" and 
"Sequencing" which as a matter of fact, are both associated with the job shop process. 
Scheduling is defined as assigning each operation of each job a start time and a 
completion time on a time scale of machine within the precedence relations. However, 
under certainty, a schedule can not be determined because the arrival time of the job, 
operation processing time, as well as other attributes are not fully known. On the other 
hand sequencing means that for each machine in the shop, one has to establish the order 
in which the jobs waiting in the queue in front of that particular machine have to be 
processed. 
 The problem that motivated this study is as follows: suppose there are a number 
of jobs to be performed. Each job consists of a given sequence of operations which 
needs to be performed using a number of machines. All operations for each job must be 
performed in the order given by the sequence. Each operation demands the use of a 
particular machine for a given time. Each machine can process only one operation at a 
time. Therefore, given a cost function by which each sequence can be evaluated, the 
order of operations on each machine that minimizes the cost function needs to be 
found. 
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Sequencing and scheduling problems occur in different industries and circumstances. 
The following are some examples of different situations which need sequencing or 
scheduling:  

i. parts waiting for processing in a manufacturing plant;  

ii. aircraft waiting for landing clearance at an airport; 

iii. computer programs running at a computing center; 

iv. class scheduling in a school,  

v. patients waiting in a Doctor’s office; 

vi. ships to be anchored in a harbor, and  

vii. Thursday afternoon chores at home. 

 
1.2    DEFINITIONS 

 
 Production sequencing and scheduling is one of the most important activities in 
production planning and control. Morton and Pentico discussed how important the 
sequencing and scheduling role is, stating that “it pervades all economic activity” 
(Morton and Pentico 1993, 5).  Pinedo further discussed the importance of the 
sequencing and scheduling problem:  

...Sequencing and scheduling are forms of decision-making which 
play a crucial role in manufacturing as well as in service 
industries.  In the current competitive environment, effective 
sequencing and scheduling has become a necessity for survival in 
the marketplace.  Companies have to meet shipping dates 
committed to the customers, as failure to do so may result in a 
significant loss of good will.  They also have to schedule activities 
in such a way as to use the resources available in an efficient 
manner. (Pinedo 1995, xiii) 

 The definition of sequencing among researchers is common.  Sequencing is 
defined as the order in which the jobs (tasks) are processed through the machines 
(resources).  Scheduling was defined by Baker as follows: 

...Scheduling is the allocation of resources over time to perform a 
collection of tasks....  Scheduling is a decision-making function: it 
is the process of determining a schedule....  Scheduling is a body 
of theory: it is a collection of principles, models, techniques, and 
logical conclusions that provide insight into the scheduling 
function. (Baker 1974, 2) 

Also, Morton and Pentico defined scheduling as follows: 
...Scheduling is the process of organizing, choosing, and timing 
resource usage to carry out all the activities necessary to produce 
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the desired outputs at the desired times, while satisfying a large 
number of time and relationship constraints among the activities 
and the resources. (Morton and Pentico 1993, 5) 

 Therefore, from the above two definitions, scheduling can be defined as a 
decision-making process that is concerned with the allocation of limited machines 
(resources) over time to perform a collection of jobs (tasks) in which one or several 
objectives have to be optimized. 
  
The general definition of the sequencing problem can be stated as follows:  

There are m machines {M1, M2, ..., Mm} available and n jobs {J1, 
J2,..., Jn} to be processed. A subset of these machines is required to 
complete the processing of each job. The flow pattern (process 
plan) for some or all jobs may or may not be fixed. Each job 
should be processed through the machines in a particular order 
that satisfies the job’s technological constraints. The processing of 
job i on machine j is called an operation denoted by Oij. 
Associated with each operation is a processing time denoted by Pij, 
and a setup time denoted by Sij.  Also, associated with each job is 
a weight, wi, a ready (release or arrival) time, ri, and a due date, di.  
Finally, each job has an allowance time to be in the shop, ai. 

 
Thus, the general problem is to generate a sequence that satisfies the following 
conditions: 

i. all jobs are processed; 
ii. all technological constraints are met for all jobs (feasibility condition), and 
iii. all criteria that were selected are optimized. 

 
1.3     LEVELS OF THE SEQUENCING AND SCHEDULING PROBLEM 

 
 Sequencing and scheduling are involved in planning and controlling the 
decision-making process of manufacturing and service industries in several stages.  
According to several researchers (Baker 1974; Browne, Harhen, and Shivnan 1988; 
Muchnik 1992; and Morton and Pentico 1993), sequencing and scheduling exist at 
several levels of the decision-making process.  These levels are as follows: 
 

1) Long-term planning which has a horizon of 2 to 5 years.  Some examples 
are: plant layout, plant design, and plant expansion. 

 
2) Middle-term planning such as production smoothing and logistics which 

can be done in a period of 1 to 2 years. 
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3) Short-term planning which is done every 3 or 6 months.  Examples 
include: requirements plan, shop bidding, and due date setting. 

 
4) Predictive scheduling which is performed in a range of 2 to 6 weeks.  Job 

shop routing, assembly line balancing, and process batch sizing qualify as 
predictive. 

 
5) Reactive scheduling or control which is performed every day or every 

three days.  A few examples are: hot jobs, down machines, and late 
material. 

 
1.4    SCHEDULING ENVIRONMENTS  

 
According to Conway, Maxwell, and Miller (1967), sequencing and 

scheduling environments are classified according to four types of information: the 
jobs and operations to be processed; the number and types of machines that comprise 
the shop; the disciplines that restrict the manner in which assignment can be made, 
and the criteria by which a schedule will be evaluated.  The sequencing and 
scheduling environments are as follows: 

  
1) Single machine shop: one machine and n jobs to be processed. 

 
2) Flow shop: there are m machines in series and jobs can be processed in 

one of the following ways:  
a) Permutational: jobs are processed by a series of m machines in exactly 

the same order, or  
b) Non-permutational: jobs are processed by a series of m machines not 

in the same order. 
 

3) Job shop: each job has its flow pattern and a subset of these jobs can visit 
each machine twice or more often.  Multiple entries and exits. 

 
4) Assembly job shop: a job shop with jobs that have at least two component 

items and at least one assembly operation. 
 

5) Hybrid job shop: the precedence ordering of the operations of some jobs 
is the same. 

 
6) Hybrid assembly job shop: combines the features of both the assembly 

and hybrid job shop. 
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7) Open shop: there are m machines and there is no restriction in the routing 
of each job through the machines.  In other words, there is no specified 
flow pattern for any job. 

 
8) Closed shop: it is a job shop; however, all production orders are generated 

as a result of inventory replenishment decisions.  In other words, the 
production is not affected by the customer order. 

 
1.5    ASSUMPTIONS 

 
A variety of assumptions is made in sequencing and scheduling problems The 

nature of these assumptions depends on the sequencing environment. The following 
list contains typical assumptions generally applied to scheduling problem with 
variations depending on the situation. 

 
1) the set of the jobs and the set of the machines are known and fixed; 

 
2) all jobs and all machines are available at the same time and are 

independent; 
 

3) all jobs and machines remain available during an unlimited period; 
 

4) the processing time for each job on all machines is fixed, has a known 
probability distribution function, and sequence independent; 

 
5) setup times are included in processing times; 

 
6) a basic batch size is fixed for all jobs; 

 
7) all jobs and all machines are equally weighted; 

 
8) no preemption is allowed; 

 
9) a definite due date is assigned to each job; 

 
10) each job is processed by all the machines assigned to it; 

 
11) each machine processes all the jobs assigned to it, 

 
12) the process plan for each job is known and fixed. 
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1.6    CATEGORIES OF SCHEDULING PROBLEMS 
 

When none, one, or more of the assumptions used is/are relaxed, then the 
sequencing and scheduling problem is categorized into one of the following: 

 
a) Deterministic sequencing and scheduling problems: when all elements of 

the problem, such as the state of the arrival of the jobs to the shop, due-
dates of jobs, ordering, processing times and availability of machines, do 
not include stochastic factors and are determined in advance. 
 

b) Static sequencing and scheduling problems: the same as deterministic 
problems except that the nature of the job arrival is different.  The set of 
jobs over time does not change, and it is available beforehand. 

 
c) Dynamic sequencing and scheduling problems: the set of jobs changes 

over time and jobs arrive at different times. 
 

d) Stochastic sequencing and scheduling problems: at least one of the 
problem elements includes a stochastic factor. 

 
1.7    SCHEDULING FRAME WORK AND NOTATIONS 

 
A scheduling problem is described by the following notational form:  
 
     α | β  | γ     

 
α :  notation describes the machine/scheduling environment. 
 
β :  notation is used to explain the processing characteristics and constraints. 
 
γ :  notation contains information on the objective function to be attained. 

 
The following tables provide more information on the three notations. 
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Table 1.1 Notations for Common Machine Environment (α) 

Environment Name Symbol / Notation Description 

Single Machine 1 One machine 

Identical Machines 
in Parallel Pm 

   P : Parallel machines 
“m” : number of machines  

Parallel machines 
with different speeds 

Qm 
Q : Parallel machines with different speeds 
“m” : number of machines 

Flow Shop Fm 
   F : Flow shop 
“m” : number of machines 

Job Shop Jm 
    J : Job shop 
“m” : number of machines 

Open Shop Om 
    O: Open shop 
“m” : number of machines 

 
 

Table 1.2 Notations for Common Processing Characteristics / Constraints (β) 
Term Notation Description 

Release Date rj This term if present indicates the dynamic 
shop; a job cannot start its processing on a 
machine prior to its rj value. 

Preemptions Prmp A job may interrupted during its processing 
due to arrival of a high priority job 

Precedence 
constraints 

Prec When one job depends on the completion of 
another job, this implies precedence 
constraint 

Breakdowns Brkdwn This implies that machines are not 
continuously available for processing 

Recirculation Recrc When a job visits a machine more than once 
Permutation Prmu The processing order of all jobs on one 

machine is maintained throughout  the shop 
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Table 1.3 Notations for Common scheduling objective functions (γ). 

Makespan Cmax 

Maximum Lateness Lmax 

Total weighted completion time ΣωjCj 

Total weighted Tardiness  ΣωjTj 

Total completion times ΣCj 

 
 

1.8    DECISION-MAKING GOALS  
 
According to Baker (1974), there are three common types of decision-making 

goals in sequencing and scheduling problems: efficient utilization of resources; rapid 
response to demands, and close conformance to prescribed deadlines. 

• Efficient utilization of resources. Schedule activities so as to maintain 
high utilization of labor, equipment and space. 

• Rapid response to demands. Scheduling should allow jobs to be 
processed at rapid rate resulting in low levels of work-in-process 
inventory. 

• Close conformance to meet deadlines. Scheduling should ensure that 
due dates are met with every time through shorter lead times. 

 The three common goals can be achieved by associating the criteria mentioned above 
with each of the three goals as follows:  

a) Efficient utilization of machines (resources):  

Minimize  Cmax or I , or maximize N p or U . 

b) Rapid response to demands: 

 Minimize  
Cii

n

=
∑

1 ; 
Fii

n

=
∑

1 ; 
Lii

n

=
∑

1 ; 
W

ijj

m

i

n

=
∑

=
∑

11 ; C ; F ; L ’ N w , or W . 

c) Close conformance to prescribed deadlines: 

 Minimize  Lmax; Tmax; NT; 
Tii

n

=
∑

1 ; T , or 
w

i
Tii

n

=
∑

1 . 
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1.9    CRITERIA OF THE SEQUENCING AND SCHEDULING 
 

According to Rinnooy Kan (1976) and French (1982), the criteria for 
sequencing and scheduling problems are classified according to three measures: 
completion times; due dates, and inventory and machine utilization.  With each of the 
three measures, the following criteria can be associated, as shown in Tables 1, 2 and 
3. 

In the sequencing and scheduling literature, there are other criteria such as a 
combination of two or more of the above mentioned criteria.  Also, there are other 
criteria in the sequencing and scheduling literature that were not mentioned above.  
For additional criteria, the reader can refer to Conway, Maxwell, and Miller (1967); 
Baker (1974); Rinnooy (1976); Bellman, Esogbue, and Nabeshima (1982); French 
(1982); Morton and Pentico (1993); and Pinedo (1995). 

 
1.9.1 Criteria based on completion times 
 

1) Completion time of job i Ci 

2) The total completion time Cii

n

=
∑

1  

3) The total weighted completion time w
i
Cii

n

=
∑

1  

4) The total weighted waiting time w
i

W
ijj

m

i

n

=
∑

=
∑

11  

5) Flow time of job i Fi = Ci –ri 

6) Maximum completion time (the 
schedule time. or makespan) Cmax = 

max
,...,1 n {Ci}. 

7) The total flow time Fii

n

=
∑

1  

8) The total weighted flow time w
i
Fii

n

=
∑

1  

9) Average flow time F  

10) Maximum flow time Fmax 

11) Waiting time of job I 
Wi = 

F
i

Pijj

m
−

=
∑

1 . 
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12) The total waiting time W
ijj

m

i

n

=
∑

=
∑

11  

13) Average completion time C  

14) Average waiting time W  
 
 
1.9.2 Criteria based on inventory and machine utilization 
 

1) Average number of jobs waiting for 
machines 

N w  

2) Average number of unfinished jobs N u  

3) Average number of jobs completed Nc  

4) Average number of jobs actually 
being processed 

N p  

5) Average number of machines idle I  

6) Maximum machine idle time Imax  

7) Average utilization U Pijj

m

i

n
m C=

=
∑

=
∑

11
/ . max  

 
 
1.9.3 Criteria based on due-dates. 
 

1) Lateness of job i Li = Ci - di 

2) The total lateness Lii

n

=
∑

1
 

3) The total weighted lateness w
i
Lii

n

=
∑

1  

4) Average lateness L  
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5) Maximum lateness Lmax = 
max
,...,1 n {Li} 

6) Tardiness of job I Ti = max
,...,1 n

{0, Li} 

7) Earliness of job I Ei = 
max
,...,1 n {0, -Li} 

8) Maximum Earliness Emax = max
,...,1 n

{Ei} 

9) The total tardiness Tii

n

=
∑

1  

10) The total weighted tardiness w
i
Tii

n

=
∑

1
 

11) Average tardiness T  

12) Maximum tardiness Tmax = max
,...,1 n

{Ti} 

13) Number of jobs tardy 
NT = δ( )Tii

n

=
∑

1
, 

δ(Ti) = 1 if Ti > 0 
and δ(Ti) = 0 if Ti ≤ 0 

 

The criterions of more significance are; 

• Makespan: It is the total amount of time required to completely process all 
the jobs. 

• Lateness of the Jobs: It is defined as the difference between completion 
time and due date of the job. 

• Tardiness of the Jobs: It is the maximum value of lateness of the job. 

• Mean Flow Time: It is the average time spent by a job in the shop and 
comprises of processing time, waiting time and transfer time. 
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1.10    METHODS OF SOLUTION  
 

Several methods have been developed to solve and model sequencing and 
scheduling problems that belong to any of the four categories (deterministic, static, 
dynamic, and stochastic).  These methods of solution can be classified as follows: 

1) Efficient optimal methods such as Johnson’s algorithm to solve a flow 
shop problem with two machines and n jobs (Johnson 1954). 

2) Enumerative methods (implicit and explicit or complete) such as Brown 
and Lomnicki’s branch and bound algorithm (Brown and Lomnicki 
1966). 

3) Heuristic methods such as Campbell, Dudek, and Smith’s algorithm to 
solve m machines and n jobs flow shop problems (Campbell, Dudek, and 
Smith 1970). 

4) Mathematical models (Integer Programming) such as Wagner’s form to 
solve the permutation flow shop problem with n jobs and m machines 
(Wagner 1959). 

5) Heuristic search techniques: Simulated Annealing, Genetic Algorithms, 
Tabu Search, and Artificial Intelligence. 

6) Simulation models. 
7) Analytical models (such as Jackson’s open queuing network model, 

Jackson 1957a). 

 
1.11    DISPATCHING RULES 

 
 Over the last four decades, the sequencing and scheduling problem has been 
solved using dispatching rules (also called scheduling rules, sequencing rules, 
decision rules, or priority rules).  These dispatching rules are used to determine the 
priority of each job.  The priority of a job is determined as a function of job 
parameters, machine parameters, or shop characteristics.  When the priority of each 
job is determined, jobs are sorted and then the job with the highest priority is selected 
to be processed first. 
 Baker (1974, 216-217) and Morton and Pentico (1993, 373) classified 
dispatching rules as follows:  

⇒ Local rules are concerned with the local available information.   

⇒ Global rules are used to dispatch jobs using all information available on the 
shop floor.   

⇒ Static rules do not change over time, and ignore the status of the job shop 
floor.   
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⇒ Dynamic rules are time dependent, and change according to the status of the 
job shop floor.   

⇒ Forecast rules are used to give priority to jobs according to what the job is 
going to come across in the future, and according to the situation at the local 
machine. 

Several dispatching rules have been reported by many researchers. The following are 
some of the dispatching rules that have been developed, investigated, and 
implemented by several researchers and practitioners: 
 
1) SPT or SEPT: Shortest Processing Time or Shortest Expected Processing Time.  

The job with the smallest operation processing time is processed first.  The SPT 
rule has several versions.   
• SRPT: Total Shortest Remaining Processing Time. 
• TSPT: Truncated SPT.  The job with the smallest operation processing time 

is processed first, but if there is a job with an operation waiting time larger 
than W, that job is processed first, W is arbitrarily chosen. 

• WSPT: Weighted Shortest Processing Time.  The job with the smallest ratio 
is processed first.  The ratio is computed by dividing the operation 
processing time of the job by its weight. 

• LWR: Least Work Remaining in terms of the number of operations. 
• TWORK: Total Work in terms of processing time. 
• AJF-SPT: Assembly jobs first with SPT rule.  If there are assembly and 

non-assembly products waiting for a specific machine, then the assembly 
products are selected first.  The SPT rule is used to select one of them. 

 
2) LPT or LEPT: Longest Processing Time or Longest Expected Processing Time.  

The job with the largest operation processing time is processed first.  There are 
other versions of LPT.   
• TLPT: Total LPT. 
• LRPT: Total Longest Remaining Processing Time. 
• MWR: Most Work Remaining in terms of the number of operations. 

 
3) EDD: Earliest Due Date. The job with the smallest due date is processed first.  

There are three versions of EDD rule. 
• ODD: Operation Due Date.  The operation with the smallest due date is 

processed first.   
• MDD: Modified Due Date.  From the set of jobs waiting for a specific 

machine, jobs are assigned a new due date, and EDD is performed on this 
set.  The new due dates are assigned in one of two ways.  In the first, a job 
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with negative slack is assigned a due date that is equal to the current time 
plus the processing time.  In the second, a job with positive slack is assigned 
its original due date. 

• MODD: Modified Operation Due Date.  From the set of operations waiting 
for a specific machine, operations are assigned a new due date, and ODD is 
performed on this set.  This means the new operation due dates are assigned 
using the two ways used in the MDD, but instead of using EDD, the ODD is 
used. 

 
4) JST: Job Slack Time.  The job with minimum slack is processed first.  The job 

slack time is computed as the difference between the job due date, the work 
remaining, and the current time.  The JST rule has five versions. 
• OST or S/OPN: Operation Slack Time.  The job with the smallest operation 

slack is processed first.  The OST is determined by dividing the JST by the 
number of job operations remaining. 

• A/OPN: Allowance over remaining number of operation. The job with the 
smallest ratio is processed first. 

• S/A: Slack time over Allowance: The job with the smallest ratio is 
processed first.   

• WPT+WOST: Weighted Processing Time plus Weighted Operation Slack 
Time.  The job with the smallest value is processed first. 

• S/RPT: Slack over Remaining work Time.  S/RPT is computed as job slack 
divided by the remaining work time.   

 
5) CR: Critical Ratio.  The job with the smallest ratio is processed first.  The CR is 

determined by dividing job’s allowance by the remaining work time.  The CR has 
one version. 
• OCR: Operation Critical Ratio. The operation with the smallest ratio is 

processed first.  The OCR is determined by dividing operation’s allowance 
by the operation process time.   

 
6) RANDOM: Service in Random Order.  A job is randomly selected from the set of 

jobs which are queued at the machine.  RANDOM has one version. 
• Biased-RANDOM:  Service in Biased Random Order.  When RANDOM 

rule is applied, jobs are equally likely to be selected from the set of jobs 
waiting.  However, in the Biased-RANDOM rule, jobs are not equally likely 
to be selected.  The selection process is biased according to one or more of 
the other dispatching rules such SPT or EDD.  To apply the Biased-
RANDOM to a set of jobs waiting, a dispatching rule is selected first (say 
SPT).  Then, the set of jobs waiting are sorted according to the dispatching 
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rule selected (i.e., SPT).  Next, jobs in the ordered list are assigned selection 
probabilities which are usually computed according to geometric 
distribution.  The job in the first position will be given the largest selection 
probability and the job in the last position will be given the smallest 
selection probability.   By doing so, the jobs early in the ordered list of jobs 
are more likely to be selected, while jobs late in the ordered list of jobs are 
less likely to be selected. 

 
7) FCFS or SORT: First Come, First Served or Smallest Ready Time.  The job 

which arrives first at the machine will be served first.  There is one version of 
FCFS rule. 
• FASFS or SRT: First At Shop, First Served or Smallest Release Time.  A 

job arriving first at the shop is given priority to go first in all machines.  
 

8) LCFS: Last Come, First Served.  The job which arrives last will be served first. 
 

9) LFJ: Least Flexible Job.  The job with the least flexibility is processed first. 
 

10) FOFO: First Off, First On.  The job with the operation that could be completed 
earliest will be processed first even if this operation is not yet in the queue.  In this 
case, the machine will be idle until the operation arrives. 
 

11) LAWINQ: Least Anticipated Work In Next Queue.  From the set of jobs waiting 
for a specific machine, a job will be selected that will encounter the smallest 
queue at the next machine in its route. 
 

12) COVERT: Cost OVER Time.  COVERT is a composite rule that puts the job 
with the largest COVERT ratio in first position.  The COVERT ratio is computed 
by dividing an anticipated tardiness for the associated job and its operation 
processing time.  The COVERT rule has two versions.   
• ATC: Apparent Tardiness Cost.  The ATC introduces the effect of job 

weight and it uses a different function to estimate the tardiness associated 
with each job.  ATC gives priority to a job with the largest ATC value. 

• ATEC: Apparent Tardiness and Earliness Cost.  ATEC is a generalization 
of both COVERT and ATC.  It includes a different function to account for 
tardiness and earliness in its computations.   

 
As mentioned earlier, the above dispatching rules are determined according to job 
parameters, machine parameters, and shop characteristics.  The above rules can be 
classified into four classes.  The first class consist of rules that deal with the 
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processing time (that is, rules 1 and 2).  Rules 3, 4, and 5 are a class of rules which 
involve due dates.  Class three consists of rules numbering 6, 7, 8, 9, 10, and 11 that 
involve shop and/or job characteristics.  Finally, class four is formed by a 
combination of the other three classes and is known as rule 12. 
 
1.11.1 Effect of dispatching rules: 
 Since the sequencing and scheduling problem can be viewed as a network of queues, 
the effect of the dispatching rules can be tested using queuing network theory. During last six 
decades, a series of investigations was done to continue studying the outcome of dispatching 
rules. Several important conclusions can be obtained from those series of studies:  

1. The SPT rule minimizes the average flow time, average lateness, average number in 
queue, average tardiness, and percentage of jobs tardy.  The SPT is insensitive to due 
date tightness. 

2. COVERT rule is superior in minimizing the mean tardiness when compared to SPT 
and TSPT. 

3. Job slack rules are more effective to minimize the tardiness. 

4. The size of the shop is not a significant factor. 

5. The FCFS rule achieves a small proportion of jobs tardy if the shop is not heavily 
loaded. 

6. The OST minimized the percentage of jobs tardy and the conditional average 
tardiness. 

The above conclusions have inspired researchers to study the effect of the 
dispatching rule in more complex and different job shop environments.  Also, advancements 
in computer technology and software that can be used to simulate and study the job shop 
environment have helped researchers to do more work in this fruitful area.  Thirteen studies 
had been performed during the seventies to investigate more difficult job shop environments.  
These attempts have been performed by Hottenstein (1970), Putnam et al. (1971), Ashour and 
Vaswani (1972), Elvers (1973, 1974), Holloway and Nelson (1974), Irastorza and Deane 
(1974), Eilon, Chowdhury, and Serghiou (1975), Hershauer and Ebert (1975), Berry and 
Finlay (1976), Eilon and Chowdhury (1976), Nelson, Holloway, and Wong (1977), Hurrion 
(1978), and Weeks (1979).  Some of these studies will be discussed in the following 
paragraphs. 

Hottenstein (1970) studied the process of speeding up the job delivery which is called 
expediting.  One of two reasons can be used to accelerate jobs: 1) the due date of a job has 
been revised or 2) job slack has become negative.  Under normal operating conditions, the 
SPT rule is used.  When jobs belong to the expediting set of jobs, however, the jobs are 
processed according to either SPTEX or FCFSEX rules.  The SPTEX rule gives priority to 
jobs according to the SPT rule, and the FCFSEX gives priority according to the FCFS rule.  
Hottenstein simulated hybrid job shops and pure flow shops using six machines.  Two types 
of loads were used.  Six performance measures were used: average number of jobs in the 
system; flow time; percentage of jobs tardy; percentage of early-request jobs shipped late; 
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average tardiness, and average tardiness for early-request jobs.  Conclusions of this study can 
be summarized as follows: SPT and SPTEX rules performed almost the same under all 
performance measures and conditions, and the FCFSEX had the worst performance.  Eilon, 
Chowdhury, and Serghiou (1975), performed a similar study and in their study, jobs were 
quickened according to an expediting criterion which was computed as the job slack 
combined with a control parameter (U).  The control parameter was used to regulate the 
percentage of jobs that can be put in the set of expediting jobs.  Then the SPT rule was 
applied to the jobs which were in the expediting set.  The researchers named their general 
procedures the SPT* rule which was performed by first computing a classification index as 
follows: Fi = JSTi - U.  Then, if Fi ≤ 0, job i is put in the expediting set.  Otherwise, job i is 
put in the normal set.  

The effect of due date assignments was studied by Ashour and Vaswani (1972), 
Elvers (1973), Eilon and Chowdhury (1976), and Weeks (1979).  A common conclusion of 
this series of studies is that dispatching rules that were due-date based performed better when 
due dates were assigned according to number of operations and work content of a job.  In 
other words, these dispatching rules performed better when due dates were assigned 
according to expected flow time and job shop congestion.  Also, the average tardiness was 
minimized by S/OPN rule.  

Elvers (1974) investigated the effects of sixteen arrival distributions on ten 
dispatching rules using tardiness as the performance measure.  The sixteen arrival 
distributions were three parameters for each of binomial distribution, bimodal distribution, 
discrete uniform distribution, left skew distribution, and right skew distribution, plus the 
Poisson distribution.  Some of the dispatching rules used were: FCFS; FASFS; SRPT; SEPT; 
EDD; OST, and JST.  Elvers simulated a job shop with eight machines, and concluded that 
the dispatching rules are not affected by the arrival distributions in the performance measure 
tested. 

The effect of incorporating queueing waiting time in the calculations of both job 
slack time and critical ratio was investigated by Berry and Finlay (1976).  They used flow 
time, job lateness, and work-in-process as the performance measures.  They estimated the 
queue time using historical queue waiting times.  Berry and Finlay simulated a job shop with 
ten machines and fifteen products.  They concluded that the incorporation of queueing 
waiting time in the calculations of JST and CR rules did not improve the performance of 
these rules, which implies no improvement in the shop performance.  

Using decision theory, Arumugam and Ramani (1980) compared five dispatching 
rules to be selected to minimize a combined criterion.  This criterion consisted of work-in-
process inventory and delivery performance.  The five dispatching rules used were: lowest 
value time; highest value time; customer priority; SPT, and OST.  They simulated a job shop 
with sixty-four machines, ninety-one workers, and nineteen products.  Arumugam and 
Ramani simulated a job shop with various shop loads, and they concluded that the SPT 
dominated all dispatching rules in all job shop configurations they tested.  Kanet and Zhou 
(1993) used decision theory to developed a dispatching rule which is called MEANP and they 
tested it against six other dispatching rules.  The other dispatching rules used were: SPT; 
FCFS; ODD; COVERT; ATC, and MODD.  They simulated a job shop with a single 
machine, and they concluded that the MEANP approach was better than all the dispatching 
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rules when both tardiness and flow time were the criteria. 
One of the most important elements that affect the performance of dispatching rules 

are the due date setting rules.  The effects of due date setting rules on the dispatching rules 
have been investigated by several researchers.  These attempts have been made by Baker and 
Bertrand (1981, 1982), Miyazaki (1981), Baker and Kanet (1983), Baker (1984), Ragatz and 
Mabert (1984), Kanet and Christy (1989), Udo (1993), Vig and Dooley (1993), and Chang 
(1994).  Several conclusions came out of these studies:  

1. When job flow time estimates are used to predict due dates, the due dates 
produced are more robust and accurate to uncontrollable job shop (Miyazaki 
1981 and Vig and Dooley 1993). 

2. The relative performance of the dispatching rules was affected by the tightness of 
the due dates (Baker and Bertrand 1981).   

3. For practicability, the best due date setting rule is the total work content (TWK) 
rule which provides the best results for tardiness performance measures (Baker 
and Bertrand 1981 and 1982, Baker 1984, and Kanet and Christy 1989).  
According to Kanet and Christy (1989), the TWK reduces work-in-process.  
TWK = kP, where k is the due date factor and P is the total work required. 

4. According to Baker (1984), the second best due date setting rule is the number of 
operations (NOP) rule which is computed as follows: NOP = km, where k is the 
due date factor and m is the number of operations required by the job. 

5. There is no advantage to using the slack-based dispatching rules over the simple 
allowance-based rule (Baker 1984).   

6. When assigning due dates, both job characteristics and shop status information 
should be included (Ragatz and Mabert 1984, Udo 1993, Chang 1994). 

7. In estimating a job due date, information about machine center congestion and 
the routing of the job is more useful than knowing general information about the 
job shop conditions (Ragatz and Mabert 1984). 

8. When estimating due dates, the use of more details provides only marginal 
improvement in the performance of the due date setting rules (Ragatz and Mabert 
1984). 

9. Due dates that are assigned according to analytical analysis are favorable (Baker 
and Bertrand 1981). 

Dar-El and Wysk (1982) investigated the effect of the release mechanism on six 
dispatching rules using tardiness as a performance measure.  The release of jobs to the shop 
floor is controlled by delaying jobs according to two actions known as flushed and un-
flushed.  An un-flushed action was taken when no more jobs were allowed to enter the 
system.  A flushed action is taken when all remaining jobs are completed, and all machines in 
the job shop are empty.  The following were the dispatching rules used: SPT; FCFS; LCFS; 
EDD; OST, and LAWINQ.  The researchers simulated a job shop with four machines which 
had three types of load (70%, 77%, and 85%).  Dar-El and Wysk concluded that the best rules 
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that should be selected to manage a job shop with such behavior were SPT and LAWINQ.   
The effect of dispatching rules when incorporating machine breakdowns was 

investigated by Muhlemann, Lockett, and Farn (1982).  They tested twelve dispatching rules 
using seven performance measures.  The twelve dispatching tested were: RANDOM; FCFS; 
EDD; SPT; LWR; SPT*; S/OPN; ODD; LCFS; CR; OST, and a composite rule which was 
developed by Farn (1979).  The seven performance measures were: lateness; makespan; 
conditional lateness; percentage of jobs late; average queue time; mean tardiness, and average 
ration of flow time to process time.  Their job shop had twelve machines and processed 
twelve products.  They tested four cases of breakdowns where each had different arrival times 
and repair times.  Also, Muhlemann, Lockett, and Farn included a rescheduling factor in their 
experiment.  This factor was handled by having two sets of jobs waiting for any machine.  
The first set had the initial jobs, and the second set had the newly arrived jobs.  The 
rescheduling was done in a certain frequency to include the newly arrived jobs in the initial 
set.  From the results obtained, Muhlemann, Lockett, and Farn concluded that, in general, the 
SPT rule was the best when rescheduling was infrequent.  However, the SPT* and the 
composite rules were far better than the SPT when rescheduling was performed frequently.  
The mean tardiness was minimized by JST, SPT, and EDD rules.  The CR rule minimized the 
conditional mean lateness.  Frequent rescheduling resulted in better performance for the shop. 

Elvers and Taube (1983) studied the effects of efficiencies and inefficiencies of 
machines and workers on five dispatching rules (SPT, EDD, JST, OST, and FCFS) using 
percentage of jobs completed on time as a criterion.  In other words, they studied the effect of 
workers’ learning and loss of knowledge in terms of the processing times.  To represent 
workers’ learning and loss of knowledge using the processing times, the processing times 
were fluctuated accordingly.  In their experiment, Elvers and Taube compared two cases 
which they called stochastic and deterministic.  The stochastic case is with efficiencies and 
inefficiencies of machines and workers.  The deterministic case is without efficiencies and 
inefficiencies of machines and workers.  The study simulated a job shop with eight machines 
and six types of loads which ranged from 84.5% to 97.9% of capacity.  From their results, it 
is clear that when the job shop is heavily loaded, SPT was superior.  However, when the job 
shop load was under 91.6%, EDD, JST, OST, and FCFS were superior to SPT.  Finally, they 
concluded that the incorporation of efficiencies and inefficiencies in terms of the processing 
did affect the performance of the dispatching rules in most situations. 

Russell, Dar-El, and Taylor (1987) simulated an open job shop to test three 
alternative formulations of COVERT rule and ten other dispatching rules to test the effect of 
due date tightness.  The ten dispatching rules were: FCFS; EDD; JST; S/OPN; SPT; MDD; 
MODD; ATC, two versions of TSPT.  Eight performance measures were used: average flow 
time; average tardiness; average conditional tardiness; average lateness; root mean square of 
tardiness; root mean square of conditional tardiness; percent tardy job, and maximum 
tardiness.  The job shop simulated, as designed by Baker (1984), consisted of four machines 
which had a 90% utilization level.  From their results, it is clear that the SPT rule was 
superior in minimizing the average flow time, average lateness, and percent of job tardy.  The 
lowest value for average conditional tardiness, root mean square of tardiness, and root mean 
square of conditional tardiness was achieved by COVERT rule.  The MODD was superior in 
minimizing the average tardiness and TSPT was superior in minimizing maximum tardiness.  
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For loose due dates (20% tardy), MODD was superior in minimizing all performance 
measures except for the average flow time which was minimized by SPT.  The SPT was 
superior in minimizing the average flow time, the maximum tardiness, and average lateness 
when due dates were moderate (40% tardy).  Also, under tight due dates, COVERT was 
superior in minimizing the average conditional tardiness, the root mean square tardiness, and 
the root mean square conditional tardiness.  The MODD was superior in minimizing the 
average tardiness. 

Sawaqed (1987) performed a study where he investigated a hybrid assembly job shop 
with bottleneck machine.  He investigated the effect of the position of the bottleneck machine 
on various performance measures.  Sawaqed tried to answer several questions in his study.  
However, the two most important questions are: 

...Does the location of bottleneck machines influence the relative performance of 
dispatching rules? Is it sufficient to manage a job shop by managing its bottleneck 
machines? (Sawaqed 1987, ix) 

To answer these two questions Sawaqed simulated a hybrid assembly job shop with 
nine machines, nine products, six criteria, and six dispatching rules.  The load for non-
bottlenecks was 75% and for the bottleneck it was 90%.  Out of the nine products, there were 
four assembly products.  The six criteria were: average flow time; average tardiness; average 
lateness; average staging time; percentage of tardy, and maximum tardiness.  Six dispatching 
rules were used (FASFS, FCFS, SPT, EDD, AJF-SPT, and SRPT).  The results of this 
investigation concluded that the location of the bottleneck machine does not affect the 
relative performance of the superior dispatching rules.  For example, SPT will be superior 
wherever the bottleneck is.   

Next, Sawaqed performed another experiment to investigate the effect of managing 
the job shop by managing its bottleneck machines.  The bottleneck machines were identified 
by first identifying the average utilization level of all nine machines, then the machine with 
over 85% utilization level was identified as the bottleneck machine.  In his experiment there 
were three bottleneck machines with utilization level of 97%, 86%, and 95%.  In terms of 
dispatching rules, Sawaqed developed and used four management policies to schedule jobs on 
bottleneck and non-bottleneck machines.  These policies were: 1) EDD for both; 2) SPT for 
non-bottlenecks and EDD for bottlenecks; 3) EDD for non-bottlenecks and SPT for 
bottlenecks, and 4) SPT for both.  Then Sawaqed (1987, x) concluded that “the most crucial 
element in managing a job shop is the management of its bottleneck machines." 

Schultz (1989) developed a new rule that combined SPT with tardiness-based rules 
which was named CEXSPT rule.  Schultz tested the CEXSPT and six other dispatching rules 
by simulating an open job shop that was designed by Russell, Dar-El, and Taylor (1987).  The 
six dispatching rules used were: MODD; COVERT; SPT; ODD; S/OPN, and OCR.  Four 
performance measures were used which were: average flow time; average tardiness; average 
conditional tardiness, and proportion of job tardy. Schultz concluded that the SPT was 
superior in minimizing the average flow time, CEXSPT was superior in minimizing average 
tardiness, and COVERT was superior in minimizing average conditional tardiness.  Both 
MODD and SPT were superior in minimizing the proportion of job tardy. 

Vepsalainen and Morton (1987) developed and tested the effect of the ATC rule 
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which considered the influence of multiple machines by using look-ahead parameters.  They 
compared the ATC rule with five dispatching rules using three performance measures.  The 
five dispatching rules were: FCFS; EDD; OST; WSPT, and COVERT.  The four performance 
measures were: the normalized weighted tardiness; percentage of jobs tardy; the work-in-
process, and the work-in-system.  Vepsalainen and Morton simulated three types of job shops 
with ten machines and five shop loads (80%, 85%, 90%, 95% and 97%).  Vepsalainen and 
Morton generalized their conclusions for the three types of job shops because of similar 
patterns.  For all utilization and under tight due dates, they ranked the dispatching rules to 
minimize the weighted tardiness as follows: ATC; COVERT; WSPT; OST; EDD, then FCFS.  
In all utilization levels and when the due dates are loose, the ATC was ranked first to 
minimize the weighted tardiness, COVERT was second.  When due dates are loose and the 
utilization is low (<90%), the OST was ranked third, but, with high utilization (>90%), the 
WSPT rule was ranked third.  The ATC rule was the best under all utilization levels and due 
dates types to minimize the percentage of jobs tardy.  When due dates were tight and 
utilization was low (<85%), COVERT performed better than WSPT, but WSPT was better 
when the utilization level was higher than 85%.  Also, when due dates were loose and 
utilization was lower than 95%, COVERT performed better than WSPT, and when the 
utilization was higher than 95%, WSPT performed better.  The WIP was minimized by the 
ATC and EDD rules when the utilization was high (≥ 90%) and the due dates were loose.  
However, when the utilization was lower than 90%, the WSPT rule was the first to minimize 
WIP, then the ATC and the EDD rules.  In all shop loads and under tight due dates, the EDD 
was the best rule to minimize the WIP.  The EDD and OST rules were the best for WIS under 
tight due dates and all utilization levels.  The EDD rule was superior in all utilization levels 
when due dates were loose.  However, when the utilization was lower than 85%, the ATC 
rule was ranked second, but when the utilization was higher than 85%, the OST rule was 
ranked second. 

The computations of the ATC and COVERT rules required the computation of the 
expected waiting time for each operation of each job under consideration.  Vepsalainen and 
Morton (1987) used a unique method to compute the expected waiting time which was a 
multiplier of the processing time of a specific job under consideration (W=aPij, where a: is the 
multiplier and Pij is the processing time of operation j for job i).  Therefore, Vepsalainen and 
Morton (1988) continued their research and investigated the effect of different estimates of 
the expected waiting times on ATC and COVERT.  They tested three methods to estimate the 
waiting time, using the models of the previous study.  These three methods are: multiple of 
processing time (STD); priority-based (PRIO), and lead-time iteration (ITER).  They found 
that an accurate estimate of the waiting time helped the ATC and the COVERT rules to 
reduce the tardiness.  With respect to minimizing tardiness, the ATC/ITER combination was 
the best minimizer and COVERT/PRIO was the second.  

Anderson and Nyirenda (1990) developed two new methods to compute the operation 
due date.  These two methods were: CR+SPT and S/RPT+SPT.  Using the CR+SPT, the due 
date for operation j of job i is computed as follows: ODD = max (OCR*Pij, Pij).  Also, the 
S/RPT+SPT computed an operation due date as follows: ODD = max(S/RPT*Pij, Pij).  
Anderson and Nyirenda simulated an open job shop with eight machines to compare the 
performance of these two methods when they were used to computed the operation due date 
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in the MODD rule.  Also, they compared the performance of the MODD with four other 
dispatching rules.  These rules were: SPT; CEXSPT, and two versions of COVERT.  Four 
performance measures were used: mean flow time; mean tardiness; proportion of tardy jobs, 
and conditional mean tardiness.  The shop load was kept at 90% utilization level.  The results 
of this study indicated that the SPT rule was superior in minimizing the average flow time in 
all due dates types, and also superior in minimizing the percentage of jobs tardy when due 
dates were tight.  When the due dates were very tight, the MODD rule was superior in 
minimizing the mean tardiness.  The S/RPT+SPT rule was the best to minimize the mean 
tardiness when due dates were moderate, and superior in minimizing the percentage of jobs 
tardy when due dates were loose.  The CR+SPT rule was better than S/RPT+SPT rule in 
minimizing the average tardiness when due dates were loose. 

Raghu and Rajendran (1993) developed a new dispatching rule that is sensitive to the 
machine utilization level, job processing time, and operation due date.  Raghu and Rajendran 
tested their rule against six dispatching rules (SPT, EDD, MOD, ATC, S/RPT+SPT, and 
CR+SPT).  Four performance measures were used: average flow time; average tardiness; 
percentage of jobs tardy, and root mean square of average tardiness.  They simulated an open 
job shop with twelve machines and two shop loads (86% and 95%).  The results of this study 
indicated that at 85% utilization level and in all cases of due dates and processing times, RR 
and SPT rules performed equally and they were the best to minimize the average flow time.  
However, when the utilization level was 95%, the RR rule was ranked first and SPT was 
second.  For both the average tardiness and root mean square of average tardiness, the RR 
rule was superior in combinations tested.  The S/RPT+SPT and the CR+SPT rules were 
ranked second to minimize the average tardiness.  The EDD was ranked second with respect 
to root mean square average tardiness.  For percentage of jobs tardy, the SPT rule was ranked 
first, the S/RPT+SPT rule was ranked second, and then the RR rule was ranked third. 

A similar study to Dar-El and Wysk (1982) was recently performed by Rohleder and 
Scudder (1993b).  In this study, four job release mechanisms were tested to minimize 
earliness and tardiness simultaneously.  The four release rules were immediate release (IR), 
modified infinite loading (MIL), modified Ow and Morton (MOM), and operation early or 
tardy release (OETR).  The release time in the IR rule was the arrival time of the job.  The 
MIL rule derived its release time by using the attributes of jobs and the shop congestion.  The 
MOM rule obtained its release time by using the job’s due date, processing times, and early 
and tardy costs.  The OETR rule used overall information of the job, and produced release 
times for each operation of each product at all machines.  The OETR rule forced machines to 
have two queue types, which were active and inactive.  The active queue kept jobs that had 
been released, and the inactive queue held jobs that had not yet been released.  The active and 
inactive behavior performed by the OETR rule simulated the construction of a delay schedule 
and the other three release rules used a non-delay schedule.  Four dispatching rules were 
used: FCFS; EDD; weighted COVERT, and modified ATEC.  Rohleder and Scudder 
simulated an open job shop with six machines with three levels of utilization (70%, 80%, and 
90%).  The results of this study indicated that in terms of dispatching rules, the modified 
ATEC was superior in all cases tested.  The OETR rule was the best at all utilization levels 
and due date types.  When utilization was high, the IR was ranked second, but, as utilization 
levels decreased, MOM competed with IR.  In terms of importance between dispatching rules 
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and release rules, they conclude that dispatching rules were effective in reducing early or 
tardy costs when the utilization was high and due dates were tight.  However, release rules 
were effective when the utilization level was low and the due dates were loose. 

Bahouth and Foote (1994) developed and implemented three dispatching rules to 
manage two bottleneck machines in a hybrid assembly job shop with one assembly machine.  
The three dispatching rules were developed by using Johnson’s flow shop algorithm.  The 
three developed rules were:  

1. JNP: Johnson No Priority rule.  Parts were scheduled or rescheduled in all 
machines according to the sequence obtained by Johnson’s algorithm which was 
applied on the two bottlenecks. 

2. JHP: Johnson Half Priority rule.  Parts were scheduled or rescheduled according 
to JNP, but the first priority was given to a part on which only one operation was 
performed.  If ties occurred among the jobs that were prioritized by JHP, then 
JNP was used.  JHP was only applied before the assembly operation. 

3. JFP: Johnson Full Priority rule.  Parts were scheduled or rescheduled according 
to JNP, but the first priority was given to a part on which the maximum number 
of operations was performed.  If ties occurred among the jobs that were 
prioritized by JFP, then JNP was used.  JFP was applied at any machine. 

Bahouth and Foote simulated a job shop with nine machines where two of them were 
bottlenecks.  The total flow time was used as the performance measure.  They studied the 
effect of five factors.  These factors were: the interarrival times; percentage deviation 
between the assumed process time and the actual process time; the difference in average 
processing time between the two bottlenecks; the dispatching rules, and location of the 
bottlenecks.  The performance of the three dispatching rules was compared with the 
performance of a superior rule, which was SPT.  For the two bottlenecks, six locations were 
selected.  These locations were: 1) the first two stages; 2) the first stage and the second-to-last 
stage; 3) the first and last stages; 4) the second and last stages; 5) the last two stages, and 6) 
the second stage and the second-to-last stage.  The results of this study indicated that for the 
time between job creations, the JNP rule performed better than the other rules.  Also, they 
found that for the difference in the average process time between the two bottlenecks, the 
SPT rule was superior when the two bottlenecks were located in the first two stages.  The 
JNP rule performed better than the other rules when the two bottlenecks were located in the 
last two stages.  The SPT rule performance deteriorated when there was more than one non-
bottleneck machine between the two bottlenecks.  Finally, Bahouth and Foote concluded the 
following: 

...Flow shop sequencing rules can be applied to manage job shops: When a job 
shop has two bottleneck machines, a modified version of the Two-Machine Flow 
Shop Johnson rule can be used...  The above results can only be applied to cases 
when the two bottleneck machines are not on parallel branches of the product 
structure, and when jobs use the two bottleneck machines in the same sequence. 
(Bahouth and Foote 1994, 2476) 
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EXERCISES 
 

1.1 Give at least two practical examples of following environments.  
a. Single Machine shop 
b. Flow shop. 
c. Job shop. 
d. Assembly job shop. 
e. Hybrid job shop. 
f. Open shop. 
g. Closed shop 

 
1.2 What is the difference between stochastic and deterministic sequencing and 

scheduling problems? 
 

1.3 What are the three common types of decision-making goals in sequencing and 
scheduling problems? 

 
1.4 How could we achieve efficient utilization of machine with respect to 

sequencing and scheduling criteria?  
 

1.5 What are different methods of solving the sequencing & scheduling problem? 
 
1.6 Explain the effects of following dispatching rules. 

a. SPT 
b. LPT 
c. EDD 
d. WSPT 
e. CR 
f. FCFS 

 
1.7 Al-harkan factory makes large precision gears used in heavy equipment.  

These are made by drop forging and they have two identical drop forges.  
Currently, there are five gears that must be finished by tomorrow morning.  
The factory only has one shift of workers but will pay them overtime to finish 
the gears. All workers in the shift stay until all jobs are completed.  The times 
to process the five gears are 3, 7, 2, 15, and 4 hours respectively.   
a. Define the scheduling problem environment that satisfies the objective of 

finishing gears in shortest time!  
b. Suppose that Al-harkan factory receives payment as soon as the gears are 

delivered.  Define the scheduling problem environment that satisfies the 
objective of receiving payment as soon as the gears are finished! 
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2.1    INTRODUCTION 
 
 Single machine scheduling has attained most attention in theoretical scheduling 
studies. The understanding of the theories paves way for analyzing and better designing 
multi- machine systems. The following assumptions generally apply to build single 
machine scheduling models. 

1. Machine is continuously available during scheduling period. 
2. The machine processes jobs one at a time. 
3. The process time of each job on the machine is accurately known and, it does 

not depend upon prior jobs. 
4. The process time includes both set up time and actual machining time. 
5. The other job related information is known before hand. This information may 

include due date of the job (dj) and release time of the job (rj). 
6. In non-preemptive scheduling, jobs finish processing without interruption. In 

preemptive scheduling, jobs may be removed from the machine without 
finishing the operation. 
 

2.2    SCHEDULING MATHEMATICS 
 
The scheduling parameters for a typical job, say job j, are defined as follows: 

• pj =  the processing time Job j 
• Sj = the start time of job j 
• Wj = the waiting time of job j 
• Wj = the waiting time of job j 
• Dj = the due date of job j 
• Ej = the earliness job j 
• rj = the release time job j 
• Cj = the completion time of job j 
• Fj = the flow time of job j 
• Lj = the lateness of job j 
• Tj = the tardiness of job j 
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2.2.1 Gantt Chart 
Gantt chart is a popular way of graphically presenting a schedule of jobs on 

machines. X-axis of the chart represents time and, rectangular block on y-axis 
represents machine.  A horizontal bar shows each job’s start and finish time on a 
particular machine. The job number is inscribed in a rectangle. The length of the 
rectangle is scaled to represent job’s process time. The start and finish time of a job 
are indicated at the starting and terminating vertical sides of the job rectangle. Bars 
representing machines also indicate idle intervals on the machine. The following 
Gantt chart presents single machine with n jobs. 

 
 
 

 
Figure 2.1 Gantt chart. 

 
From the Gantt chart, waiting time for job j will be: Wj = Cj – rj – pj Similarly, the 
lateness (Lj) of the job j will be; Lj = Cj – dj. Job tardiness Tj is defined as positive 
lateness. In mathematical terms, tardiness (Tj) is expressed as follows: 

   
= >

=
=

j j j

j j

T L ,      if L 0

      0,   otherwise
T  max(L ,0)

. 

Similarly, job earliness is negative lateness. In mathematical terms, Ej is expressed as  

   
0

0

j j j

j j

E L ,      if L

      0,   otherwise
E  max(-L , )

= <

=
=

. 

Job Flow time (Fj ) can be expressed in two ways: 
Fj = Cj – rj  
    = Wj + pj 

From the relationship between rj, Wj and pj, expression for Cj can be deduced; 
Cj = rj + Wj + pj 

        = Sj + pj 
From the above relationship, Sj = rj + Wj. Clearly, if Wj = 0 then Sj = rj. 
Start time for generating a schedule is; 

      1     2    3      n-1       n      j 

Cj 

pj

M1 

           time 

rj 
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   Sj = Cj-1    if   Cj-1 > rj 
       = rj         otherwise, 
 
Example 2.1 
The following table contains data pertaining to 1|| F  problem. 
 

Job (j) 1 2 3 4 
pj 4 2 6 5 

 
Note that the release time 0rj =  for all jobs. Hence, it is a static shop environment.  

Use the following sequences and find average waiting time W  and the average flow 
time F  . 

i) Numerical (natural) Job order sequence ( 1-2-3-4) 
ii) Shortest Process Time (SPT) Sequence ( 2-1-4-3) 
iii) Random Sequence (1-3-4-2) 

Solution: 
i) Numerical Order Sequence (1-2-3-4) 

Using the numerical or natural order sequence, the schedule is shown 
using Gantt chart below. 
 

 
Figure 2.2 Gantt chart for numerical order sequence. 

 
The waiting times for all the jobs is computed as shown in the following table 

 
Job (j) pj Sj Cj Wj Fj 

1 4 0 4 0 4 
2 2 4 6 4 6 
3 6 6 12 6 12 
4 5 12 17 12 17 

    1  2         3       4 M1 

C1=4

C2=6

C3=12
C4=17 
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75.9
4
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4
F

F       ,5.5
4

22
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ii) SPT Sequence: (2-1-4-3) 

For each job, the computations for the waiting time using the SPT 
sequence are shown below. 

 

9
4
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4
F
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4

19
4
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W
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4
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j
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iii) Random Sequence:  (1-3-4-2) 

When using the random sequence, the average waiting time 
calculations is given in the table below; 

50.11
4

46
4
F

F        ,25.7
4

29
4

151040
4

W
W j

4

1j
j

==
∑

===
+++

=
∑

= =  

Note that the average values obtained by the SPT sequence are 
minimum for both W  andF . 

 
Example 2.2 
Consider a single machine sequencing problem with data as shown below:  
 
 
 
 

Job (j) pj Sj Cj Wj Fj 
2 2 0 2 0 2 
1 4 2 6 2 6 
4 5 6 11 6 11 
3 6 11 17 11 17 

Job (j) pj Sj Cj Wj Fj 
1 4 0 4 0 4 
3 6 4 10 4 10 
4 5 10 15 10 15 
2 2 15 17 15 17 

Job(j) 1 2 3 4 
pj 4 2 6 5 
dj 8 12 11 10 
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Use the following sequences to find Makespen or maximum completion time Cmax, 
Average waiting time W , Average tardiness T , and maximum lateness Lmax. 

i) SPT sequence,  ii) EDD sequence 
Solution: 

i) Job sequence based on SPT is (2-1-4-3). The computations for SPT 
sequence are presented in the following table 

 
 
 
 
 

6L      ,75.1
4

T
  T        ,75.4

4

W
W         17, pC              max

4

1j
j

4

1j
j4j

1j
jmax ==

∑
==

∑
==∑= ===

=
 

 
ii) Job sequence based on earliest due date (EDD) is (1-4-3-2). The 

computations for EDD sequence are presented in table below 
 

Job(j) pj Sj Cj dj Wj Lj Tj 
1 4 0 4 8 0 -4 0 
4 5 4 9 10 4 -1 0 
3 6 9 15 11 9 4 4 
2 2 15 17 12 15 5 5 

 

5L       ,25.2
4

T
  T       ,7

4

W
W      17, pC               max

4

1j
j

4

1j
j4j

1j
jmax ==

∑
==

∑
==∑= ===

=

 

 
It should be noted that the value of Cmax remains the same for both sequences. Also, 
the value for Lmax for EDD sequence is smaller than the value of Lmax for SPT 
sequence.  In addition, the average waiting time and the average tardiness for the SPT 
sequence are very small when compared the values obtained by the EDD sequence.  
What can you infer about these results?   
 

Job(j) pj Sj Cj dj Wj Lj Tj 
2 2 0 2 12 0 -10 0 
1 4 2 6 8 2 -2 0 
4 5 6 11 10 6 1 1 
3 6 11 17 11 11 6 6 
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2.3    MINIMIZATION OF THE MAXIMUM LATENESS PROBLEM (1||Lmax) 

 
For single machine problems, if due dates (dj) are specified, then earliest due 

date (EDD) sequence yields an optimal solution to the maximum lateness Lmax and the 
maximum tardiness Tmax.  This rule applies to the class of problems specified by 
1||Lmax or 1||Tmax terminology. In such class of problems, it is implicitly assumed that 
release time of all jobs; jr 0≡ (static shop) 

Example 2.3 
Find an optimal sequence for 1 || Lmax problem. The data is given in the table below.  
Release time of all jobs is zero; i.e., rj = 0 (1 j 6).≤ ≤   Compute the maximum 

lateness Lmax and the average lateness L  .  
 

Job (j) 1 2 3 4 5 6 
pj 10 3 4 8 10 6 
dj 15 6 9 23 20 30 

 
Solution: 

The EDD sequence of the 6-job problem from table is; 
 

Job (j) 2 3 1 5 4 6 
pj 3 4 10 10 8 6 
Dj 6 9 15 20 23 30 

 
The calculations of Completion times (Cj) and Lateness (Lj) are shown 

below: 
 

Job (j) 2 3 1 5 4 6 
Cj 3 7 17 27 35 41 
Lj -3 -2 2 7 12 11 

 
Maximum Lateness, Lmax = max { 6,1};0,max{ L=jL j } = 12 and the average 

lateness; 5.4
6

27
6

L
L

6

1j
j

==
∑

= = . 

 



Chap. 2 / Single Machine Scheduling 
 

Algorithms for Sequencing & Scheduling  2. 8 
 

2.4    MINIMIZATION OF TOTAL WEIGHTED COMPLETION TIME PROBLEM 
        (1|| ΣωjCj) 

 

Often the jobs in a shop have priorities attached on their tags which are 
specified by the term ωj. To schedule such jobs, Weighted Shortest Processing Time 
(WSPT) sequence is applied. As a first step to perform WSPT sequence, calculate 
process time to weight ratio for each job, and, then rank jobs in increasing order of 
processes time to weight ratio values. 
 
Example 2.4 (WSPT Sequence) 
Assume the weight assigned ωj for each job j (importance or priority) and then solve 
the following 4-jobs problem using WSPT sequence.  Also, compute the total 
weighted completion times. 
 
 
 
 
 
 
 
 
Solution: Jobs Sequence based on WSPT  →  (2-4-1-3) 
 

 
Hence, from the above table, the total weighted completion ΣωjCj can 

be found which is 388. 
 

2.5    MINIMIZATION OF TOTAL WEIGHTED COMPLETION TIME PROBLEM  
    WITH PRECEDENCE RELATIONS (1| PREC| ΣωjCj) 

 
There are instances when jobs have precedence relationships. As shown in 

precedence network diagram below, job 3 depends on job 2 and, job 2 depends on job 
1.  

Job(j) pj ωj pj/ωj dj 

1 4 8 0.5 8 
2 2 7 0.285 12 
3 6 3 2 11 
4 5 15 0.333 10 

Job(j) pj ωj Sj Cj dj Wj Lj Tj ωjCj 
2 2 7 0 2 12 0 -10 0 14 
4 5 15 2 7 10 2 -3 0 105 
1 4 8 7 11 8 7 3 3 88 
3 6 3 11 17 11 11 6 6 51 
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Figure 2.3 Example of precedence network. 
 
In the following example, a single machine problem is presented where jobs have 
precedence relationship. The objective function is the minimization of total weighted 
completion time ( n

j j
j 1

C
=

ω∑ ). The solution methodology is based on Chain method 

which is described below. 
1. For each set of jobs in the precedence network diagram, form job sets from 

unscheduled jobs for each chain. 
2. Find minimum value of ρ-factor for each chain, where ρ-factor = 

∑
∑

j

jp
ω

 

3. Select the jobs from the chain having overall minimum value of ρ -factor. 
4. Include these jobs in the partial schedule, and delete them from the network 

diagram. 
5. Repeat steps (1) to (4) until all jobs are scheduled. 
 

Example 2.5 (1| prec | Σωj Cj) 
Consider the following problem as an instance of the 1| prec | ΣωjCj.  A 7-job single 
machine data with job precedence constraints graph is given below.  

  
Figure 2.4 Precedence constraints graph. 

 
The weights and process times of the jobs are given in the following table. 
 
 
 
 
 
 
Solve the problem to minimize total weighted completion times using chain-method. 

Jobs 1 2 3 4 5 6 7 
pj 3 6 6 5 4 8 10 
ωj 6 18 12 8 8 17 18 

1  2  3  4 

6 5  7 

1  2  3 
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Solution: 
Apply Chain method as follows: 

For each job set, find ρ-factor =
∑
∑

j

j

ω
p

ratio for all job sets: 

Suppose job set is: {1        2         3        4} 

Then, ρ-factor = 
44
20

812186
5663

ωωωω
pppp

ω
p

4321

4321

j

j =
+++
+++

=
+++

+++
=
∑
∑

∑
∑  = 0.455 

 
The ρ-Factor for chain 1 

Job Set 1 1            2 1           2           3     1         2         3          4 

ρ-Factor 
6
3  

24
9  

36
15  

44
20  

 0.5 0.375 0.416 0.455 
 
Minimum value for ρ-Factor is 0.375 for the job set {1         2}. 

 
The ρ-Factor for Chain 2 

Job Set 5    5                6 5             6           7  

ρ-Factor 
8
4  

25
12  

43
22  

 0.5 0.480 0.512 
 
Minimum value of ρ-Factor is 0.480 for the job set {5         6}. 
 

Comparison of the ρ-Factor of Chain-1 and Chain-2. 
 Min ρ-Factor Job Set 

Chain-1 0.375 1                 2 
Chain-2 0.48 5                 6 

 
Overall minimum value of ρ-Factor is 0.375 for Chain-1 and job set {1       2}.  Thus, 
the following partial sequence is obtained: {1-2-X-X-X-X-X-X-X}.  Then, jobs 1 and 
2 should be marked on the network diagram. 
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Figure 2.5 Precedence constraints graph when marking Jobs 1 and 2. 
 
The unscheduled jobs in Chain-1 are now; 3 and 4. The corresponding two job sets 
are; {3} and {3         4}. 
Then, the revised ρ-Factor values for these 2 jobs are calculated as follows: 
 
 
 
 
 
 
Next, compare the ρ-factor for the two chains as follows: 
 

 Min ρ-Factor Job Set 

Chain-1 0.5 3 
Chain-2 0.48 5          6 

 
Overall minimum value of ρ-Factor is 0.48 which belong to Chain-2 for Job Set:      
{5           6}.  Thus, the Partial Sequence is {1-2-5-6-X-X-X}.  Mark jobs 5 and 6 on 
the network diagram. 
 
 
 
 
 
 
 

 
 

Figure 2.6 Precedence constraints graph when marking Jobs 1, 2, 5, and 6. 
 

Job Set            3       3           4 

ρ-Factor 
12
6  

20
11  

 0.5 0.55 

1  2  3  4 

6 5  7 

1 

6 5 

2  3  4 

7 
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Chains   Min ρ_factor Job Set 

Chain-1 Job Set :{3} 
ρ_factor : 0.5 

Job Set : {3           4} 
ρ-Factor : 0.55 

0.5 {3} 

Chain-2 Job Set :{7} 
ρ-Factor : 0.55 

 0.55 {7} 

 
Minimum value of ρ-Factor is 0.5 which belong to Chain-1 for Job Set: {3}. Thus, 
the Update for the Partial Sequence is as follows: {1-2-5-6-3-X-X}. Next, mark job 3 
on the network diagram as shown below.  
 
 
 
 
 
 
 

Figure 2.7 Precedence constraints graph when marking Jobs 1, 2, 5, 6, and 3. 
 
For the remaining jobs in Chain-1 and Chain-2 are Job 4 and job 7 respectively.  
Thus, the Minimum value of ρ-Factor can be computed as shown below.  
 

Chain  Min ρ_factor Job Set 

Chain-1 Job Set :{4} ,  ρ_factor : 0.625 0.625 {4} 

Chain-2 Job Set :{7} ,   ρ-Factor : 0.55 0.55 {7} 

 
The minimum value of ρ-Factor is 0.55 which belong to Chain-2 for Job Set: {7}. 
The partial sequence can be updated as follows: {1-2-5-6-3-7-X}.  Next, mark job 7 
on the network diagram as shown below.  
 
 
 
 
 
 
 

Figure 2.8 Precedence constraints graph when marking Jobs 1, 2, 5, 6, 3, and 7. 
 

1  2  3  4 

6 5  7 

1  2  3  4 

6 5  7 
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There is only one unscheduled job which is job 4. Thus, this job can be attached to 
the end of the partial sequence which means the final sequence is being developed 
and it is {1-2-5-6-3-7-4}.  Using this final sequence the total weighted completion 
can be computed as follows:  
 

Job(j) pj jω  Sj Cj ωj Cj 

1 3 6 0 3 18 
2 6 18 3 9 162 
5 4 8 9 13 104 
6 8 17 13 21 357 
3 6 12 21 27 324 
7 10 18 27 37 666 
4 5 8 37 42 336 

        Σωj Cj 1967 
 
 

2.6    NON-PREEMPTIVE SCHEDULING 
 

This type of scheduling is considered when release time of all jobs in the shop 
is same. Sequence of jobs is decided by scheduling policy. Once, the sequence is 
determined, the jobs are loaded on the machine accordingly. The jobs are 
continuously processed over the machine in the sequencing order. No change in 
sequencing order is made once machine starts processing the jobs. Every job is 
processed on the machine on its turn. No job is removed from the machine during its 
stay on the machine even if a high priority job arrives on that machine. Hence, no 
interruption is allowed during processing of the jobs and, all jobs complete their 
processing according to pre-defined sequence. 
 
Example 2.6  
Data pertaining to 4-job single machine problem is given in the following table. 
 
 
 
 
 
 
 
 

Job(j) pj rj dj 
1 4 0 8 
2 2 3 12 
3 6 3 11 
4 5 5 10 
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Generate a non-preemptive schedule using EDD sequence, and then compute the Cmax 
and the Lmax. 
Solution: 
Since, jobs have distinct rj values, the problem data presents a dynamic environment. 
EDD Sequence for the 4-jobs based on due dates is {1-4-3-2}. The following Gantt 
chart gives complete information on the EDD sequence. 
 

 
 

Figure 2.9 Gantt chart for the EDD sequence. 
 
Job 4 arrives at time 5, where as the machine is free at time 4. Hence, there is an idle 
time from time 4 to time 5.  The makespan for the sequence is 18 unit of time.  The 
Lmax = max {-4, 0, 5, 6} = 6.  If the release time of all jobs would have been rj = 0, 
then, the makespan is 17 unit of time (Σpj = 17). Also, in this case, the maximum 
lateness Lmax would have been 5. 
 

2.7    PREEMPTIVE SCHEDULING 
 

This type of scheduling is considered when jobs arrive in the shop at different 
times; i.e., the values of rj is greater zero and it could be different for each job.  In this 
case, jobs are scheduled according to a pre-determined sequence. However, flexibility 
is built in the sequencing.  This means a job can be removed from the machine if a 
high priority job is to be processed ahead of currently scheduled job. Then, the low 
priority jobs or preempted jobs are processed later on.  
 
Example 2.7  
Consider example 2.6 once again. If preemption of scheduled jobs is allowed in 
which the priority is given for jobs with earliest due date (EDD).  What will be the 
new schedule? Is it a better schedule (Why or why not?)  
Solution:  
The EDD Sequence is {1-4-3-2} 
Time, t=0. 
Job arrived at time zero is job 1. Job 1 is scheduled at time zero.  Then, the machine 
will complete job1 by time 4. 
Time, t=3. 

j1 

Cj                     4    5                           10                                16          18 

dj                     8                                 10                                 11         12 

j4 j3 j2 

Idle time
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Jobs 2 and 3 arrived in the shop. The machine is busy and can not process any job. 
Time, t=4. 
Processing of job 1 is completed and the machine becomes free and ready to process 
any of the waiting jobs.  Referring to the EDD sequence, the next job in EDD 
sequence is job 4, however, it has not arrived yet because its arrival time is at time 5.  
Thus, the next job in the EDD sequence is picked up which is job 3.  Since job3 has 
arrived already then it is assigned to the machine.   
Time, t=5. 
Job j4 has arrived in the shop. Currently the machine is processing job 3. From the 
EDD sequence, it is clear that job 3 has lower priority than job 4.  Thus, preempt job 
3 from being processed on the machine.  Then, assign job 4 to the machine. Job j4 has 
a process time of 5 unit of time which means it will be completed at time 10.   
Time, t=10 
Processing on job 4 is completed.  Then, the next job in the EDD sequence is job 3. 
This job has already been partially processed from time t=4 to t=5. Its remaining 
process time is 5 unit of time.  Thus, assign job 3 to the machine and will be 
completed at time 15.  
Time, t=15 
Processing on job j3 is completed. Then, the next job in the EDD sequence is job 2. Its 
process time is 2 unit of time. Next, assign job 2 to the machine and be completed at 
time 17. 
Time, t=17. 
Processing on job 2 is completed.  There is no other job to be processed, hence the 
procedure is STOP. 
The following Gantt chart presents the schedule of the jobs 
 

 
 

Figure 2.10 Gantt chart for the preemptive EDD schedule. 
 
From the Gantt chart above, it should be clear that the values of makespan and 
maximum lateness are as follows: makespan =17 and Lmax=5.  
It should be clear that for this problem data, the preemptive scheduling provides a 
better solution than non-preemptive schedule.  

j1 

Cj                     4    5                           10                            15        17 

dj                     8                                  10                            11       12 

j4 j3 j2 j3 
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2.8    NUMBER OF TARDY JOBS (1 || nt) 
 

A popular scheduling objective is minimization of number of tardy jobs.  It is 
expressed as 1 || nt problem in scheduling terminology. Hodgson’s Algorithm 
provides an optimal solution for this type of problem. Hodgson’s Algorithm has the 
following steps: 

 
Step 1: Order the jobs in EDD sequence.    
Step 2: Build the Gantt chart for the EDD sequence and compute Tj values for all       

jobs; (1 j n)≤ ≤  
Step 3: If Tj values for all jobs are zero (this means there is no tardy job). STOP. The 

EDD sequence is an optimal sequence for the scheduling problem under 
consideration 1|| nt Otherwise continue to Step 4. 

Step 4: For the current sequence, find the first tardy job in the sequence, say k. 
Step 5: Remove job j among the scheduled job so far (1 j k)≤ ≤ with longest process 

time from the sequence and put it in the set of tardy jobs. Then, Go To Step 2. 
 
Example 2.8 
Solve the following 1 || nt problem in which the following data is given: 
 

Job (j) 1 2 3 4 5 6 
pj 10 3 4 8 10 6 
dj 15 6 9 23 20 30 

 
Solution: 
 
Rearrange jobs according to EDD sequence as follows; 
 

Job (j) 2 3 1 5 4 6 
pj 3 4 10 10 8 6 
dj 6 9 15 20 23 30 

 
The calculations of completion times (Cj) and tardiness (Tj ) are shown in the table 
below. The number of tardy jobs; nt is equal to 4. 
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Job (j) 2 3 1 5 4 6 
pj 3 4 10 10 8 6 
Cj 3 7 17 27 35 41 
Lj -3 -2 2 7 12 11 
Tj 0 0 2 7 12 11 

 
From Step 4, the first tardy job in the sequence is job 1.  According to Step 5, jobs 2, 
3, and 1 are candidates to be removed to the set of the tardy jobs.  Since job 1 has the 
largest processing time pj.  Then, remove job 1 from the current scheduled and put it 
in the set of tardy jobs which means job 1 will be attached to the end or in the last 
position in the sequence. 
 
 
 

Job (j) 2 3 1 5 4 6 
pj 3 4 10 10 8 6 

 
Recalculate Tj and Cj values as shown below in Table. 
 

Job (j) 2 3 5 4 6 1 
pj 3 4 10 8 6 10 
dj 6 9 20 23 30 15 
Cj 3 7 17 25 31 41 
Lj -3 -2 -3 2 1 26 
Tj 0 0 0 2 1 26 

 
The first tardy job in new schedule is job 4 (k = 4). From the scheduled job set {2 – 3 
– 5 – 4}, job 5 has largest processing time pj. Thus, shift job 5 to last position in the 
sequence as shown below. 
 
 
 

Job (j) 2 3 5 4 6 1 
pj 3 4 10 8 6 10 

 

Shifting job 1 to last sequence position 

Shifting job 5 to last sequence 
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After shifting job 5 to last sequence position, recalculate Tj and Cj as shown in Table 
below. 
 

Job (j) 2 3 4 6 1 5 
pj 3 4 8 6 10 10 
Dj 6 9 23 30 6 20 
Cj 3 7 15 21 31 41 
Lj -3 -2 -8 -9 25 21 
Tj 0 0 0 0 25 21 

 
It should be clear that there is no tardy job in the scheduled job set. Hence, there are 
only two tardy jobs; namely, jobs 1 and 5. Therefore, the total number of tardy jobs; 
nt is equal to 2.  The following are the two optimal sequences for this problem: {2 – 3 
– 4 – 6 – 1 – 5} and {2 – 3 – 4 – 6 – 5 – 1} 
 

2.9    BRANCH & BOUND METHOD 
 

The branch and bound method uses a sequence tree. Each node in the tree 
contains a partial sequence of jobs. For n job problem, there are n-1 numbers of levels 
for a tree. At level zero, root node will be placed with all n empty sequence positions. 
At level 1, there will be n number of nodes. Each node will contain a partial sequence 
of jobs. The first position in the sequence will be occupied by a job in numerical 
order. Similarly, each node at (n-1)th level will be branched to (n-2) number of nodes. 
The process will continue till each node has exactly one leaf. The construction of a 
tree for generating all sequences for a 3-job problem is presented in the Figure 11. 

Generation of all sequences is combinatorial in nature and, will result in 
enormous number of sequences even for a small number of jobs.  For example, for a 
10-job problem there will be 10! Sequences. To reduce the computational effort, 
lower bounds are calculated at every level for each node. The formula used to 
compute the lower bound is pertinent to objective function of the scheduling problem.  
Branching is carried out only from those nodes with the minimum lower bound.  By 
doing so, only small proportion of the nodes is explored resulting in fewer amounts of 
computations. The branch and bound (B&B) method is applied in almost every 
scheduling problem.  In the following paragraph, this methodology is applied to solve 
single machine problems where jobs have distinct release times (rj) and objective 
function is to minimize Lmax.  As scheduling terminology implies, these types of 
problems as termed as 1 | rj | Lmax problem. 
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Figure 2.11 Sequence Generation tree. 

 
2.10    MINIMIZATION OF MAXIMUM LATENESS WITH READY TIME PROBLEM 

(1 | rj | Lmax ) 
 

In this section, the branch and bound (B&B) method is used to solve the 
following scheduling problem: 1 | rj | Lmax.  The following guidelines should be 
followed when developing the scheduling generating tree for the branch and bound 
for the problem under consideration: 

1. At any level of the tree, generate only those child nodes for the selected parent 
node which satisfies the following relationship:  

 
{ }kk

Jk
j p)r,tmax(minr +<

∈  
Where: 

J = set of jobs not yet scheduled 
t = time at which job j is supposed to start. 

This mean only those jobs which are ready to be processed will be considered.   
2. Compute the lower bounds value for all nodes at any level using preemptive 

EDD scheduling.  This means, at every node the Lmax is computed using the 
developed preemptive EDD schedule.  Then, pick the node(s) (sequence(s)) 
having minimum Lmax value for further branching to lower level.  

The following example will demonstrate the implementation of the branch and bound 
solving the following scheduling problem: 1 | rj | Lmax.  
 

*,*,* 

1, 2, * 

3, *, * 2, *, * 1, *, * 

2, 3, * 3, 1, * 3, 2, * 1, 3, * 

2, 3, 1 3, 1, 2 3, 2, 11, 2, 3 2, 1, 3

2, 1, * 

1, 3, 2

Root node Level 

     0 

 

     1 

 

     2 

 

     3 
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Example 2.9 
The following Table presents an instance of 1 | rj | Lmax problem. Find an optimal 
solution for this problem using the branch and bound method.  
 

Job (j) 1 2 3 4 
pj 4 2 6 5 
dj 8 12 11 10 
rj 0 1 3 5 

 
Solution: 
At the start, there are four possible nodes at Level 1 as shown in the figure below. 

 
Figure 1 Level 1 Nodes for 4-job Problem. 

 
Iteration I – Step (1) 
For the four nodes at level 1, verify the condition;  

{ }kk
Jk

j p)r,tmax(minr +<
∈  

The following paragraphs will consider each partial sequence one by one as follows: 
 
 

a) Partial Sequence: (1-*-*-*)   
r1 = 0  t=0 

Unscheduled jobs are (2-3-4).   The minimum completion time for all 
these jobs can be computed as follows. 

K rk Sk=max(t,rk) pk Sk + pk 
2 1 1 2 3 
3 3 3 6 9 
4 5 5 5 10 

Min 3 

 
Since r1 < 3, then, include this node (1-*-*-*) in the tree. 

*,*,*,*

2‐*‐*‐* 1‐*‐*‐* 

Root node 

3‐*‐*‐* 4‐*‐*‐* 
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b) Partial Sequence: (2-*-*-*)   
r2 = 1  t=0 

Unscheduled jobs are (1-3-4).  The minimum completion time for all 
these jobs can be computed as follows. 

K rk Sk=max(t,rk) pk Sk + pk 
1 0 0 4 4 
3 3 3 6 9 
4 5 5 5 10 

Min 4 
 

Since r2 < 4, then, include this node (2-*-*-*) in the tree. 
 

c) Partial Sequence: (3-*-*-*)   
r3 = 3  t=0 

Unscheduled job are (1-2-4).  The minimum completion time for all 
these jobs can be computed as follows: 

K rk Sk=max(t,rk) pk Sk + pk 
1 0 0 4 4 
2 1 1 2 3 
4 5 5 5 10 

Min 3 

 
Since r3 is not less than 3.  Then, do not include this node (3-*-*-*) in the tree. 
 
 

d) Partial Sequence: (4-*-*-*)   
r4 = 5  t=0 

Unscheduled jobs are (1-2-3). The minimum completion time for all 
these jobs can be computed as follows: 

K rk Sk=max(t,rk) pk Sk + pk 
1 0 0 4 4 
2 1 1 2 3 
3 3 6 5 11 

Min 3 
 

Since r4 is not less than 3.  Then, do not include this node (4-*-*-*) in the tree. 
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Iteration – I: Step (2) 
Find Lmax for the sequences (1-*-*-*) and (2-*-*-*) as follows: 
EDD sequence based on the due dates is as follows: (1-4-3-2) 
Schedule for the sequence (1-*-*-*) using preemptive scheduling is as follow: 
 
 
 
 
 
 

Figure 2.  Gantt chart for the partial sequence (1-*-*-*). 
 
 

Figure 2.13 Gantt chart  for the partial sequence (1-*-*-*). 
 

Schedule for the sequence (2-*-*-*) using preemptive scheduling is as follows: 

 
 

Figure 2.14 Gantt chart for the partial sequence (2-*-*-*). 
 

From Figure 13, it should be clear that the machine has been idle during the time 
interval [0, 1] because the first job in sequence is job 2 and its ready time is 1.  The 
lower bound (LB) for node (1-*-*-*) is lower than the LB for node (2-*-*-*).  This 
means, branching should be continued from node (1-*-*-*).  The following figure 
shows the branch from node (1-*-*-*).   

               Cj     3                            7                                         13                                18 

               dj   12                           8                                         10                                11 

               Lj       ‐9                           ‐1                                          3                                 7      

2  1  3  4 M1 

          Cj           4                                       10                                   15        17 
          dj          8                                        10                                   11        12 
          Lj         ‐4                                          0                                     4          5 
                                          L max = 5, Cmax = 17 

1  4  3  2 3 M1 
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Figure 2.15 Level 2 Nodes for 4-job Problem. 
 
It should be clear from the figure above, there are three nodes emanating from node 
(1-*-*-*). Next, verify the following condition in order to determine which node(s) to 
consider:   

{ }kk
Jk

j p)r,tmax(minr +<
∈  

Iteration 2 – Step (1) 
a) Partial Sequence: (1-2-*-*)   

r2 = 1  t=4 

Unscheduled jobs are (3-4). The minimum completion time for all 
these jobs can be computed as follows: 

K rk Sk=max(t,rk) pk Sk + pk 
3 3 4 6 10 
4 5 5 5 10 

Min 10 
Since r2 < 10, then, include this node (1-2-*-*) in the tree. 
 

b) Partial Sequence: (1-3-*-*)   
r3 = 3  t=4 

Unscheduled jobs are (2-4). The minimum completion time for all 
these jobs can be computed as follows: 

K rk Sk=max(t,rk) pk Sk + pk 
2 1 4 2 6 
4 5 5 5 10 

Min 6 

Since r3< 6, then, include this node (1-3-*-* ) in the tree. 
 

*,*,*,* 

2-*-*-* 

Lmax = 7 Lmax = 5 
root node 

1-*-*-* 

1-2-*-* 1-3-*-* 1-4-*-* 
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c) Partial Sequence: (1-4-*-*)  
r4 = 5  t=4 

Unscheduled jobs are {2-3}. The minimum completion time for all 
these jobs can be computed as follows: 

k rk Sk=max(t,rk) pk Sk + pk 
2 1 4 2 6 
3 3 4 5 9 

Min 6 
 

Since r4 < 6, then, include the node (1-4-*-*) in the tree. 
 
Iteration 2: Step (2) 
Find Lmax for the three sequences as follows: 
In sequence (1-2-*-*), the first and the second positions are already assigned to jobs 1 
and 2 respectively.  For the remaining two positions, based on the EDD sequence (1-
4-3-2), job 4 will be assigned to position three and job 3 will be assigned to position 
four.  The computation for the lower bound which is Lmax is as follows: 
 

job (j) pj rj Sj Cj dj Lj 
1 4 0 0 4 8 -4 
2 2 1 4 6 12 -6 
4 5 5 6 11 10 1 
3 6 3 11 17 11 6 

Hence, from the table above the Lmax is equal to 6. 
In sequence (1-3-*-*), the first and the second positions are already assigned to jobs 1 
and 3 respectively.  For the remaining two positions, based on the EDD sequence, job 
4 will be assigned to position three and job 2 will be assigned to position four.  The 
computation for the lower bound is as follows: 
 

job (j) pj rj Sj Cj dj Lj 
1 4 0 0 4 8 -4 
3 6 3 4 10 11 -1 
4 5 5 10 15 10 5 
2 2 1 15 17 12 5 

Hence, from the table above the Lmax is equal to 5. 
In sequence (1-4-*-*), the first and the second positions are already assigned to jobs 1 
and 4 respectively.  For the remaining two positions, based on the EDD sequence, job 
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3 will be assigned to position three and job 2 will be assigned to position four.  The 
computation for the lower bound is as follows: 

job (j) pj rj Sj Cj dj Lj 
1 4 0 0 4 8 -4 
4 5 5 5 10 10 0 
3 6 3 10 16 11 5 
2 2 1 16 18 12 6 

 
Hence, from the table above the Lmax is equal to 6.  When the lower bound values for 
the three nodes are compared, it should be clear that node (1-3-*-*) has the minimum 
value. Thus, from this node branching should continue as shown in the Figure below.  
 

 
 

Figure 2.16 Level 3 Nodes for 4-job Problem. 
 
Next, verify the following condition in order to determine which node(s) to consider:   

{ }kk
Jk

j p)r,tmax(minr +<
∈  

 
Iteration 3 – Step (1) 

a) Partial Sequence: (1-3-2-*)   
r2 = 1  t=10 

 
Unscheduled job is {4}.  The minimum completion time for this job 

can be computed as follows: 

*,*,*,* 

2,*,*,* 

Lmax = 7 root node 

1,*,*,* 

1,2,*,*  1,4,*,* 

Lmax = 5 

Lmax = 6 
Lmax = 5 

Lmax = 6 

1,3,*,* 

1,3,4,* 1,3,2,* 
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K rk Sk=max(t,rk) pk Sk + pk 
4 5 10 5 15 

Min 15 
 
Since r2 < 15, then, include this node (1-3-2-*) in the tree. 

b) Partial Sequence : (1,3,4,*)   
r2 = 5  t=10 

Unscheduled job is {2}. The minimum completion time for this job 
can be computed as follows: 

K rk Sk=max(t,rk) pk Sk + pk 
2 1 10 2 12 

Min 12 
 

Since r4 < 12, then, include this node (1-3-4-*) in the tree. 
 

Iteration 3: Step (2) 
Find Lmax for the two sequences as follows: 
In sequence (1-3-2-*), the first position, the second position, the third position are 
already assigned to jobs 1, 3, and 2 respectively. For the remaining job which is job 4, 
it will be assigned to the last position.  The computation for the lower bound will be 
as follows: 

job (j) pj rj Sj Cj dj Lj 
1 4 0 0 4 8 -4 
3 6 3 4 10 11 -1 
2 2 1 10 12 12 0 
4 5 5 12 17 10 7 

Hence, from the table above the Lmax is equal to 7. 
In sequence (1-3-4-*), the first position, the second position, the third position are 
already assigned to jobs 1, 3, and 4 respectively. For the remaining job which is job 2, 
it will be assigned to the last position.  The computation for the lower bound will be 
as follows: 

job (j) pj rj Sj Cj dj Lj 
1 4 0 0 4 8 -4 
3 6 3 4 10 11 -1 
4 5 5 10 15 10 5 
2 2 1 15 17 12 5 
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Hence, from the table above the Lmax is equal to 5.  When the lower bound values for 
the two nodes are compared, it should be clear that node (1-3-4-2) has the minimum 
value.  This concluded the procedure of the branch and bound and also means the 
optimal sequence has been obtained.  The optimal sequence is {1-3-4-2}. 
 

2.11    MINIMIZATION OF TOTAL WEIGHTED TARDINESS PROBLEM (1 || ΣωjTj) 
 

In classical scheduling theory, minimization of total weighted tardiness has 
been researched thoroughly. A variety of approaches have been developed.  In the 
following pages, one of these approaches which is the branch and bound (B&B) 
methodology will be explored in solving this problem.  In order to reduce the solution 
space for ΣωjTj which means minimizing the search effort for near optimal solution in 
the solution space, consider the following lemma which helps in build relative 
relationship among jobs which produces precedence constraints among some of the 
jobs.  
Lemma:  

When minimizing 1 ║ ΣωjTj problem, and for any two jobs say j and k, the 
following is true:  

Pj ≤ Pk 
dj ≤ dk and  
Wj ≥  Wk,  

Then there exists an optimal sequence that minimizes 1║ ΣωjTj problem in 
which job j appears before job k. 

As mentioned earlier, this lemma will help in build relative relationship among jobs 
which produces precedence constraints among some of the jobs which consequently 
helps in eliminating a significant number of possible sequences which reduces the 
solution space and search effort. 
 
Method: 

Step 1: For the given problem data, identify job’s sequence position. 
Step 2: Construct a branch and bound tree with only nodes which contains 

possible jobs to be in the last position in the sequence. Use the 
Lemma mentioned above to construct those nodes at level one of the 
tree. 

Step 3: Find the lower bound for each node developed. This means compute 
the ΣωjTj as the lower bound for each node. 

Step 4: Branch from the node(s) which has (have) the minimum value(s) of 
Lower bound. 

Step 5: When branching to a lower level node, include only those jobs which 
satisfy the Lemma mentioned above. 
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Step 6: Continue branching to lowest level of the tree till all the jobs are 
included in the schedule. 

 
Example 2.10 
Find an optimal sequence for 1 || ΣωjTj problem given the data in the following table: 
 

Job(j) 1 2 3 4 
wj 4 5 3 5 
pj 12 8 15 9 
dj 16 26 25 27 

 
Solution: 
The first step is to determine the set of jobs that satisfy the relationship condition in 
the lemma mentioned earlier in which the conditions for any jobs are as follows: 

kjkjkj      and,    dd   and    pp ω≥ω≤ ≤  
By the applying this relationship, it can be found that in an optimal sequence job 1 
will appear before job 3. Similarly, job 2 will appear before job 4.  Consequently, for 
the B&B tree, only two nodes can be constructed which represent the partial 
sequences as shown in the following figure. 
 

 
Figure 3 Level 1 Nodes for 4-job Problem. 

 
For the node with partial sequence (*-*-*-4), the lower bound (LB) which is ΣωjTj 
can be computed as follows: 
 

 
 
Similarly, the lower bound (LB) for node with partial sequence (*-*-*-3) can be 
computed as follows: 
 

   1‐3‐2 (based on EDD and then the Lemma)                       4 

     Σ ωjTj = 0 + 6 + 45 + 85 = 136 

M/C 

*‐*‐*‐4 *‐*‐*‐3 

*,*,*,* 
Root node 
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Thus, since the node with partial sequence (*-*-*-3) has a smaller lower bound value, 
then, branching should be continued with this node. This means, the node with partial 
sequence (*-*-*-4) should be fathomed.  Only two nodes can be investigated with the 
two partial sequences (*-*-4-3) and (*-*-1-3) as shown in the figure below.   
 

 
Figure 2.18 Level 2 Nodes for 4-job Problem. 

 
The lower bound for the partial sequence (*-*-4-3) which is ΣωjTj can be computed 
as follows: 
 

 
 
The lower bound for the partial sequence (*-*-1-3) which is ΣωjTj can be computed 
as follows: 
 

           1‐2 (based on EDD)                            4                        3 

 Σ ωjTj = 0 + 0 + 10 + 57 = 67  

M/C 

*‐*‐*‐4 

*,*,*,* 

LB = 136 LB = 67 

*‐*‐*‐3 

*‐*‐4‐3  *‐*‐1‐3 

  1‐2‐4 (based on the EDD and then the Lemma)                    3 

  Σ ωjTj = 0 + 0 + 10 + 57 = 67 

M/C 
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Therefore, since the node with partial sequence (*-*-4-3) has lower bound value, 
then, branching should be continued from this node.  This means the node with partial 
sequence (*-*-1-3) should be fathomed. Only two nodes can be investigated with the 
two partial sequences (*-1-4-3) and (*-2-1-3) as shown in the figure below.   
 

 
 

Figure 3.19 Level 3 Node for 4-job problem. 
 
The lower bound for the partial sequence (*-1-4-3) which is ΣωjTj can be computed 
as follows: 
 

 
 
The lower bound for the partial sequence (*-2-4-3) ) which is ΣωjTj can be computed 
as follows 

 2 (only job left)                             1                 4                      3 

 Σ ωjTj = 0 + 16 + 10 + 57 = 83  

M/C 

*‐*‐*‐4 

*,*,*,* 

LB = 67 

*‐*‐*‐3 

*‐*‐1‐3 

LB = 136 

LB = 67  LB = 109 

*‐*‐4‐3 

*‐1‐4‐3  *‐2‐4‐3 

   2‐4(based on EDD & Lemma)                    1                       3 

  Σ ωjTj = 0 + 0 + 52 + 57 = 109 

M/C 
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Thus, since the node with partial sequence (*-2-4-3) has lower bound value, then, an 
optimal sequence has been found which is (1-2-4-3) because no more branching can 
be done all jobs have been scheduled.  The complete computation for the schedule is 
given in the following table:  
 

Job(j) Pj wj Cj dj Tj ωjTj 
1 12 4 12 16 0 0 
2 8 5 20 26 0 0 
4 9 5 29 27 2 10 
3 15 3 44 25 19 57 

 
Total weighted Tardiness, ΣωjTj = 67. The same approach can be used to solve the 
following scheduling problem: 1 || Σ Tj. This means, the problem is solved with given 
that all jobs have equal weight (ωj=1).  
 

2.12    MINIMIZATION OF MAXIMUM LATENESS WITH PRECEDENCE PROBLEM 
(1 | PREC | Lmax)  
 

In this section, the scheduling problem has jobs that have precedence 
relationship among them. While scheduling jobs on the single machine, the objective 
is to minimize the maximum lateness (Lmax). One of the well known solution 
methodology to solve this problem is based on the least remaining slack (RS) rule.  
This rule is applied to solve 1 | prec | Lmax problem.   

The RSj can be computed as follows: 
RSj = dj – pj – t. 

where, 
RSj = the remaining slack of job j. 
pj = processing time of job j. 
dj = due date for job j. 
t = time of the schedule, 

 
The algorithm to implement the RS rules is as follows: 

   1 (only job left)                      2                         4                  3 

     Σ ωjTj = 0 + 0 + 10 + 57 = 67 

M/C 
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Step 1: At time zero, set t = 0. 
Step 2: From the given precedence graph, form the set of schedulable jobs. 
Step 3: Calculate the RS values of these jobs. 
Step 4: Select a job j having minimum value of RSj and schedule it on the 
machine. 
Step 5: Remove the recently scheduled job from the set schedulable jobs. 
Step 6: If all jobs have been scheduled, STOP. Otherwise update the set of 

schedulable job from precedence graph. Update value of t. Go to step 3. 
 
Example 2.11 
Consider 1| prec | Lmax problem with the data given in the following table: 
 

Job (j) 1 2 3 4 5 6 7 8 
pj 2 3 2 1 4 3 2 2 
Dj 5 4 13 6 12 10 15 19 

Also, the precedence network for the jobs is given in the following figure:  
 
 
 
 

 
 
 

Figure 2.20 Precedence Graph of 8-Job problem 
Solution: 

At time zero, t = 0. Set of schedulable jobs based on precedence graph are 
contains the following jobs: {1-2-5}. The computation for the RS values for these 
jobs is given in the table: 

 
 
 
 
 
 
 
 

Job 2 has the minimum RS value.  Then, Job 2 is scheduled first on the 
machine at time 0 and it will be completed at time 3.  Thus, updated the value of t to 
be = 3. The set S = {2}. 

Job(j) dj Pj t RSj 

1 5 2 0 3 

2 4 3 0 1 

5 12 4 0 8 

   MIN(RSj) 1 

2 

5 

1 4

7

6 83
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Next, job 6 is added to the Set of schedulable jobs.  This means the set 
contains the following jobs: {1-5-6}.  The computation for the RS values for these 
jobs in the set is given in the following table:  

 

Job(j) dj pj t RSj 

1 5 2 3 0 

5 12 4 3 5 

6 10 3 3 4 

      MIN(RSj) 0 
Since job 1 has the minimum RS value, then, it is scheduled second on time 3 

the machine.  The job will be completed ate time 5.  Therefore, the updated value for t 
is = 5. The set S = {2-1}.   

Next, job 4 is added to the schedulable jobs list.  The set of schedulable jobs is 
{5-6-4}.  Out of the three jobs in the set, job 4 has the minimum RS value as shown 
in the following table: 

 

 Job(j) dj Pj t RSj 

4 6 1 5 0 

5 12 4 5 3 

6 10 3 5 2 

   MIN(RSj) 0 
Thus, job 4 is scheduled at time 5 and it will be completed at time 6.  The set 

S = {2-1-4}.  This will update the t value to be = 6.  At this time, only two jobs are in 
the schedulable set.  These jobs are {5-6}.  Out of these two jobs, job 6 has the 
minimum RS value as shown in the following table: 

 

 Job(j) dj pj t RSj 

5 12 4 6 2 

6 10 3 6 1 

      MIN(RSj) 1 
Then, job 6 is scheduled at time 6 and it will be completed at time 9.  The set 

S = {2-1-4-6}. This will updated the t value to be = 9. At this time, job 3 is added to 
the schedulable set.   The jobs in the schedulable set are {5-3}.  Out of these two jobs, 
job 5 has the minimum value of RS as shown in the following table: 
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Job(j) dj pj t RSj 

3 13 2 9 2 

5 12 4 9 -1 

      MIN(RSj) -1 
Therefore, job 5 is scheduled at time 9 and completed at time 13. The set S = 

{2-1-4-6-5}.  This will updated the value of t to be = 13.  At this time, job 7 is added 
to the schedulable set of jobs.  The set of schedulable jobs contains the following 
jobs: {3-7}.  Out of these two jobs, job 3 has the minimum value of RS as shown in 
the following table. 
 

Job(j) dj pj t RSj 

3 13 2 13 -2 

7 15 2 13 0 

      MIN(RSj) -2 
Next, job 3 is scheduled at time 13 and it will be completed at time 15.  The 

set S = {2-1-4-6-5-3}.  The value of t is = 15. At this time, job 8 is added to the 
schedulable set. The set of schedulable jobs is {7-8}.  Out of these two jobs, job 7 has 
the minimum value of RS as shown in the following table:  

 

Job(j) dj pj t RSj 

7 15 2 15 -2 

8 19 2 15 2 

      MIN(RSj) -2 
Thus, Job 7 is scheduled at time 15 and it will be completed at time 17.  The 

set S = {2-1-4-6-5-3-7}. The value of t is = 17.  The only unscheduled job is job 8 
with RS value of  0 as shown in the following table: 

 

Job(j) dj Pj t RSj 

8 19 2 17 0 

      MIN(RSj) 0 
Then, job 8 is scheduled at time 17 and it will be completed at time 19.  The 

schedulable job set is empty.  Thus, STOP.   The final sequence of jobs on the 
machine is as follows: {2-1-4-6-5-3-7-8}.  The Gantt chart for this sequence is shown 
below: 
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From the Gantt chart, the maximum lateness (Lmax) is 2. 

 

8 2 1 6 4 5 3  7 M/C 

Cj             3           5    6                9                     13         15        17        19 

dj→            4           5    6               10                    12         13        15        19 

Lj →          -1           0    0               -1                     1            2           2         0 
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EXERCISES 
 

2.1 Consider the Shortest process time [SPT] sequence as  
t[1] ≤ t[2] ≤ ……….. ≤ t[n] 

 In particular, prove  
a) SPT minimizes mean flow time. 
b) SPT minimizes mean waiting time 
c) SPT minimizes mean completion time. 
d) SPT minimizes Cmax. 

  
2.2 Construct an example single-machine problem to show that SPT does not 

minimize mean tardiness. 
 
2.3 Prove that LPT sequencing maximizes mean waiting time. 

 
2.4 A single machine facility faces problem of sequencing the production work for six 

customer orders described in table below. 
Order 1 2 3 4 5 6 

Processing time 18 26 14 8 17 22 
a. What sequence will minimize the mean flow time of these orders? What is 

the mean flow time in this schedule? 
b. Suppose that customer orders 1 and 5 are considered twice important as 

the rest what sequence would you propose. 
 

2.5 Consider the following single machine scheduling problem 
Jobs (j) 1 2 3 4 5 

Pj 8 3 3 6 3 
dj 4 8 11 10 11 

a. What sequence will minimize the average waiting time? Then compute 
Average completion time, Maximum flow time, and Average waiting 
time. 

b. What sequence will minimize both maximum lateness and the maximum 
tardiness? Then, compute maximum lateness, maximum tardiness, 
maximum earliness, total tardiness, and total earliness. 
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2.6 Consider the following single machine scheduling problem 
Job  1 2 3 4 5 6 
Pj 8 12 7 16 9 4 
ωj 4 10 4 3 8 10 

Generate a sequence to minimize weighted completion time. What is the flow 
time of each job in the shop? 

 
2.7 Show that for any job i:    

L F a C r a C di i i i i i i i= − = − − = − , and hence conclude that 

L F a C r a C d= − = − − = −  
 

2.8 Consider the following problem as an instance of the 1│prec│∑wjCj. An 8-job 
single machine data with job precedence constraints graph is given below.  

  
The weights and process times of the jobs are given in the following table. 

Job 1 2 3 4 5 6 7 8 
Pj 3 6 6 5 4 8 10 4 

wj 6 18 12 8 8 17 18 15 

Solve the problem to minimize total weighted completion times using chain-
method. 

 
2.9 Consider the following single machine scheduling problem 

Job 1 2 3 4 5 6 7 
pj 8 3 12 1 7 5 3 
Dj 12 7 23 4 21 17 8 

a) Use SPT sequence and, find average waiting time (W ). 
b) Use EDD sequence and, find maximum lateness ( maxL ), average Lateness 

( L ). 
c) Generate a sequence to minimize number of tardy jobs ( tn ). 

 

1  4 

5  7 

2  6  3  8 
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2.10 Solve the following 1║nt problem in which the following data is given: 

Job 1 2 3 4 5 6 7 

Pj 9 4 3 7 10 6 8 

dj 15 7 5 12 20 23 30 

 
2.11 Consider 1 ║ nt problem with the following data: 

 
Job 1 2 3 4 5 6 7 8 9 10 
Pj 15 11 10 5 25 4 8 3 20 11 
dj 71 76 73 88 47 59 24 55 23 47 

Find the sequence that minimizes the number of jobs tardy and compute nt 
 

2.12 Bin-laden contracting company has orders for five houses to be built. Bin-
laden is well known company and has good reputation for excellence, thus, the 
customers will wait as long as necessary for their house to be built. The revenue 
in Saudi Riyals to Bin-laden for each house respectively is as follows: 145000, 
290000, 910000, 1150000, and 200000. Also, the times needed in days to build 
each house respectively are as follows: 150, 200, 400, 450, and 1000. Assuming 
that Bin-laden, can only work on one house at time, what would be an appropriate 
measures to schedule building the houses? Using this measure, what schedule 
should Bin-laden? 

 
2.13 At Toyota (Fast service) repair shop there are six cars in for repair.  The car's 

owners will wait in the waiting and will leave when their cars are finished.  At 
night shift, there is only one mechanic available to do the repairs whose name is 
Mohammed.  Mohammed estimates the times needed for repair for each cars 
respectively as follows: 115, 145, 40, 25, 70, and 30 minutes.  What schedule 
would you recommend for Mohammed?  How would you help Mohammed to 
justify having another mechanic with him? (Show all of your work and show all 
assumptions you make) 

 
2.14 Consider an instance of the 1 | rj |  Lmax problem with data as follows. 
 

Job 1 2 3 4 
pj 3 4 6 10 
rj 6 0 7 6 
dj 3 10 17 18 
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Find optimal sequence and show complete schedule. 
 

2.15 Consider the following data as an instance of the 1 || ΣwjTj   problem; 
 
 

Job 1 2 3 4 5 
pj 6 3 2 4 5 
wj 3 2 1 5 3 
dj 11 4 12 7 9 

Find optimal sequence and compute ΣwjTj. 
 

2.16 Consider the following data as an instance of the 1| prec | Lmax problem. 
Job 1 2 3 4 5 6 7 8 
pj 2 3 2 2 4 3 2 2 
dj 5 4 13 6 12 10 15 19 

The precedence network for the problem is shown below: 
 
 
 
 
 
 
 
 
Find the best efficient sequence this problem and compute Lmax ? 

 
2.17 Consider 1| prec | ΣωjCj problem in which the data and precedence network 

are given below:  
Job 1 2 3 4 5 6 7 8 9 
Process time 2 3 2 1 4 3 2 2 4 
Weight 5 4 6 6 12 11 12 10 13 

 
 
 
 

 
 
 

1 

5 

2  6 

7 

4 

3 

7  8 

2 

5 

1 4 

7 

6 

8 

3 

9 
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Solve the problem to minimize total weighted completion times using chain-
method.   Then, constructing the Gantt chart for the solution obtained.  Next, 
compute Average flow time, Average completion time, Maximum flow time, 
and Average waiting time. 

 
2.18 Consider 1 | prec | Lmax problem with the problem data and precedence 

network given below:  
Job 1 2 3 4 5 6 7 8 9 10 11 12 
Process time  2 3 2 1 4 3 2 2 5 4 6 4 
Due dates 5 4 13 6 12 10 15 19 20 11 14 18 
 

 
Solve the problem to minimize maximum lateness using remaining slack rule.  
Then, constructing the Gantt chart for the solution obtained.  Next, compute 
maximum lateness, maximum tardiness, maximum earliness, total lateness, 
total tardiness, and total earliness.  
 

2.19 Consider 1 | | nt problem with the following data: 
 

Job 1 2 3 4 5 
Pi 7 8 4 6 6 
di 9 17 18 19 21 

Find optimal sequences and compute nt, Tmax, and T . 
 
2.20 A company has a cell that can produce three parts: A, B and C.  The time 

required to produce each part is 25, 80, and 10 minutes for each part respectively.  
The value to produce the parts is 5 riyals, 20 riyals, and 1 riyal respectively.  How 
would you schedule the parts through the cell to minimize the value of work in 
process?  
 

1  4

2  6  9 

5  7  3 

11  12 

10 

8 
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2.21 Consider the following problem: 1/ rj / Σ Fj and find the best schedule using 
the appropriate dispatching rule (not optimal) which will give the minimum total 
flow time with release time using the following data:  

 
 

Job 1 2 3 4 5 6 7 8 9 10 
Pi 16 11 6 18 2 20 19 20 8 16 
ri 22 6 0 6 21 7 29 121 64 48 

 
2.22 Use the weighted shortest processing time to find the optimal solution for the 

data under consideration.  Then, compute total weighted completion time.  Also, 
compute flow time for each job in the shop 
 

Job 1 2 3 4 5 6 
pj 8 4 9 12 11 4 
wj 3 2 1 6 5 7 

 
2.23 Consider 1 | | Lmax problem with the following the processing times and due 

dates 
Job 1 2 3 4 5 6 7 
Pj 6 18 12 10 10 17 16 
dj 8 42 44 24 90 85 68 

Find the optimal sequence and compute Lmax and L . 
 
2.24 Consider 1|rj | Lmax problem with the following data:  

 
Job 1 2 3 4 5 
Pj 6 18 12 10 10 
rj 0 18 12 8 8 
dj 8 42 44 24 90 

Find the optimal sequence using the branch and bound with the preemptive 
due date as the lower bound and compute Lmax 

 
2.25 Consider an instance of the 1 || ΣTj problem with data as follows. 

 
Job 1 2 3 4 5 
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pj 3 9 6 5 12 
dj 13 10 7 3 5 

Find optimal sequence and show complete schedule  
 
2.26 Consider the following data as an instance of the  1 || ΣwjTj   problem; 

Job 1 2 3 4 
pj 6 3 2 4 
wj 3 2 1 5 
Dj 11 9 12 7 

Check for the following relationship from the given data to make initial 
sequence 

kjand,,kjkj pp,dd ω≥ω≤≤ K . 

Use Branch and Bound method to find optimal solution. 
 
2.27 Consider an instance of the 1 | rj |  Lmax problem with data as follows. 

Job 1 2 3 4 5 
pj 3 4 6 10 2 
rj 0 1 7 6 9 
dj 3 10 17 18 15 

Find optimal sequence and show complete schedule. 
 

2.28 Consider the following data 
Job 1 2 3 4 5 6 7 
pj 8 12 7 6 9 4 12 
ωj 4 1 4 3 8 1 5 

Apply WSPT, and minimize Σωj Cj. Find Flow time of each job in the shop. 
 
2.29 Consider 1 || Lmax problem with the following data: 

Job 1 2 3 4 5 6 7 8 
dj 5 4 13 6 12 10 15 19 
Pj 2 3 2 1 4 3 2 2 

Given also the following precedence constraints     
2 ⇒ 6 ⇒ 3          
1 ⇒ 4 ⇒ 7 ⇒ 8      
Find the optimal sequence and compute L T F, , , Tmax, and Lmax 
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2.30 Consider 1 || nt problem with the following data     

Job 1 2 3 4 5 6 7 8 9 10 
dj 19 16 25 3 8 14 31 23 2 15 
Pj 5 3 1 2 4 4 2 1 1 4 

Find the optimal sequence and compute L T F, , , Tmax, and Lmax  
 

2.31 A manufacturer of charm bracelets has five jobs to schedule for a leading 
customer.  Each job requires a stamping operation followed by a finishing 
operation.  The finishing operation can begin immediately after its stamping is 
complete for any item.  The table below shows operation times per item in 
minutes for each job.  At the stamping operation, each job requires set-up before 
processing begins, as described in the table.  Find a schedule that completes all 
five jobs as soon as possible. 

 
  Operation Time per Item 
Job no. Number in lot Stamp Finish Set-up 

1 20 2 8 100 
2 25 2 5 250 
3 100 1 2 60 
4 50 4 2.5 60 
5 40 3 6 80 
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3.1    INTRODUCTION 
 

When similar type of machines are available in multiple numbers and jobs can 
be scheduled over these machines simultaneously, parallel machines scheduling 
environment is at hand as shown in Figure 3.1 below. 

 

 
Figure 3.1 Four Parallel Machines with n-jobs. 

 
The existence of parallel machines environment is common in real world flow shop 
and job shops systems. Knowledge of parallel machines modeling is useful to design 
the large-scale flexible flow shop and job shop systems 
 

3.2    MINIMIZATION OF MAKESPAN PROBLEM (Pm || Cmax) 
 

This problem deals with scheduling m parallel machines when the objective 
function is to minimize the makespan.  A variety of heuristics are employed to 
determine a near-optimal schedule. Some of these heuristics include longest 
processing time first (LPT) rule and load- balancing heuristic. 
 
3.1.1   Longest Processing Time first (LPT) Rule 

A common heuristic used in parallel machines scheduling is the LPT rule.  
According to this heuristic, jobs are arranged in decreasing order of process times. 
The jobs having large values of process times are given high priority for scheduling 
on the parallel machines.  The following relationship can be used to find how far the 
solution obtained by the LPT rule is far from an optimal solution.   

M1 

M2 

M3 

M4 

j1 j2 j3 j4 jn . . . 

Jobs waiting in queue 
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( )
( ) m3

1
3
4

)OPTC
)LPTC

max

max −≤  

 
Example 3.1 
Using LPT rule, find the best schedule for jobs on the machines for the following P4 || 
Cmax problem.  

 
Job (j) 1 2 3 4 5 6 7 8 9 
pj 7 7 6 6 5 5 4 4 4 

Solution: 
The LPT sequence is as follows: 1-2-3-4-5-6-7-8-9.  From the LPT sequence, 

select job 1 to be scheduled on machine 1, then, select job 2 to be scheduled on 
machine 2, next, select job 3 to be scheduled on machine 3, and finally job 4 to be 
scheduled on machine 4. The partial schedule generated for each machine is 
presented in the following table 

 
Table 3.1 Partial schedule for the four machines. 

Machine (M) Job 
assigned  

Start Time 
Sj 

Process Time 
pij 

Completion 
Time (Cj) 

M1 1 0 7 7 
M2 2 0 7 7 
M3 3 0 6 6 
M4 4 0 6 6 

From the LPT sequence, the unscheduled jobs are {5-6-7-8-9}.  Since 
machines 3 and machine 4 are free and, available for next jobs at times 6, schedule 
job 5 and job 6 at these machines at time 6. The schedule of these jobs is presented in 
Table 2 as follows: 

 
Table 3.2 Partial schedule for job set {j5, j6}. 

 
Job (j) 

 
Machine (M) 

Start Time 
Sj 

Process Time 
pij 

Completion Time 
Cj 

j5 M3 6 5 11 
j6 M4 6 5 11 

The next unscheduled jobs in the ordered set are job 7 and job 8. Machine 1 
and machine 2 are free and available for next jobs at time 7. Schedule job 7 and job 8 
at machine 1 and machine 2 at time 7 respectively. The schedule of these jobs is 
presented in Table 3 as follows: 
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Table 3.3 Partial schedule for job set {j7, j8}. 

Job (j)  
Machine (M) 

Start Time 
Sj 

Process Time 
pij 

Completion Time 
Cj 

j7 M1 7 4 11 
j8 M2 7 4 11 

The next unscheduled job in the ordered set is job 9. Machine 1, machine 2, 
machine 3, and machine 4 are all free for next job at time 11. Schedule job 9 on any 
machine; say at machine 1 at time 11. The complete schedule of all jobs on 4 parallel 
machines is given in Table 4 as follows: 

 
Table 3.4 Complete schedule for job set {j1, j2, j3, j4, j5, j6, j7, j8, j9}. 

Job (j) Machine (M) Start Time 
Sj 

Process Time 
pij 

Completion Time 
Cj 

j1 M1 0 7 7 
j2 M2 0 7 7 
j3 M3 0 6 6 
j4 M4 0 6 6 
j5 M3 6 5 11 
j6 M4 6 5 11 
j7 M1 7 4 11 
j8 M2 7 4 11 
j9 M1 11 4 15 

Gantt chart for P4 || Cmax schedule (shown in Table 3.4) is presented in Figure 
3.2 as shown below; 
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Figure 3.2 Gantt chart For P4|| Cmax Problem.  Note Cmax = 15. 
 
Example 3.2 
Is the Cmax value obtained in Example 3.1 optimal? If not, what is the optimal 
solution? 
Solution: 

For finding optimality of schedules, the following ratio between Cmax(OPT) 
and Cmax(LPT) is observed; 

 
( )
( ) m3

1
3
4

)OPTC
)LPTC

max

max −≤  

Since, there are 4 machines, so m = 4. The ratio 
( )
( ) 25.1

)OPTC
)LPTC

max

max ≤  

 
The ratio of 1.25 indicates that LPT rule will give 25% more value of Cmax in 

worst case as compared to Cmax using optimal methodology. Hence, the optimal value 
of Cmax in Example 3.1 should be 12, as calculated as follows: 
 

Since, Cmax(LPT) = 1.25 x Cmax(OPT), 
This implies that;  Cmax(OPT) = Cmax(LPT)/1.25 = 15/1.25 = 12 

 
The optimal value of Cmax in Example 3.1 can be calculated by using Load 

Balancing heuristic as follows; 
Let Tw = Total work content of all jobs in the problem. Then, tentative load 

per machine may be estimated by taking the ratio of Tw and m as follows:  

M1 

M2 

M3 

M4 

j1 j7 j9 

j2 j8 

j3 j5 

j4 j6 

Cmax = 15 

15 

11 

11 

11 
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M1 

M2 

M3 

M4 

12

12

12

12

Load per machine = 
m
Tw   

For data presented in Example 3.1, Tw = 48p9
1j j =∑ =  , and m = 4. Hence, tentative 

load per machine is 12.  Table 3.5 presents combination of jobs for which average 
load per machine is 12. Optimal schedule is presented in Gantt chart (Figure 3.3). 

 
Table 3.5 Optimal Schedule using Load Balancing Heuristic. 

 
 
 
 
 
 
 

 
Gantt chart for P4 || Cmax schedule (shown in Table 3.5) is presented in Figure 

3.3 as shown below; 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1.3 Gantt chart for optimal solution. 
 
 
 
 
 
 
 

Machine Jobs Total Time 
M1 j1, j5 7 + 5 = 12 
M2 j2,j6 7 + 5 = 12 
M3 j3, j4 6 + 6 = 12 
M4 j7, j8 , j9 4 + 4 + 4 = 12 

j1 j5

j9 

j2 j6 

j3 j4 

j7 j8 

Cmax = 12 
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3.3    MINIMIZATION OF MAKESPAN WITH PRECEDENCE (Pm | prec | Cmax)  
 

This scheduling problem occurs when jobs have precedence relationship 
among them. A precedence relationship diagram shows the precedence relationship.  
The scheduling calculations are carried out in two steps. In first step, forward pass 
calculations are made to find out earliest completion times of jobs as under: 

Let,  
  j job of Time CompletionEarliest C'

j =  

  j
'
i

i
'
j p)C(maxC +=

Ψ∈
 

Where, '
iC  is the earliest completion time of job i that belongs to set ψ. Set ψ 

contains predecessor jobs for job j. 
To find critical path on the precedence network, latest completion times of all 

jobs are calculated as follows:  
Let,  

  j job of Time CompletionLatest C"
j =  

  )pC(minC k
"
k

k
"
j −=

Ω∈
 

 Where,  
  "

kC = Latest completion time of job k that belongs to set Ω  
 Set Ω  contains successor jobs for job j. All the jobs without any successor are 
assigned a value equal to Cmax for backward pass calculations. 
 
Example 3.3 
A parallel shop has nine jobs with process times as follows: 
 

Job (j) 1 2 3 4 5 6 7 8 9 
pj 4 9 3 3 6 8 8 12 6 

The job’s precedence constraints are shown in the following precedence 
diagram. 
 
 
 
 
 
 
 
 

1 

3 

2 

4 5 

8 

6 7 

9 
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Assume infinite number of machines. Use directed graph technique and find; 
1) Makespan 2) Critical Path 
 
Solution: 

The earliest completion times '
jC  of all jobs are shown below in Table 6. 

Table 3.6 Earliest completion times of all jobs. 
Job (j) 1 2 3 4 5 6 7 8 9 

'
jC  

4 13 3 6 12 21 32 24 30 

The earliest completion times are shown below in Figure 4 on the nodes of the 
precedence network. 
 
 
 
 
 
 
 
 
 
                    '

jC  

 
Figure 3.4 Precedence diagram showing earliest completion times. 

 
Job 7 has maximum completion time, which is equal to 32. Hence, the value 

of Cmax is equal to 32. To find critical path on the precedence network, latest 
completion times of all jobs is calculated as follows:  

All the jobs without any successor are assigned a value equal to Cmax for 
backward pass calculations. In the example problem, jobs 7 and 9 have no successor.   
Hence, jobs 7 and 9 are assigned latest completion times equal to 32.  The latest 
completion time of job 8 is calculated as follows: 

 24}26,24min{}632,832min{)pC ,pC { minC 9
"
97

"
7

"
8 ==−−=−−=  

The latest completion times "
jC  of all jobs are shown below in Table 3.7. 

Table 3.7 Latest completion times of all jobs. 
Job (j) 1 2 3 4 5 6 7 8 9 

"
jC  

5 16 3 6 12 24 32 24 32 

 

1 

3 

2 

4 5 

8 

6 7 

9 

4 13

3 6 12 

21

24

32 

30 
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The earliest and latest completion times of all jobs are shown below in Figure 3.5 on 
the corresponding nodes of the precedence network. The nodes having equal values 
of earliest and latest completion times define the critical jobs as well as critical path. 
For example, jobs j3, j4, j5, j8 and j7 have equal values of earliest and latest completion 
times. The arcs joining these nodes form critical path as shown in Figure 5. 
 
 
 
 
 
 
 
 
                         "' , jj CC      

 
Figure 3.5 Critical Path ( j3-j4-j5-j8-j7) for the precedence diagram. 

 
3.4    MINIMIZATION OF MAKESPAN WITH Pj =1 AND PRECEDENCE PROBLEM 

(Pm | Pj = 1, tree | Cmax)  
 

This parallel machine-scheduling problem pertains to jobs having precedence 
relationship represented by a tree.  All the jobs on the tree have process time equal to 
unity. If the jobs have precedence relationship described either by intree or by outtree 
(shown below), then CP rule can be applied to minimize Cmax. 
 

 
Figure 3.6 Relationship of intree and outtree 

3.4.1 CP Rule 

1 

3 

2 

4 5 

8 

6 7 

9 

(4, 7) (13, 16) 

(3, 3) (6, 6) (12, 12) 

(21, 24) 

(24,24) 

(32, 32) 

(30, 32) 

Level 4

intree 
outtree 

Level 2

Level 3

Level 1

root node

root node 
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M1 

M2 

Cmax = 4 

The root node for intree precedence graph is at lowest level (Level 1), 
whereas root node for outtree precedence graph is at highest level (Level 5). CP rule 
imparts high priority to a job having longest string of jobs in the precedence graph. 
This means that a job having highest level in the precedence graph will be schedules 
first. Hence CP rule is in fact Highest Level First rule. This means that root node of 
outtree precedence graph will have highest priority and, root node of intree 
precedence graph will be given least priority. Note that upper bound (UB) on the 
worst case performance of CP rule is given by the following formula. 

 

3
4

)OPT(C
)CP(C

max

max ≤  

Example 3.4 
For the Pm | pj = 1, tree | Cmax, precedence graph shown below, apply CP rule and 
find Cmax. The production shop has two machines in parallel. 

 
Solution: 

Using CP rule, first select jobs with Highest Level, hence the jobs in candidate 
set at time t=0 are from Level 2 jobs; i.e., jobs {j1,  j2 , j3}. Schedule job 1 on machine 
1 and job 2 on machine 2. At time 1, only job 3 is schedulable. Hence, schedule job 3 
on machine 1 at time 1. At time 2, all the jobs at level 1 are schedulable. Jobs at Level 
1 include {j4, j5, j6}. However, only two jobs can be scheduled. So, schedule job 4 and 
5 on machine 1 and 2 respectively at time 2. Finally, at time 3 schedule job 6 on 
machine 2. The complete schedule is shown in Gantt chart (Figure 3.7). 
 
  
 
           1          2           3 
 
 
 

                 1          2          3       4 
 

Figure 3.7 Gantt chart for schedule generated by CP Rule. 

1 

6 4 5 

3 2 

Level 1 

Level 2 

j3 j4 j1 

j2 j5 j6 
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M1 

M2 

3 

3 Cmax =3 

3.4.2 LNS Rule 
The LNS rule is stated as follows: 

“Find the number of successors (NS) of all jobs in the precedence graph. 
While scheduling jobs on parallel machines, give priority to jobs having 
largest number of successors.” 

 
Example 3.5 
Solve the problem in Example 3.4 using LNS rule. 
Solution 

The number of successors for each job in example 3.5 according to 
precedence graph is shown in the following table: 
Job (j) 1 2 3 4 5 6 
pj 1 1 1 1 1 1 
NS 2 3 3 0 0 0 
At time t=0, 

Assign jobs j2 and j3 to machines M1 and M2.  
At time t=1, 

Schedule job j1 on machine M1, machine M2 is also free and ready at time t=1. 
All the three jobs {j3, j4, j5} have NS=0. But only job j6 is schedulable at t=1 
because it satisfies the precedence constraint. Hence, schedule job j6 at time 
t=1. 

 At time t=2, 
The remaining unscheduled jobs {j4, j5} are schedulable. So, schedule jobs j4 
and j5 on machines M1 and M2 respectively at time t=2. Note, the makespan 
(Cmax) of this schedule is 3 time units. 

The complete schedule is presented in Gantt chart (Figure 3.8) 
 
 
 
 
 
 
 
 
 
 

Figure 3.8 Gantt chart for Optimal Schedule generated by LNS rule. 
 
 
 

j1 j4 j2 

j3 j5 j6 
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Example 3.6 
For the parallel machine problem P2 | pj = 1, tree | Cmax the precedence 
graph is shown below. 

 
Apply the following rules and find Cmax. 
 a) CP rule  b) LNS rule 
Is the schedule obtained by CP or LNS rule optimal? 
Solution: 
a) CP Rule. 

To apply CP rule, we determine levels for the jobs from the precedence 
graph. 

Jobs Level No 
j5, j3 1 

j2, j4, j6 2 
j1, j7 3 

At time, t=0 
Jobs j1 and j7 have highest level. At time t=0, schedule job j1 on M1 and job 7 on 
M2 
At time, t=1 
Three jobs are at level 2; namely, j2, j4 and j6. Arbitrarily select jobs j2 and j4 to 
be scheduled at machines M1 and M2 at time t=1. 
At time, t=2 
Only job j6 is still unscheduled from the jobs at Level 2. So, schedule it at time 
t=2 on machine M1. Machine M2 is free and ready. Jobs at level 1 are {j5, j3}. 
Select job j5 and schedule it on M2. 
At time, t=3 
Only job j3 is still unscheduled from the jobs at Level 1. So, schedule it at time 
t=3 on machine M1. makespan (Cmax) of the schedule is 4. 
 
 
 

1 

5 

2 

3 

4 6 

7 
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Figure 3.9 Gantt chart of schedule using CP Rule (Cmax = 4). 

 
b) LNS Rule. 

To apply LNS rule, we determine number of successors for each job 
from the precedence graph. 

Job (j) 1 2 3 4 5 6 7 

pj 1 1 1 1 1 1 1 

NS(j) 1 1 0 2 0 2 1 

 
At time, t=0  

Set of scheduled jobs = φ  
Set of unscheduled jobs = {j1, j2, j3, j4, j5, j6, j7} 
Jobs j4 and j6 have highest values of NS. But job j6 does not meet 
precedence condition at time t=0. The predecessor of job j6 is job j7, 
which has NS value of 1. So schedule job j4 on machine M1 and 
schedule job j7 on M2. 

At time, t=1 
Set of scheduled jobs = {j4, j7} 
Set of unscheduled jobs = {j1, j2, j3, j5, j6} 
Job j6 has a value of NS=2 and it is yet unscheduled. So schedule j6 on 
M1. Machine M2 is free and ready now. From the unscheduled set, jobs 
j1 and j2 have high value of NS=1. But only job j1 can be scheduled at 
this time. So, select job j1 and schedule it on M2. 

At time, t=2 
Set of scheduled jobs = {j4, j7, j6, j1} 
Set of unscheduled jobs = {j2, j3, j5} 
From the set of unscheduled jobs, only job j2 has NS value equal to 1. 
So, schedule it at time t=2 on machine M1. M2 is free and ready. Jobs 

j2 j1 

j7 j5 j4 

M1 

M2 

3 

4 

j3 j6 
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Cmax = 4 

M1 

M2 

3 

4 

j3 and j5 both have equal value of NS, which is zero for these jobs. 
Select arbitrarily job j5 and schedule it on M2. 

At time, t=3 
Set of scheduled jobs = {j4, j7, j6, j1, j2, j5} 
Set of unscheduled jobs = {j3} 
Only job j3 is still unscheduled. So, schedule it at time t=3 on machine 
M1. makespan (Cmax) of the schedule is 4. 
 
 
 
 
 
 
 
 
 

 
Figure 3.10 Gantt chart of schedule using LNS Rule (Cmax = 4) 

 
Note that both rules produce schedules bearing Cmax value of 4. Total work 
content is equal to 7 time units. Both schedules do not contain any inserted 
idle time, so both schedules are giving optimal value of Cmax which is equal to 
4. 

 
Example 3.7 
Apply the LNS rule and solve the P2 | pj = 1, tree | Cmax problem. The 
precedence graph is shown below. 
 
 
 
 
 
 
 
 
 
 
Solution: 
For applying LNS rule, first find number of successors for all jobs. 
 

j6 j4 

j7 j5 j1 

j3 j2 

1 

2 

3 5 

4 6 
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Cmax = 4 

M1 

M2 

3 

4 

Job (j) 1 2 3 4 5 6 
NS(j) 1 1 0 2 0 2 

 
The schedule of jobs using time scale is presented in Table 3.8 as well as a 
Gantt chart in Figure 3.11.  

 
Table 3.8 Jobs schedule using LNS rule. 

Time 
t 

Set of 
Scheduled 

Jobs 

Set of  
Unscheduled 

Jobs 

 
Schedule on M1 

 
Schedule on M2 

0 { } All jobs j4 (NS = 2) j6 (NS = 2) 

1 {j4, j2} 

{j1, j3, j5, j6} 
 

Schedulable jobs 
are j5 and j1 

j5 (NS = 0) 
Although j2 has NS 
value of 1, but its 
predecessor is not 

yet scheduled 

j1 (NS = 1) 

2 {j4,j2,j1,j5} 

{j2,j3} 
 

Schedulable job 
is j2 only 

None 
Job j3’s 

predecessor 
condition is not 

OK 

j2 (NS = 1} 

3 
All except job 

j3 

{j3} 
Job j3 is 

schedulable 
j3 (NS = 0} None 

 
 

 
 
 
 
 
 
 
 
 

Figure 2Gantt chart Using LNS rule. 
 

 

j5 j4 

j6 j1 

j3 

j2 
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Cmax = 3 

M1 

M2 

3 

3 

Example 3.8 
Apply CP rule and generate schedule for precedence graph of Example 3.7. 
Solution: 
The levels of the jobs in precedence graph are as under; 
 

Jobs Levels 
j1 3 

j2, j4, j6 2 
j3 , j5 1 

The job’s scheduling using time scale is presented in Table 3.9. 
 

Table 3.9 Job’s scheduling by LNS rule. 

Time 
t 

Set of 
Scheduled 

Jobs 

Set of 
Unscheduled 

Jobs 

 
Schedule on M1 

 
Schedule on M2 

t=0 { } All jobs 
Job j1 has highest 

level of 3. So 
schedule job j1 

j4 and j6 at Level 2 
can be scheduled. 

Pick job j4 

t=1 {j4,j1} 

{j2,j3,j6,j5} 
Job’s Level 

Level 2 -> j2,j6} 
Level 1 -> j3,j5} 

 
Schedule j2 

 
Schedule j6 

t=2 
All except job 

j3,j5 
{j3,j5} Schedule j3 Schedule j5 

t=3 All jobs { } *** *** 
The Gantt chart shows optimal schedule in Figure 3.12. 
 
 
 
 
 
 
 
 
 

 
Figure 3.12 Gantt chart showing Optimal Schedule by LNS Rule 

j2 j1 

j4 j6 

j3
M1

 
j1 j4j2

j5
M1

 
j1 j4j2
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3.5     MINIMIZATION OF MAKESPAN WITH PREEMPTION (Pm | prmp | Cmax ) 

PROBLEM 
 
For Pm | prmp | Cmax, under optimal schedule the makespan is as follows: 

( ) *
maxj

n

1j
jmax Cpmax,p

m
1maxC =

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∑≥
=

 

Remember, no job can be on two machines at the same time. 
Proof: 

For single machine problem with job preemption allowed, Cmax is equal to ∑
=

n

1j
jp . For 

parallel machines shop with m machines in parallel, the lower bound on Cmax is 

clearly the average of the total process times; i.e., p  , where =p  ∑
=

n

1j
jp

m
1 . 

However, there is an exception to this rule as follows: 
In case, certain job k has significant large value of process time Pk,  
Such that,     Pk = max (Pj).  
If the value of Pk > p , then lower bound on Cmax will be defined by Pk. Hence, lower 

bound on Cmax ( *
maxC  ) is maximum of (Pk , p ). Suppose, we have the following 

scheduling problem 
Jobs 1 2 3 4 
Processing Time 2 1 3 12 

Consider it to be a P2 | prmp | Cmax problem. 

Average process time, 9
2

12312p =
+++

= , and, Pk = max ( 2,1,3,12) = 12.  Hence, 

Cmax is 12. The Gantt chart for the schedule is shown in Figure 3.13  

 
 

 Figure 3.13 Gantt chart for optimal schedule by (Pm | prmp | Cmax ) problem.  

J4

J1 j2 J3

    2    3             6 

12 

M1 

M2 
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3.6    LONGEST REMAINING PROCESSING TIME FIRST LRPT RULE   
 (Pm | prmp | Cmax) 

 
This problem deals with minimization of makespan in parallel machines 

environment when preemptions are allowed in discrete point in time.  The following 
rule applies to this environment. 
Rule: 

LRPT (longest remaining process time first) yields an optimal schedule for Pm 
| prmp | Cmax problem in discrete points in time.  

Example 3.9 
The following data presents an instance of the P2 | prmp | Cmax. 

job (j) j1 j2 j3 
pj 8 7 6 

Use LRPT rule and find optimal schedule. Preemptions are allowed in discrete time. 
Solution: 

Using tabular method we will generate the schedule. One time unit in each 
row increases time. The jobs are given priority for assigning to machines M1 and M2 
according to LRPT rule. Jobs having largest values of remaining process time are 
assigned to machines. If jobs with small value of remaining process time are currently 
assigned to machines, these jobs will be removed if jobs with higher values of LRPT 
are waiting in queue for their turn (Remember, preemptions are allowed). The 
complete procedure is presented in Table 3.10. 

 
Table 3.10 Generation of schedule For P2 | prmp | Cmax Problem. 

 
start 
time 

Remaining Process Time 
j1     j2        j3 

Schedule 
Time 

 
Job on M1 

 
Job on M2 

0 8    7       6 [0 , 1] j1 ←      j2 ← 

1 7    6       6 [1 , 2] j1 j2 → 

2 6    5       6 [2 , 3] j1 j3 ← 

3 5     5       5 [3 , 4] j1 j3 → 

4 4     5       4 [4 , 5] j1 → j2 ← 

5 3     4       4 [5 , 6] j3 ← j2  

6 3    3       3 [6 , 7] j3 → j2 

7 3    2       2 [7,  8] j1 ← j2 → 

8 2    1       2 [8 , 9] j1 J3 ← 

9 1    1       1 [9 , 10] j1 → j3 → 
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start 
time 

Remaining Process Time 
j1     j2        j3 

Schedule 
Time 

 
Job on M1 

 
Job on M2 

10 0    1       0 [10 , 11] j2 ←  

 
( → ) indicates job’s removal from the machine and (← ) indicates job’s loading on 
the machine 
 
Time, t =0 and time interval, [ 0, 1] 
             As shown in Table, jobs j1 and j2 have large values of remaining process time 
(RPT) than job j3. So, assign j1 to M1 and, j2 to M2 from time interval [0, 1]. 
Time, t =1 and time interval, [ 1, 2] 

The values of remaining process time for jobs j1 and j2 are updated. 
Remaining process time (RPT) for job j1 is still largest for job j1. So, job j1 remains 
assigned to machine M1. However, jobs j2 and j3 have equal amount of remaining 
process time. Since, job j2 is currently assigned to machine M2, it is kept assigned to 
M2 during interval [1, 2]. 
Time, t=2 and  time interval, [2, 3] 
           At the start of time 2, remaining process times for jobs j1, j2 and j3 are 6, 5 and 
6, respectively. Keep job j1 assigned to M1. Since job 3 has larger value of RPT than 
job 2, remove job j2 from M2 and, assign j3 to M2 during time interval [2, 3]. 
Preemption of job j2 by j3 is shown by arrows → and ←. 

Increase time by one unit. Reduce the remaining process time accordingly for 
the jobs currently assigned to machines M1 and M2.  
            Complete the procedure till all jobs have RPT equal to zero as shown in last 
row of the Table 3.10.  
Final schedule is shown by Gantt chart in Figure 3.14. 

 
Figure 3.14 Gantt chart for LRPT schedule. 

       j2           j3                 j2                 j3   

                j1                     j3                j1          j2M1    
 
 
M2 

 2 4 6 8 10 12 
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3.7    MINIMIZATION OF MAKESPAN FOR MACHINES WITH DIFFERENT SPEED 
AND WITH PREEMPTION (Qm | prmp | Cmax) PROBLEM 
 

This problem relates to a parallel machine environment with m machines 
having varying processing speeds.  The objective is to optimize makespan with 
preemptions allowed. The following rule applies to optimizing Cmax in this 
environment. 
Rule: 

Assign jobs with largest remaining process time (LRPT) to fastest machines 
(FM). Every time a fastest machine completes a job, the job on the second 
fastest machine is transferred to fastest machine, and , so on. This rule is 
called LRPT-FM rule. 

 
Example 3.10 
Consider three machines in parallel with varying speeds as follows: 

Machine M1 M2 M3 
Speed (vi) 3 2 1 

Three jobs are to be processed on these machines having process times as 
follows: 

job j1 j2 j3 
pj 36 34 12 

Generate schedule applying LRPT-FM rule in discrete time. 
Solution: 
The schedule generated is shown in Table 3.11 below. 

 
Table 3.11 Schedule for Qm| prmp |Cmax Problem. 

start 
time 

Remaining P. T. 
j1 j2 j3 

Schedule 
Time 

Job  on 
M1 (3) 

Job on 
M2 (2) 

Job  on 
M3 (1) 

0 36 34 12 [0 , 1] j1 j2 j3 

1 33 32 11 [1 , 2] j1 j2 j3 

2 30 30 10 [2 , 3] j1 j2 j3 

3 27 28 9 [3 , 4] j2 j1 j3 

4 25 25 8 [4 , 5] j2 j1 j3 

5 23 22 7 [5 , 6] j1 j2 j3 

6 20 20 6 [6 , 7] j1 j2 j3 
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start 
time 

Remaining P. T. 
j1 j2 j3 

Schedule 
Time 

Job  on 
M1 (3) 

Job on 
M2 (2) 

Job  on 
M3 (1) 

7 17 18 5 [7,  8] j2 j1 j3 

8 15 15 4 [8 , 9] j2 j1 j3 

9 13 12 3 [9 , 10] j1 j2 j3 

10 10 10 2 [10 , 11] j1 j2 j3 

11 7 8 1 [11 , 12] j2 j1 j3 

12 5 5 - [12 ,  13] j2 j1 - 

13 3 2 - [13 , 14] j1 j2 - 

14 - - -     

 
Note that preemptions between jobs j1 and j2 occur at times; t=3, 5, 7, 9, 12 and 14 on 
machines M1 and M2. 
 

3.8   MINIMIZATION OF TOTAL COMPLETION TIME FOR MACHINES WITH 
DIFFERENT SPEED AND WITH PREEMPTION (Qm | prmp | ΣCj) 
PROBLEM 
 

This problem again pertains to parallel machine environment with m 
machines; each machine having varying speed. Objective is to minimize total 
completion times when job preemption is allowed. 

The following rule is applied to optimize the objective function. 
Rule: 

Jobs with shortest remaining process time (SRPT) are assigned to fastest 
machine (FM). Every time, fastest machine completes a job, the job on the 
second fastest machine moves to the fastest machine. Preemptions of jobs are 
allowed at integer points in time. 

 
Example 3.11 
Consider 4-machine and 7-job problem with an instance of Q4 | prmp | ΣCj. 
 

Machine M1 M2 M3 M4 
speed (vi) 4 2 2 1 
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Jobs are processed on these machines having process time as follows: 
job (j) j1 j2 j3 j4 j5 j6 j7 
pj 8 16 34 40 45 46 61 

Find optimal schedule using SRPT-FM rule. Preemptions are allowed at 
discrete point in time. 
Solution: 
Arrange jobs according to SPT values. Similarly arrange machines in decreasing 
order of speed; fastest machine first in order, and, slowest machine last in order. 

At time, t=0. 
Assign job j1 to machine M1, j2 to M2, j3 to M3 and j4 to M4. 

At time, t=2. 
Job j1 is completed. Move job j2 to M1, job j3 to M2, j4 to M3. Also, assign job 
j5 to M4. 

At time, t=5. 
Job j2 is complete on machine M1. Shift job j3 to machine M1, j4 to M2, j5 to 
M3. Assign job j6 to M4. 

Proceed in this manner to finish all jobs. Complete schedule is presented in the Table 
3.12 below.  

 
Table 3.12 Schedule generated using SRPT-FM Rule. 

start 
time 

Remaining P. T. 
j1 j2 j3 j4 

Schedule 
Time 

Job on 
M1 (4) 

Job on 
M2 (2) 

Job on 
M3 (2) 

Job on 
M4 (1) 

0 8 16 34 40 [0 , 1] j1 j2 j3 j4 

1 4 14 32 39 [1 , 2] j1 j2 j3 j4 

2 
← 

j2 j3 j4 j5 
12 30 38 45 

 
[2 , 3] 

 
j2 

 
j3 

 
j4 

 
j5 

3 8 28 36 44 [3 , 4] j2 j3 j4 j5 

4 4 26 34 43 [4 , 5] j2 j3 j4 j5 

5 
← 

j3 j4 j5 j6 
24 32 42 46 

[5 , 6] j3 j4 j5 j6 

6 20 30 40 45 [6 , 7] j3 j4 j5 j6 

7 16 28 38 44 [7,  8] j3 j4 j5 j6 

8 12 26 36 43 [8 , 9] j3 j4 j5 j6 

9 8 24 34 42 [9 , 10] j3 j4 j5 j6 
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start 
time 

Remaining P. T. 
j1 j2 j3 j4 

Schedule 
Time 

Job on 
M1 (4) 

Job on 
M2 (2) 

Job on 
M3 (2) 

Job on 
M4 (1) 

10 4 22 32 41 [10 , 11] j3 j4 j5 j6 

11 
← 

j4 j5 j6 j7 
20 30 40 61 

[11 , 12] j4 j5 j6 j7 

12 16 28 38 60 [12 , 13] j4 j5 j6 j7 

13 12 26 36 59 [13 , 14] j4 j5 j6 j7 

14 8 24 34 58 [14 , 15] j4 j5 j6 j7 

15 4 22 32 57 [15 , 16] j4 j5 j6 j7 

16 
← 

j5 j6 j7 
20 30 56 

[16 , 17] j5 j6 j7  

17 16 28 54 [17 , 18] j5 j6 j7  

18 12 26 52 [18 , 19] j5 j6 j7  

19 8 24 50 [19 , 20] j5 j6 j7  

20 4 22 48 [20 , 21] j5 j6 j7  

21 
← 

j6 j7 
20 46 

[21 , 22] j6 j7   

22 16 44 [22 , 23] j6 j7   

23 12 42 [23, 24] j6 j7   

24 8 40 [24 , 25] j6 j7   

25 4 38 [25 , 26] j6 j7   

26 
← 

j7 
36 

[26 , 27] j7    

27 32 [27 , 28] j7    

28 28 [28 , 29] j7    

29 24 [29 , 30] j7    

30 20 [30 , 31] j7    

31 16 [31 , 32] j7    
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start 
time 

Remaining P. T. 
j1 j2 j3 j4 

Schedule 
Time 

Job on 
M1 (4) 

Job on 
M2 (2) 

Job on 
M3 (2) 

Job on 
M4 (1) 

32 12 [32 , 33] j7    

33 8 [33 , 34] j7    

34 4 [34 , 35] j7    

35 - [35 , 36]     

 
Gantt Chart for the schedule generated in Table 3.12   is; 

 
 

Figure 3.15 Gantt chart For schedule presented in Table 3.12. 
 

3.9    MINIMIZATION OF TOTAL MAXIMUM LATENESS WITH PREEMPTION    
(Pm | prmp | Lmax) PROBLEM. 
 

The problem pertains to parallel machines environment with job preemption 
allowed. Objective function is minimization of maximum lateness. To solve this type 
of problem data is converted to Pm | rj , prmp | Cmax problem. Then by using LRPT 
rule, a schedule is generated. By reversing the obtain schedule we will get schedule of 
jobs on the parallel machines. The procedure is explained by an example. 
 
Example 3.13  
The following data is an instance of P2 | prmp | Lmax. Generate schedule. Preemptions 
are allowed discrete in time. 
 

2       5           11          16       21      26                35     ←  Cj     

1 2
1

j3 j4 j5 j6 j7 

2
1

3
1

j4 j5 j6 j7 

3
1

4
1

j5 j6 j7 

4
1

5
1

j6 j7 

M1 

M2 

M3 

M4 

Σ Cj = 116 
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Jobs (j) j1 j2 j3 j4 

dj 4 5 8 9 

pj 3 3 3 8 

 
Solution: 

Find rj values as under; 
 
Let d* = max ( d1, d2, d3, d4) = ( 4 , 5 ,8 , 9) = 9 
 
Set r4 = d* - d4 = 9 – 9 = 0, 

r3 = d* - d3 = 9 – 8 = 1, 
r2 = d* - d2 = 9 – 5 = 4, 
r1 = d* - d1 = 9 – 4 = 5 

 
Using these values of rj, formulate new problem as under; 

job j1 j2 j3 j4 
rj 5 4 1 0 
pj 3 3 3 8 

The schedule generate is shown in table 3.13 below, 
 

Table 3.13 Solution for problem using LRPT rule. 

Start 
time 

Remaining Process Time 
j1 j2 j3 j4 

r1=5 r2=4 r3=1 r4=0 

Schedule 
Time Job on M1 Job on M2 

0    3    3    3 [0 , 1] j4  
1    3    3 [1 , 2] j4 j3 
2    3    3 [2 , 3] j4 j3 
3    3    3 [3 , 4] j4 j3 
4    3 [4 , 5] j4 j2 
5                2 [5 , 6] j4 j1 
6                2 [6 , 7] j4 j1 
7    1 [7,  8] j4 j2 
8  [8 , 9] j1 j2 
9  [9 , 10]   
 
 

8

6

5

4

2

3

1

1

73

2

3 

2 

1 

3 

2 

1 
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Release time rj has significant influence on scheduling decision.  Job j1 can be 
assigned to machine not before time, t=5. This is the release time of job j1. Similarly, 
job 3 can be assigned at time, t=1. Job j2 can be assigned not before time, t= 4. Gantt 
chart of the schedule is shown in Figure 3.16 below. 

 

 
 

Figure 3.16 Gantt chart using LRPT Schedule. 
 

Reverse the Gantt chart to find completion times (Cj) of jobs as shown in 
Figure 3.17 below; 

 

 
 

Figure 3.17 Reverse Gantt chart. 
Then, the Lmax can be found as follows: 

J Dj Cj Lj 
1 4 4 0 

2 5 5 0 

3 8 8 0 
4 9 9 0 

Hence, Lmax = 0 

j4 j1 

j2 j1 j2 j3 

   1                                                            9 

     Cmax = 9 M1 

M2   

                     2             4         5                 8 

j4 j1 

j3 2 j1 j2 

     8        9 

     Cmax = 9 

M1 

M2   

       1                    4      5                 7                  9 
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2 3 

4 

9 

5 

1 

8 7 

6 

11 
10 

12
13

EXERCISES 
 

3.1 Consider an instance of P4 | pj=1, tree | Cmax problem with precedence constraints 
as shown in following tree.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Generate schedule and find Cmax, using   
 i) CP rule,   ii) LNS rule 
 

3.2 Consider an instance of the P∞ | prec | Cmax problem with data for 13 jobs as 
follows: 

Job 1 2 3 4 5 6 7 8 9 10 11 12 13 
pj 7 8 4 9 12 5 3 9 5 12 7 5 8 

The precedence graph is shown below. 

 
Assume infinite number of machines, and find Cmax as well as identify critical 
path. 

 
 

2 3 4 

9 

5 1 

8 7 6 

11 

10

12

13
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3.3 Consider an instance of   P3 || Cmax problem with data as under: 
 

Job 1 2 3 4 5 6 7 8 
pj 15 11 9 6 12 18 9 14 

 
i) Apply LPT rule and assign jobs to machines. Is the solution optimal? Why 

or why not.  
ii) Apply load balancing heuristics and find Cmax. 

 
3.4 Suppose the data in Question #3.3 pertains to an instance of P3 | prmp | Cmax. 

Generate schedule using LRPT rule and find Cmax. Does preemption improve 
solution? 

 
3.5 The following data represents an instance of P2 | prmp | Cmax Problem 

job 1 2 3 4 5 
pj 4 3 13 12 2 

Generate schedule to minimize Cmax. Also draw Gantt chart. Preemptions are 
allowed at discrete intervals of time 

 
3.6 Consider P4 | | Cmax problem with the following data: 

Job 1 2 3 4 5 6 7 8 9 10 11 
pj 2 2 3 4 5 6 7 8 2 2 3 
Find  a sequence that minimize Cmax and compute Cmax. Then, prove that the 
optimal sequence found is optimal by a principle.  

 
3.7 Consider the following data pertaining to problem  as an instance of Q3 | prmp | 

Cmax  There are three machines in parallel with varying speeds as follows: 
Machine M1 M2 M3 
Speed (v) 2 1 4 

Four jobs are to be processed with process time as follows: 
Jobs 1 2 3 4 

Process time 12 8 16 24 
Generate schedule applying LRPT-FM rule in discrete intervals of time. 
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3.8 Consider 3-machine and 6-job problem with an instance of Q3 | prmp | ΣCj. 
Machine M1 M2 M3 

Speed (vi) 6 4 2 
Six jobs are to be processed with process time as follows: 

Job 1 2 3 4 5 6 
Pj 12 16 33 48 56 38 

Find optimal schedule using SRPT-FM rule. Preemptions are allowed at 
discrete point in time 

 
3.9 The following data is an instance of P3 | prmp | Lmax 

Job 1 2 3 4 5 
Pj 4 2 1 6 7 
Dj 5 7 3 14 12 

Generate a schedule to minimize Lmax.  Preemptions are allowed at discrete 
intervals of time.  

 
3.10 The following data is an instance of P2 | prmp | Lmax. Generate a schedule to 

minimize Lmax. Preemption is allowed in discrete time. 
Job 1 2 3 4 5 
Dj 16 9 25 21 13 
pj 3 5 9 7 10 

 
3.11 Consider P2 | | nt Problem with the following data: 

Job 1 2 3 4 5 6 7 8 9 

Dj 8 12 7 3 17 14 16 23 22 

Pj 7 5 9 2 8 8 5 2 1 
Generate a sequence to minimize the total number of jobs tardy and then 
compute the total number of jobs tardy and the makespan.  
 

3.12 Consider Q4 | prmp | Cmax Problem with the following data: 
Job 1 2 3 4 5 6 7 8 9 
Pj 17 5 9 12 8 8 5 22 10 

In which the four machines processing speeds are as follows: 
Machine M1 M2 M3 M4 
Speed (vi) 3 4 2 2 
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Generate a sequence to minimize the makespan.  Then, constructing the Gantt 
chart for the solution obtained and computes the makespan.  
 

3.13 Consider Q2 | prmp | ΣWj Cj Problem with the following data: 
Job 1 2 3 4 5 

Process time 17 5 9 12 8 
Weight 1 2 4 6 4 

In which the two machines processing speeds are as follows: 
Machine M1 M2 

Processing Speed (vi) 1 2 
Generate a sequence to minimize the total weighted completion time.  Then, 
constructing the Gantt chart for the solution obtained and compute the total 
weighted completion time.  

 
3.14 The following data represents an instance of P2 | prmp | Lmax Problem 

job 1 2 3 4 5 
dj 8 12 7 3 17 
pj 7 5 9 2 8 

Generate schedule to minimize Lmax. Also draw Gantt Chart. Preemptions are 
allowed at discrete intervals of time. 
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4.1    INTRODUCTION 
A flow shop problem exists when all the jobs share the same processing order 

on all the machines. In flow shop, the technological constraints demand that the jobs 
pass between the machines in the same order. Hence, there is a natural processing 
order (sequence) of the machines characterized by the technological constraints for 
each and every job in flow shop. Frequently occurring practical scheduling problems 
focus on two important decisions: 

 The sequential ordering of the jobs that will be processed serially by two or 
more machines  

 The machine loading schedule which identifies the sequential arrangement 
of start and finish times on each machine for various jobs.  

Managers usually prefer job sequence and associated machine loading schedules that 
permit total facility processing time, mean flow time, average tardiness, and average 
lateness to be minimized. The flow shop contains m different machines arranged in 
series on which a set of n jobs are to be processed. Each of the n jobs requires m 
operations and each operation is to be performed on a separate machine. The flow of 
the work is unidirectional; thus every job must be processed through each machine in 
a given prescribed order. In other words, if machines are numbered from 1,2,3....m, 
then operations of job j will correspondingly be numbered (1,j), (2,j), (3,j),.... (m,j). In 
this context, each job has been assigned exactly m operations where as in real 
situations a job may have a fewer operations. Nevertheless, such a job will still be 
treated as processing m operations but with zero processing times correspondingly. 
The general n jobs, m machine flow shop scheduling problem is quite formidable. 
Considering an arbitrary sequence of jobs on each machine, there are (n!)m possible 
schedules which poses computational difficulties. Therefore, efforts in the past have 
been made by researchers to reduce this number of feasible schedules as much as 
possible without compromising on optimality condition. Literature on flow shop 
process indicates that it is not sufficient to consider only schedules in which the same 
job sequence occurs on each machine with a view to achieving optimality. On the 
other hand, it is not always essential to consider (n!)m schedules in search for an 
optimum. The following two dominance properties will indicate the amount of 
reduction possible in flow shop problems. 
 Theorem 1 

When scheduling to optimize any regular measure of performance in a 
static deterministic flow shop, it is sufficient to consider only those schedules 
in which the same job sequence exists on machine 1 and machine 2.  

 Theorem 2 
When scheduling to optimize makespan in the static deterministic 

flow shop, it is sufficient to consider only those schedules in which the same 
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job sequence exists on machine 1 and 2, and the same job sequence on 
machines m-1 and m. 

The implications of above dominance can be interpreted as follows: 
• For any regular measure of performance, by virtue of the fact that the same 

job sequence on the first two machines is sufficient for achieving 
optimization, it is (n!)m-1  schedules that constitute a dominant set. 

• For makespan problems, by virtue of the fact that the same job sequence on 
machine m-1 and m besides on machine 1 and 2 is sufficient for achieving 
optimization, it is (n!)m-2 schedules that constitute a dominant set for m > 2. 
As defined earlier, a permutation schedule is that class of schedule which 
may be completely identified by single permutation of integers. For a flow 
shop process, the permutation schedule is therefore, a schedule with the 
same job sequence on all machines. Interpreting the above results yet in 
another way, it is observed that: 

• In a two machine flow shop, permutation schedule is the optimum schedule 
with regard to any regular measure of performance. 

• In a three machine flow shop, permutation schedule is the optimum schedule 
with respect to makespan criterion. 

Unfortunately, this second dominance property is confined to makespan only. This 
neither extends to other measures of performance nor does it take into account large 
flow shops with m > 3. However, no stronger general results than the above two 
concerning permutation schedules are available in the literature. 
 

4.2    MINIMIZATION OF MAKESPAN USING JOHNSON’S RULE FOR (F2 || Cmax) 
PROBLEM 
 

The flow shop contains n jobs simultaneously available at time zero and to be 
processed by two machines arranged in series with unlimited storage in between 
them. The processing times of all jobs are known with certainty. It is required to 
schedule the n jobs on the machines so as to minimize makespan (Cmax). This 
problem is solved by Johnson's non-preemptive rule for optimizing the makespan in 
the general two machine static flow shop. This is the most important result for the 
flow shop problem which has now become a standard in theory of scheduling. The 
Johnson's rule for scheduling jobs in two machine flow shop is given below: 
In an optimal schedule, job i precedes job j if: 

min {pi1 , pj2} < min {pj1 , pi2} 
Where as,  

pi1 is the processing time of job i on machine 1 and pi2 is the processing time 
of job i on machine 2. Similarly, pj1 and pj2 are processing times of job j on machine 1 
and 2 respectively.  
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The steps of Johnson's algorithm for constructing an optimal schedule may be 
summarized as follows: 

Let,  
p1j = processing time of job j on machine 1. 

  p2j = processing time of job j on machine 2. 
Johnson’s Algorithm 
Step 1: Form set-I containing all the jobs with p1j < p2j 
Step 2: Form set-II containing all the jobs with p1j > p2j 
  The jobs with p1j = p2j may be put in either set. 
Step 3: Form the sequence as follows: 
a) The jobs in set-I go first in the sequence and they go in increasing order of p1j 

(SPT) 
b) The jobs in set-II follow in decreasing order of p2j (LPT). Ties are broken 

arbitrarily. 
This type of schedule is referred to as SPT (1)-LPT (2) schedule. 
 
Example 4.1 
 Consider the following data presents an instance of F2 || Cmax problem. Find 
optimal value of makespan using Johnson’s rule. 
 

Job (j) j1 j2 j3 j4 j5 
p1j 5 2 3 6 7 
p2j 1 4 3 5 2 

Solution: 
Step 1:   
 Of all jobs; 1 j 5≤ ≤ , only job j2 has p1j < p2j  which belong to Set-I = { j2 } 
Step 2:   
 Jobs j1, j4 and j5 have p1j > p2j which belong to Set-II = { j1, j4 , j5 } 
 Job j3 has p1j = p2j, so put it in any set; say set-I. Set-I = { j2 , j3 } 
Step 3: 

a) Arrange sequence of jobs in set-I according to SPT. Set-I contains j2 and j3 as 
members. Process time of job 2 on machine M1 is p12=2. Similarly process 
time of job 3 on machine M1 is p13=3. Sequencing jobs j2 and j3 according to 
SPT; 

     Set-I = { j2 , j3 } 
b) Arrange sequence of jobs in set-II according to LPT. Process times of jobs in 

set-II are; p21 = 1,  p24 = 4 and,   p25 = 2. Hence, revised sequence is; 
     Set-II = { j4, j5, j1 } 

  Optimal sequence; Set-I + Set-II = { j2, j3, j4, j5, j1} 
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 The schedule for the optimal sequence is presented in graphical form using 
directed graph and Gantt chart.  Directed graph also presents the critical path. All the 
processes on machine M1 are on critical path.  Gantt chart shows idle times on 
machine M2.  

 
Figure 4.1 Directed Graph For Optimal Sequence { j2, j3, j4, j5, j1} 

 

 
Figure 4.2 Gantt chart For optimal sequence { j2, j3, j4, j5, j1} 

 
 

4.3    MINIMIZATION OF MAKESPAN FOR (F3 || Cmax ) PROBLEM 
 

This is the same flow shop problem as defined in two-machine case except 
that now there are three machines arranged in series for processing of n jobs in a 
prescribed order. Also, by virtue of dominance property number 2 (Theorem 2), 
permutation schedule still constitutes a dominant set for optimizing makespan. 
However, Johnson's 2-machine algorithm can not be extended to general 3-machine 
flow shop. Nevertheless, under special conditions, generalization is possible. In this 
regard, if either of the following condition satisfies, the Johnson's 2 machine 
algorithm may be extended to the 3-machine flow shop to achieve optimum 
makespan. 
 Either, 

( ) ( )j21j pmaxp  min ≥
   

or          

2, 2 

4, 6 3, 9 5, 16 2, 23 1, 24 

5, 23 7, 18 6, 11 3, 5 

Job 2       Job 3           Job 4   Job 5         Job 1
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( ) ( )j2j3 pmaxpmin ≥
 

In other words, machine 2 is completely dominated by either the first or the 
third machine so that no bottleneck could possibly occur on the second machine. 
Subject to the above conditions, the optimal scheduling rule is applicable to 3-
machine flow shop  

The working procedure is the same as that described in the two machines case 
except that the three machines flow shop is reduced to two dummy machine M1’ and 
M2

’ such that processing times of job j on machines M1’ and M2’ are (pj1+ pj2) and (pj2 
+ pj3) respectively. Johnson's algorithm is then applied to these two dummy machines 
to find the optimal job sequence. 
 
Example 4.2 

Consider an instance of the F3 || Cmax problem in the following Table. 
 

Job (j) Process time (M1) Process time (M2) Process time (M3) 
1 8 2 4 
2 5 4 5 
3 6 1 3 
4 7 3 2 

 Find optimal sequence. 
Solution: 

Check for minimum value of process time on machines M1 and M3. These 
times are 5 and 2 respectively. Check maximum time on machine M2 which is 4.  
Since min { p1j } >= max { p2j}, the problem can be converted to surrogate 2-machine 
problem.  The problem data for two surrogate machines M1’ and M2’ is given in the 
following table.  
 

Job (j) Process time (M1
’) Process time (M2

’) 
1 10 6 
2 9 9 
3 7 4 
4 10 5 

Applying Johnson’s Rule;  
  Set-I = { j2 },  Set-II = { j1, j4, j3 } 
  Optimal sequence = { j2, j1, j4, j3 } 

Application of Johnson's algorithm to three machine flow shop problem has 
been tested by various authors. Burns and Rooker showed that under the conditions 
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pj2 > min (pi1, pi3) for each job j=1,.....n, Johnson's algorithm produces optimal 
schedule. Jackson presented a case where all jobs use a common first and third 
machine for operation one and three respectively, but for second operation; the 
machine differs with each job. Under the conditions he observed that Johnson's 
algorithm produces optimal makespan for the 3-machine flow shop problem. 

For general flow shops where the condition min {p1j } >= max { p2j}  or  min 
{ p3j } >= max { p2j}  is relaxed, Johnson’s algorithm does not necessarily produce 
optimum makespan.  However, it does provide good starting schedule, which can be 
further improved towards optimality through employing various techniques.  In this 
context, Giglio and Wagner tested the algorithm for the series of the problems 
whereby the average makespan of 20 different cases under Johnson's Rule came out 
to be the 131.7 as compared to 127.9 for the optimal schedules.  Furthermore, in 9 
cases the true optimal results were obtained and another 8 results could be made 
optimum by interchanging the sequence of two adjacent jobs.  Therefore, apparently 
Johnson's algorithm seems to produce good starting solutions, which even if not 
optimal, possesses the potential of heading towards optimality with reduced efforts.  
 

4.4    MINIMIZATION OF MAKESPAN FOR (Fm || Cmax ) PROBLEMS WHEN  m > 3 
 

This is a general flow shop scheduling problem where n jobs are to be 
scheduled on m machines with all the n jobs available for processing at time zero. 
Processing times are deterministic. The problem is an extension of the 3-machine 
flow shop but there are no efficient exact solution procedures known. The problem, 
looking very simple at the outset, transforms into very complex and formidable one as 
the number of the machines exceed 3. Reason being the inherent combinatorial 
aspects associated with the general flow shop scheduling. Except for Johnson's 
algorithm for the optimizing makespan criterion in a 2 machines static flow shop, no 
constructive algorithms exists that take account of optimizing other measures of 
performance or tackle the larger flow shops with regard to any measure of 
performance. The secret of this lack of success has been exposed through relatively 
recent finding that non-preemptive scheduling for flow shop problems is NP-
complete with regard to minimizing makespan or the mean flow time (Garey et al. 
[1976]). Similarly with preemptive scheduling, Gonzalez and Sahni [1978] proved 
NP-completeness for the makespan criterion. Therefore, even after 36 years of the 
pioneering work of Johnson, no optimal strategies could be developed for flow shop 
with m > 3. 
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4.5    PERMUTATION SCHEDULES 
 

Research on large flow shops puts great emphasis on permutation schedules. 
This is because of two reasons. First, the permutation schedules constitute a 
significantly smaller set containing n! sequences where as non permutation schedules 
consist of (n!)m sequences. Second, despite the fact that for m > 3 permutation 
schedules are not dominant, it is not unreasonable to believe that the best permutation 
schedules, even if not necessarily optimal, can not be too far away from true 
optimum. Hence, the benefit gained through permutation schedule in terms of 
significant reduction in number of sequences in a large flow shop is of much more 
value than going for a possible true optimum solution at the expense of increased 
computational effort and money. 
 
 

4.6    HEURISTICS FOR MINIMIZATION OF MAKESPAN (Fm || Cmax ) PROBLEMS 
 
4.6.1 Palmer’s Heuristic 
This heuristic comprises two steps as follows. 
 
Step 1: For n job and m machine static flow shop problem, compute slope Aj for jth 

job as follows; 

∑
=

−−−=
m

1i
ijj p)}1i2(m{A

 
Step 2: Order the jobs in the sequence based on descending (decreasing) order of Aj 

values. 
 
Example 4.3 

Solve F3|| Cmax problem for the data shown in Table using Palmer’s heuristic. 
 

Machines j1 j2 j3 j4 

M1 6 8 3 4 

M2 5 1 5 4 

M3 4 4 4 2 

 
 
 
 



Chap. 4 / Flow Shop Scheduling 

Algorithms for Sequencing & Scheduling 4. 9

Solution 
 

∑∑
==

−−−=−−−=
3

11
)}12(3{)}12({

i
ij

m

i
ijj pipimA , 

 
Table 4.1 Calculation for the job’s slope. 

i=1 i=2 i=3  
 

3-(2-1) = 2 3-(2x2-1) = 0 3-(2x3-1) = -2  
Job j p1j p2j p3j Aj 

1 6 5 4 -4 
2 8 1 4 -8 
3 3 5 4 2 
4 4 4 2 -4 

Arranging slope values in descending order; there are two sequences; 
 
Sequence 1 = { j3 , j1, j4 , j2 }  Sequence 2 = { j3, j4 , j1 , j2 } 
 
Directed graph for sequence 1 is; 

 
Figure 3.3 Directed graph for seq. { j3 , j1, j4 , j2 } 
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Directed graph for sequence 2 is; 

 
Figure 3.4 Directed graph for sequence { j3 , j4, j1 , j2 } 

 
Conclusion: Note the Cmax=26 for both sequences 
 
4.6.2 Campbell, Dudek, and Smith (CDS) Algorithm 
 

The algorithm converts a given n-job m-machine problem (m > 2) into p 
number of 2-machine n-job surrogate problems, where p = m-1. Each surrogate 
problem is solved using the Johnson rule. The value of Cmax for each surrogate 
problem is found using Johnson rule. The sequence of the surrogate problem yielding 
minimum value of Cmax after applying Johnson’s rule is selected for scheduling jobs 
on the machines. 

First step in CDS algorithm is to formulate surrogate problems from the 
original problem. Consider a 3-machine 4-job problem as below. The 3-machine will 
have two surrogate F2 || Cmax problems.  

 
Table 4.2 Data for 3-machine 4-job Problem. 

Jobs M1 M2 M3 
j1 P11 P21 P31 

j2 P12 P22 P32 

j3 P13 P23 P33 

j4 P14 P24 P34 

     
4.6.2.1 First Surrogate Problem 

In first F2 || Cmax surrogate problem, machine 1 data will comprise 1st column 
of original problem. Similarly, machine 2 data will comprise 3rd column of the 
original problem as shown under. 
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Table 4.4 Data for surrogate machines M1' and M2' 
Jobs M1' = M1 M2' = M3 

j1 P11 P31 

j2 P12 P32 

j3 P13 P33 

j4 P14 P34 

 
4.6.2.2 Second Surrogate Problem 

In second F2 || Cmax surrogate problem, machine M1 data will comprise 
summation of 1st and 2nd columns of the original problem. Similarly, machine M2 data 
will comprise summation of 2nd and 3rd columns of the original problem. 

 
Table 4.5 Data for surrogate machines M1' and M2' 
Jobs M1' = M1+M2 M2' = M2+M3 

j1 P11 +  P21 P21 +  P31 
j2 P12 +  P22 P22 +  P32 
j3 P13 +  P23 P23 +  P33 
j4 P14 +  P24 P24 +  P34 

This implies that the surrogate problems data will be in generated as follows:  
 
For k = 1, ……, m-1 and j = 1, ……, n then,  

M1' = ∑
k

i
ijP  and M2' = ∑

+−=

m

kmi
ijP

1
 

Where:  
M1' = the processing time for the first machine 

  M2' = the processing time for the second machine  
 
Example 4.4 
Solve F3|| Cmax problem for the data shown in Table using CDS heuristic. 
 

 j1 j2 j3 j4 
M1 6 8 3 4 
M2 5 1 5 4 
M3 4 4 4 2 
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Solution: 
Since there are three machines in the original problem, two (m-1 =2) surrogate 

F2 || Cmax problems will be formed. 
 

i. Surrogate Problem 1 
Consider Machine M1 as surrogate machine 1 (M1') and Machine M3 as surrogate 

machine 2 (M2') as shown in Table below. 
 

Table 4.6 First 2-machine Surrogate problem data using CDS Heuristic. 

 j1 j2 j3 j4 

M1' = M1 6 8 3 4 

M2' = M3 4 4 4 2 

 
Applying Johnson Rule, Set I = {j3}, set II = {j1, j2, j4} or set II = {j2, j1, j4}.  

Hence there are two possible sequences: 
Sequence 1 = {j3, j1, j2, j4} and, is given in Table 4.7. 

 
Table 4.7 First sequence obtained and job's processing times. 

 j3 j1 j2 j4 

M1' = M1 3 6 8 4 

M2' = M3 4 4 4 2 

 
Using directed graph, the Cmax calculations are shown in Figure 3.5 
 

 
Figure 4.5 Directed Graph For Sequence/Schedule {j3, j1, j2, j4} 
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Sequence 2 = {j3, j2, j1, j4} and, is given in the Table 4.8. 
 

Table 4.8 Second sequence obtained and job’s processing time. 

 J3 j2 j1 j4 

M1' = M1 3 8 6 4 

M2' = M3 4 4 4 2 

 
Using directed graph, the Cmax calculations are shown in Figure 3.6 

 
Figure 4.6 Directed graph for sequence/schedule {j3, j2, j1, j4} 

 
ii. Surrogate Problem 2 
From the problem data in Table, formulate 2-machine problem as under; 

 
Table 4.9 Data for surrogate problem 2 

 j1 j2 j3 j4 
M1'=M1+M2 11 9 8 8 
M2'=M2+M3 9 5 9 6 

Applying Johnson rule; Set–I = {j3}, and, Set-II = {j1, j4, j2}. The Johnson 
sequence is, therefore, {j3, j1, j4, j2}. The computation of Cmax is shown in Table 4.10  

 
Table 4.10 Cmax calculations using tabular method for sequence: {j3, j1, j4, j2} 

Machine j3 j1 j4 j2 C3 C1 C4 C2 Cmax 
M1 3 6 4 8 3 9 13 21 
M2 5 5 4 1 8 14 18 22 

 

M3 4 4 2 4 12 18 20 26 26 
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The Gantt chart for schedule is shown in Figure 4.7 

 
Figure 4.7 Gantt chart for sequence {j3, j1, j4, j2}. 

 
The schedule {j3 , j1 , j4 , j2} is also presented by directed graph as shown in 

Figure 4.8  

 
Figure 4.8 Directed graph for schedule {j3, j1, j4, j2} 

 
Conclusion: Minimum Cmax value is 26 using sequence: {j3, j1, j4, j2} 
 
4.6.3 Nawaz, Enscor, and Ham (NEH) Algorithm 

Nawaz, Enscor and Ham (NEH) algorithm constructs jobs sequence in 
iterative manner.  Two jobs having largest values of total process times (called total 
work content) are arranged in a partial sequence one by one. The partial sequence 
having small value of Cmax is selected for subsequent iteration.  Then, next job from 
the work content list is picked. This job is alternately placed at all possible locations 
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in the partial sequence. This job is permanently placed at the location where it yields 
lowest Cmax value for the partial schedule. In a similar fashion, next job from the work 
content list is picked, and placed one by one at all possible locations in the partial 
sequence to find Cmax value of the partial sequence. This job is permanently placed at 
the location where partial sequence has minimum Cmax value. The process is 
continued till all jobs from the content list are placed in the partial sequence.  
 NEH algorithm is formally described as under; 
Step (1) 

Find Total work content (Tj) for each job using expression  

∑
=

=

=
mi

i
ijj pT

1
 

Step (2) 
 Arrange jobs in a work content list according to decreasing values of Tj 
Step (3) 
 Select first two jobs from the list, and form two partial sequences by 
interchanging the place of the two jobs. Compute Cmax values of the partial sequences. 
Out of the two partial sequences, discard the partial sequence having larger value of 
Cmax. Call the partial sequence with lower value of Cmax as incumbent sequence  
Step (4) 
 Pick next job from the work content list, and place it at all locations in the 
incumbent sequence. Calculate the value of Cmax for all the sequences. 
Step (5) 
 Retain the sequence with minimum value of Cmax as incumbent sequence and, 
discard all the other sequences.  
Step (6) 
 If there is no job left in the work content list to be added to incumbent 
sequence, STOP. Otherwise go to step (4). 
 
Example 4.5 

Solve F3|| Cmax problem for the data shown below using NEH algorithm. 
 

 j1 j2 j3 j4 
M1 6 8 3 4 
M2 5 1 5 4 
M3 4 4 4 2 

Solution: 
For four jobs, the Tj values are shown in the Table 4.11 
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Table 4.11 Calculation for  Tj values 
 j1 j2 j3 j4 

M1 6 8 3 4 
M2 5 1 5 4 
M3 4 4 4 2 
Tj 15 13 12 10 

 
The ordered list of jobs according to decreasing Tj values is; {j1 ,  j2 ,  j3 ,  j4} 
 
Iteration 1 

Since jobs j1 and j2 have highest values of Tj, select these two jobs to form 
partial schedule. The calculations of Cmax value for partial schedule (j1 , j2 , * , *) are 
shown below in Table 4.12. Note Cmax = 19 for the partial schedule (j1 , j2 , * , *). 
 

Table 1 Cmax calculations for partial schedule S12**: (j1, j2, *, *) 
 j1 j2 C1 C2 Cmax 

M1 6 8 6 14  
M2 5 1 11 15  
M3 4 4 15 19 19 

 
The calculations of Cmax value for partial schedule ( j2 , j1 ,* ,* ) are shown 

below in Table 4.13. Note Cmax = 23 for the partial schedule ( j2 , j1 ,* ,* ). 
 

Table 4.13 Cmax calculations for partial schedule S21**:  ( j2 , j1 , * , * ) 
 j2 j1 C1 C2 Cmax 

M1 8 6 8 14  
M2 1 5 9 19  
M3 4 4 13 23 23 

 
The makespan (Cmax) values for the partial schedules are; 

 
Table 24.14 Comparison between the two partial sequences 

Schedule Cmax 
S21**: ( j2 , j1 , *, * ) 23 
S12**: ( j1 , j2 , * ,* ) 19 
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Since value of Cmax is smaller for partial sequence S12**: ( j1 , j2 , * , *), we 
further investigate this partial schedule. So partial sequence S21**: ( j2 , j1 , * , *) is 
fathomed and not investigated any more. 
 
Iteration 2 

Now job j3 is next in ordered list after jobs j1 and j2 with a Tw value of 12.  Job 
j3 can be placed at three sequence positions in partial sequence ( j1,  j2, *, *). 

a) Before job j1 as follows: New Partial Sequence , S312*: (j3,  j1,  j2, *) 
b) After job j1 as follows: New Partial Sequence , S132*: (j1,  j3,  j2, *) 
c) After job j2 as follows: New Partial Sequence , S123*: (j1,  j2,  j3, *) 
Calculations of Cmax for sequence, S123*:(j1,  j2,  j3, *) are shown below in the 

following table 4.15.  
Table 4.15 Cmax calculations for partial sequence (j1 , j2 , j3 , *) 

  j1 j2 j3 C1 C2 C3 Cmax  
M1 6 8 3 6 14 17   
M2 5 1 5 11 15 22   
M3 4 4 4 15 19 26 26 

 
The Gantt chart of the partial schedule S123*:( j1, j2, j3,*) is shown in Figure 

 
Figure 4.8 Gantt chart for the partial sequence S123*: (j1, j2, j3, *) 

 
Note Cmax = 26 for the partial schedule, S123*:( (j1, j2, j3,*). 

The calculations of Cmax value for this schedule (j3,j1,j2,*) are shown below in 
the following table 4.16.  
 

Table 4.16 Cmax calculations for partial schedule (j3 , j1 , j2 , *) 
 j3 j1 j2 C3 C1 C2 Cmax 

M1 3 6 8 3 9 17  
M2 5 5 1 8 14 18  
M3 4 4 4 12 18 22 22 
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The calculations of Cmax value for the schedule S132*are shown in the 
following table 4.17. 
 

Table 34.17 Cmax calculations for partial schedule S132*: (j1, j3, j2, *) 
 j1 j3 j2 C1 C3 C2 Cmax 

M1 6 3 8 6 9 17  
M2 5 5 1 11 16 18  
M3 4 4 4 15 20 24 24 

 
A comparison of the three schedules indicate that schedule S312* : (j3, j1, j2,*) 

results in minimum Cmax value, as shown in below table 4.18: 
 

Table 4.18 Comparison of the three partial sequences. 
Partial Schedule Cmax 
S123*  (j1, j2, j3, *) 26 
S312*  (j3, j1, j2, *) 22 
S132*  (j1, j3, j2,*) 24 

Iteration 3 
Job j4 is the last job in the ordered list. Using minimum Cmax value partial 

schedule from iteration 2, generate four sequences by inserting job j4 at four possible 
locations in partial sequence (j3, j1, j2, *) as follows: 

a) Before job j3 as follows: New Sequence, S4312: (j4, j3, j1, j2) 
b) After job j3 as follows: New Sequence, S3412: (j3, j4, j1, j2) 
c) After job j1 as follows: New Sequence, S3142: (j3, j1, j4, j2) 
d) After job j2 as follows: New Sequence, S3124: (j3, j1, j2, j4) 

 
The calculations of Cmax value for this schedule (j4, j3, j1, j2) are shown below 

in the following table 4.19 
 

Table 4.19 Cmax calculations for schedule (j4, j3, j1, j2) 
 j4 j3 j1 j2 C4 C3 C1 C2 Cmax 

M1 4 3 6 8 4 7 13 21  

M2 4 5 5 1 8 13 18 22  

M3 2 4 4 4 10 17 22 26 26 

 
The calculations of Cmax value for this schedule (j3, j4, j1, j2) are shown below 

in the following table 4.20 
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Table 4.20 Cmax calculations for schedule (j3, j4, j1, j2) 
 j3 j4 j1 j2 C3 C4 C1 C2 Cmax 

M1 3 4 6 8 3 7 13 21  
M2 5 4 5 1 8 12 18 22  
M3 4 2 4 4 12 14 22 26 26 

 
The calculations of Cmax value for this schedule (j3, j1, j4, j2) are shown below 

in the following table 4.21 
 

Table 4.21 Cmax calculations for schedule (j3, j1, j4, j2) 
 j3 j1 j4 j2 C3 C1 C4 C2 Cmax 

M1 3 6 4 8 3 9 13 21  
M2 5 5 4 1 8 14 18 22  
M3 4 4 2 4 12 18 20 26 26 

 
The calculations of Cmax value for this schedule (j3, j1, j2, j4) are shown below 

in the following table 4.22 
 

Table 4.22 Cmax calculations for schedule (j3, j1, j2, j4) 

 j3 j1 j2 j4 C3 C1 C2 C4 Cmax 

M1 3 6 8 4 3 9 17 21  

M2 5 5 1 4 8 14 18 25  
M3 4 4 4 2 12 18 19 27 27 

 
The comparison of Cmax values for the four schedules is presented below in table 4.23 
 

Table 4.23 Comparison of the four partial sequences 
Schedule Cmax 

S3124 : (j3, j1, j2, j4) 27 
S3124 : (j4, j3, j1, j2) 26 
S3412 : (j3, j4, j1, j2) 26 
S3142 : (j3, j1, j4, j2) 26 

The NEH method yields three alternate schedules with a minimum makespan 
of 26.  Clearly, NEH provides more elaborate results as compared to CDS or Slope 
heuristic.  
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The total enumeration tree for NEH method is shown in the figure 4.9 below. 
 

 
Figure 4.9 Enumeration tree for four-job problem using NEH algorithm. 

 
4.7    BRANCH AND BOUND ALGORITHM  

 
Branch and Bound algorithms have been proposed originally by Ignall and 

Schrage [1965] and Lomnicki [1965]. The application of the method to scheduling is 
based on the permutations schedules, which have a closed resemblance to a tree 
structure. The tree starts from an initial node and the initial or the first node 
corresponds to a situation where no jobs have been scheduled. This node has n 
branches as there are n possible jobs that can occupy first place in the sequence. From 
each of these n nodes, there are (n-1) branches corresponding to the (n-1) possible 
jobs that can be placed second in the sequence and so on. Since there are n! possible 
sequences, the tree has a total of 1 + n + n(n-1) +...+ n! nodes with each node 
representing a partial schedule.  

As is obvious from above, the total number of nodes in the sequence is very 
large even for small number of jobs. Therefore, the Branch & Bound algorithm works 
on the principle of reducing the total number of nodes in search for an optimal 
solution. This is accomplished through:  
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• Presenting a branching rule to decide as on which node to branch from, 
• Presenting an elimination rule which enables to discard a certain node and 

all nodes that emanate from it, from further consideration. Elimination of a 
certain node means that its partial sequence is dominated by some other 
partial sequence. 

The Branch & Bound procedure starts from the initial node along the n nodes. 
Each time a new node is created, lower bound on makespan is calculated. Node 
corresponding to least lower bound is the one from where further branching is 
performed. Besides, dominance checks are made for discarding a node from further 
consideration. Many researchers have been working on developing sharper bounds 
and more powerful dominance conditions so as to shorten search for optimality. In 
this regard, Legeweg et al proposes a lower bound based on Johnson's two machines 
problem combined with an elimination criterion of Szwarc [1971] to solve quickly 
problems upto 50 jobs and 3 machines but the bounds become less reliable and 
solution times increase drastically as the number of machines exceed 3. 

For any partial sequence Sk represented by a node on branch and bound tree, a 
lower bound (LB) for partial sequence Sk is calculated as follows: 

 
LB(k) = max (A1, A2, A3) 

 
Where, 

 ∑∑
∈∈

+++=
Uj

3j2j
Uj

1j11 )p(pminp(k)CA  
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C1(k), C2(k) and C3(k) are completion times on machines M1, M2 and M3 

respectively for partial sequence Sk.  
 

U = Set of unscheduled jobs; jobs not in the partial sequence Sk. 
 
P1j, P2j, P3j are process times of jth job on machines M1, M2 and M3 

respectively. 
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Example 4.6  
Consider following data as an instance of F3 || Cmax problem. 

 

Jobs M1 M2 M3 

1 4 6 2 

2 3 7 1 

3 6 2 5 

Apply branch and bound method to find minimum Cmax value. 
 
Solution: 
Starting from root node (*,*,*), create three nodes as follows:  
 

 
 

Figure 4.10 Branch and Bound Tree with Level 1 Nodes 
 
Level 1 Computations 

Calculate LB(1) for partial sequence (1,*,*) as follows: 
First , find C1(k), C2(k) and C3(k) as shown below in figure 4.11  

  

 
Figure 4.11 Directed graph for the partial sequence (1, *, *) 
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Note, set U = {j2, j3}. The calculations are shown below. 
 
Table 4.23 Calculation of lower bound for partial Sequence (1,* ,*) 

Jobs M1 M2 M3 p2j+p3j p3j 
1 4 6 2   
2 3 7 1 8 1 
3 6 2 5 7 5 
 Σp1j= Σp2j= Σp3j= min min 
 9 9 6 7 1 
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20)18,20,20max()A,A,Amax()1(LB 321 ===  

 
Similarly, calculate LB(2) for partial sequence (2,*,*) as follows: 

 First, find C1(k), C2(k) and C3(k) as shown below in figure 4.12 
 

 
 

Figure 4.12 Directed graph for the partial sequence (2, *, *). 
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Note, set U = { j1 , j3}. The calculations are shown below. 
 
Table 4.24 Calculation of lower bound for partial Sequence (2, *, *) 

Jobs M1 M2 M3 p2j+p3j p3j 
1 4 6 2 8 2 
2 3 7 1   
3 6 2 5 7 5 
 Σp1j= Σp2j= Σp3j= min min 
 10 8 7 7 2 

 
207103)p(pminp(k)CA

Uj
3j2j

Uj
1j11 =++=+++= ∑∑

∈∈

 

 
202810}min{pp(k)CA 3j

Uj
2j22 =++=++= ∑

∈

 

 
18711p(k)CA

Uj
3j33 =+=+= ∑

∈
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Similarly, calculate LB(3) for partial sequence (3,*,*) as follows: 
 First, find C1(k), C2(k) and C3(k) as shown in figure below.  
 

 
 

Figure 4.13 Directed graph for the partial sequence (3, *, *). 
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Note, set U = { j1 , j2}. The calculations are shown below. 
 
Table 4.25 Calculation of lower bound for partial Sequence (3, *, *) 

Jobs M1 M2 M3 p2j+p3j p3j 
1 4 6 2 8 2 
2 3 7 1 8 1 
3 6 2 5   
 Σp1j= Σp2j= Σp3j= min min 
 7 13 3 8 1 
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The values of lower bound for first level nodes are entered for respective 
sequence. Since nodes 1 and 2 have equal values of lower bound, branch to lower 
level nodes from these nodes as shown in Figure 4.14.  Thus, fathom node 3 for 
further branching. 

 

 
Figure 4.14 Branch and bound tree with level two nodes. 
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Level 2 Computations 
Calculate LB for partial sequence (1,2,*) as follows: 
First, find C1(k), C2(k) and C3(k) as shown in Figure 4.15 below. 
 

 
Figure 4.15 Directed graph for partial sequence. 

 
Note, set U = {j3}. The calculations are shown below. 

 
Table 4.26 Calculation of lower bound for partial Sequence (1, 2, *) 

Jobs M1 M2 M3 p2j+p3j p3j 
1 4 6 2   
2 3 7 1   
3 6 2 5 7 5 
 Σp1j= Σp2j= Σp3j= min min 
 6 2 5 7 5 
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Similarly, calculate LB(5) for partial sequence (1,3,*) as follows: 
First, find C1(k), C2(k) and C3(k) as shown in Figure 4.16 below. 

 

 
 

Figure 4.16 Directed graph for partial sequence (1, 3, *). 
 
Note, set U = { j2}. The calculations are shown below. 

 
Table 4.27 Calculation of lower bound for partial Sequence (1, 3, *) 

Jobs M1 M2 M3 p2j+p3j p3j 
1 4 6 2   
2 3 7 1 8 1 
3 6 2 5   
 Σp1j= Σp2j= Σp3j= min min 
 3 7 1 8 1 

 
218310)p(pminp(k)CA

Uj
3j2j

Uj
1j11 =++=+++= ∑∑

∈∈

 

 
201712}min{pp(k)CA 3j

Uj
2j22 =++=++= ∑

∈

 

 
18117p(k)CA

Uj
3j33 =+=+= ∑

∈

 

 
21)18,20,21max()A,A,Amax()4(LB 321 ===  
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Similarly, calculate LB(6) for partial sequence (2,1,*) as follows: 
First, find C1(k), C2(k) and C3(k) as shown in Figure 4.17 below. 
 

 
 

Figure 4.17 Directed graph for the partial sequence (2, 1, *). 
 
Note, set U = { j3}. The calculations are shown below. 

 
Table 4.28 Calculation of lower bound for partial Sequence (2, 1, *) 

Jobs M1 M2 M3 p2j+p3j p3j 
1 4 6 2   
2 3 7 1   
3 6 2 5 7 5 
 Σp1j= Σp2j= Σp3j= min min 
 6 2 5 7 5 
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Finally, calculate LB(7) for partial sequence (2,3,*) as follows: 
First, find C1(k), C2(k) and C3(k) as shown in Figure 4.18 below. 
 

 
 

Figure 4.18 Directed graph for partial sequence (2, 3, *) 
 
Note, set U = { j1}. The calculations are shown below. 

 
Table 4.29 Calculation of lower bound for partial Sequence (2, 3, *) 

Jobs M1 M2 M3 p2j+p3j p3j 
1 4 6 2 8 2 
2 3 7 1   
3 6 2 5   
 Σp1j= Σp2j= Σp3j= min min 
 4 6 2 8 2 
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The values of lower bounds for nodes 4, 5, 6 and 7 are shown in Figure 4.19 below. 
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Figure 1The complete branch and bound tree with an optimal solution. 

 
The sequences for nodes 5 and 7 provide optimal solution for the problem under 
consideration. 
 

EXERCISES 
 
4.1 Consider the schedule 3-2-1-4 with the make span 24 units of time for the 

following F3 | | Cmax   problem given the following data: 
Job 1 2 3 4 
M1 3 2 1 8 
M2 5 1 8 7 
M3 7 4 2 2 

Construct the Gantt chart for the problem. Show mathematically that the 
schedule is optimal.  
 

4.2 Consider a 3-machine 4-job problem as below.  
Job 1 2 3 4 
M1 4 7 3 1 
M2 9 6 3 8 
M3 7 4 8 5 

Solve problem using; 
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(i) CDS Algorithm,               (ii)       NEH Algorithm 
 
4.3 Consider F3 | | Cmax  Problem given the following data: 

Job 1 2 3 4 5 6 
M1 5 6 30 2 3 4 
M2 8 30 4 5 10 1 
M3 20 6 5 3 4 4 

Use the branch and bound method to find the optimal makespan for this 
problem.  (Hint: LB = max (A1, A2, A3)). 

 
4.4 The data pertaining to F3  || Cmax problem is shown in Table below. 

Job 1 2 3 4 

M1 6 8 3 4 

M2 4 1 2 3 

M3 5 6 4 7 
a) Apply Johnson’ Rule and find optimal solution. 
b) Apply CDS heuristic and find Cmax 
c) If  due dates of the jobs are as follows: 

 

Job 1 2 3 4 

Due Date 17 13 11 18 
Find tardiness of the jobs using Johnson’s Rule and CDS heuristics. Which of 
the two methods provides minimum value of Lmax? 

 
4.5 Consider F3| | Cmax with the following data: 

 Job 
Machines 1 2 3 4 5 6 

M1 2 23 25 5 15 10 
M2 29 3 20 7 11 2 
M3 19 8 11 14 7 4 

Use the following methods to find the best sequence:   
i. Compbell, Dudek, and Smith (CDS) approach,  
ii.  Nawaz, Enscore, and Ham (NEH) approach.  
Show all of your work.  Then, compare the results obtained by the two 
approaches. 
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4.6 Consider F4 | | Cmax with the following data: 
Job 1 2 3 4 5 
1 1 10 17 12 11 
2 13 12 9 17 3 
3 6 18 13 2 5 
4 2 18 4 6 16 

Use the Compbell, Dudek, and Smith (CDS) approach to find the best 
sequence. Also, draw all Gantt Charts for the CDS schedule.  
 

4.7 Consider F3 | | Cmax with the following data: 
Job 1 2 3 4 5 
M1 1 10 17 12 11 
M2 13 12 9 17 3 
M3 6 18 13 2 5 

Find the optimal makespan using the branch and bound.  Also, draw the final 
Gantt Charts for the Branch and bound schedule and draw the tree for the 
Branch and bound. 

 
 
4.8 Consider F3 | | Cmax with the following data: 

Job 1 2 3 4 
M1 6 8 3 4 
M2 3 1 3 3 
M3 4 4 4 2 

Find the best solution for the above problem 
 
4.9 Consider F3 | | Cmax problem with the following data: 

Job 1 2 3 4 
M/c 1 5 6 30 2 
M/c 2 8 30 4 5 
M/c 3 20 6 5 3 

a) Use the branch and bound method to find the optimal sequence that 
minimizes the makespan. 

b) Draw the Gantt Charts for the optimal sequence. 
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c) Assume a common due date for all jobs which is the average total work 
content among jobs, then, compute the makespan, total tardiness, and  
maximum lateness. 



 5 

Job Shop Scheduling 

 

 

CHAPTER CONTENTS  

5.1 Introduction 
5.2 Earliest Start Time (EST) Schedule Generation 
5.3 Shifting Bottleneck (SB) Heuristic 

 
 
 



Chap. 5 / Job shop Scheduling 

Algorithms for Sequencing & Scheduling 5. 2

5.1    INTRODUCTION  
 
The job shop comprises m machines and n jobs. Jobs have well defined 

processing order. However, possible number of schedules reaches to (n!)m for total 
enumerations. A variety of schedule generation techniques are in practice; namely, 
semi-active schedules, active schedules and non-delay schedules. Recently, an 
efficient schedule generation technique has been devised. It is called shifting 
bottleneck heuristic. It provides good solution in minimum amount of computer time. 
 

5.2    EARLIEST START TIME (EST) SCHEDULE GENERATION 
 

This methodology assigns priority to jobs having minimum EST values from 
among candidate jobs waiting in queue at a machine. The job having minimum value 
of EST is selected for assigning to the machine. 
 
Example 5.1 

Consider the J3 || Cmax instance with the following data for 3-job and 3-
machine problem: 

 Proc Time Machine No 
Job O1 O2 O3 O1 O2 O3 
1 5 2 4 1 2 3 
2 3 7 3 2 3 1 
3 8 6 5 1 3 2 

Generate an active schedule based on earliest start times (EST) of the 
schedulable operations as explained in the class. Use SPT rule to break ties 
arbitrarily. 
Solution: 

From the given data, form schedulable jobs list (S) at time zero as follows: 
 

S = {(j1, O1), (j2, O1), (j3, O1)} 
 

Compute values of EST for all jobs/operations in the list. Remember, first 
operation of every job will be included for EST calculations. In order to start building 
the schedule, the following notations need to be defined:  

MAT: indicates the time at which required machine will be processing 
the particular job. 

JAT: indicates the time at which job will be available for processing of 
the particular operation.  
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At time zero, all the values of JAT will be zero for static job shop 
environment.  

Table 5.1 Computation of EST for all jobs at time zero 
Job Opn. Pj Mj MAT JAT EST 
1 1 5 1 0 0 0 
2 1 3 2 0 0 0 
3 1 8 1 0 0 0 

 
Jobs j1 and j3 have scheduling conflict as these jobs require machine M1 at the 

same time. Using SPT as tie-breaker, select job j1 to be scheduled on machine M1 as 
job j1 process time is less than job j3 process time on machine M1. Job j2 has operation 
O1 on machine M2. Since there is no schedule conflict at machine M2 at time zero, 
schedule job j2 on machine M2. The earliest completion times (ECT) are shown in 
table 5.2 below. 

Table 5.2 Earliest completion time for schedule (j1, j2) 
Job Opn Pj Mj MAT JAT EST ECT 
1 1 5 1 0 0 0 5 
2 1 3 2 0 0 0 3 
3 1 8 1 0 0 0 ------ 

 

 
Figure 5.1 Gantt chart for the partial schedule.  

 
From the Gantt chart for the partial schedule above, machine available times 

(MAT) for next processes in sequence are; 
 
 
 
 

Machine M1 M2 M3 
MAT 5 3 0 

j1 

j2 

M1 

M2 

M3 

                  3          5  



Chap. 5 / Job shop Scheduling 

Algorithms for Sequencing & Scheduling 5. 4

Job available times (JAT) for next operations in sequence are; 
 
 

Updating schedulable jobs list S, delete processes (j1,O1) and (j2,O1) from the 
list. Add the next processes for jobs j1 and j2 in the list. Then, the new list of 
schedulable jobs:  

S = {(j1, O2), (j2, O2), (j3, O1)} 
 
The computations of EST values for the new processes are shown below in 

the table 5.3. 
Table 5.3 Computation of EST for the new processes 

Job Opn Pj Mj MAT JAT EST 
1 2 2 2 3 5 5 
2 2 7 3 0 3 3 
3 1 8 1 5 0 5 

 
Since, there is no schedule conflict, schedule jobs j1, j2 and j3 on machines M2, 

M3 and M1 respectively with earliest completion times (ECT) as shown in the 
following Gantt chart. 

 
Figure 5.2 Gantt chart for partial schedule 

  
From the Gantt chart for the partial schedule above, machine available times 

(MAT) for next processes in sequence are; 
 
 
 
 
 

Job j1 j2 j3 
JAT 5 3 0 

Machine M1 M2 M3 
MAT 13 7 10 

j1 

j2 

M1 

M2 

M3 

              3          5         7     8          10            13 

j3 

j1 

j2 
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Job available times (JAT) for next operations in sequence are; 
 
 
 

Updating schedulable jobs list S, by deleting processes (j1, O2), (j2, O2) and (j3, 
O1) from the list. Add the next processes for jobs j1, j2 and j3 in the list.   Then, the 
new list of schedulable jobs: 

S = {(j1, O3), (j2, O3), (j3, O2)} 
 
The computations of EST values for the new processes are shown below in 

the table 5.4. 
Table 5.4 Computation of EST for the new processes 

Job Opn Pj Mj MAT JAT EST 
1 3 4 3 10 7 10 
2 3 3 1 13 10 13 
3 2 6 3 10 13 13 

 
Jobs j1 and j3 require machine M3 for next scheduling. Since job j1 value of 

EST is smaller than EST value of job j3, schedule job j1 on machine M3 at time 10. 
Job j2 has no machine conflict, schedule job j2 on machine M3 at time 13. The 
resulting Gantt chart in fig 5.3 shows the partial schedule. 

 

 
Figure 5.3 Gantt chart for partial schedule. 

 
From the Gantt chart for the partial schedule above, machine available times 

(MAT) for next processes in sequence are; 
 
 
 

Job j1 j2 j3 
JAT 7 10 13 

Machine M1 M2 M3 
MAT 16 7 13 

              3          5         7     8          10              13 14         16 

j1 

j2 

M1 

M2 

M3 

j3 

j1 

j2 j1 

j2 
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Job available times (JAT) for next operations in sequence are; 
 
 
 

Updating schedulable jobs list S, by deleting processes (j1, O3) and (j2, O3) 
from the list. Note that jobs j1 and j2 have completed all of their operations.  Thus, the 
updated list of schedulable jobs is as follows: 

S = {(j3, O2)} 
 

Table 5.5 Computation of EST for new processe 
Job Opn Pj Mj MAT JAT EST 
3 2 6 3 14 13 14 

 
Schedule job j3 is on machine M3 at time 14.  Processing of this operation will 

be completed at time 20.  Then, the last operation of job j3 is on machine M2. EST 
value of job j3 for last operation O3 is shown in the following table. 

 
Table 5.6 EST for operation O3 of job j3 

Job Opn Pj Mj MAT JAT EST 
3 3 5 2 7 20 20 

 
Therefore, schedule job j3 is on machine M2 at time 20.  Then, the operation 

will be completed at time 25.  The complete Gantt chart for schedule is shown in the 
following fig 5.4. 
 

 
 

Figure 5.4 Gantt chart for complete schedule 

Job j1 j2 j3 
JAT 14 16 13 

j1 

j1 

j2 

M1 

M2 

M3 

           3    5     7      10    13      16        20           25 

j3 

 

j2 j1 

j2 

j3 

j3 

Cmax = 25 
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The sequences on three machines using the EST heuristic are given in the 
following table 5.7. 

Table 5.7 Sequences for all machines 
 

 
 
 
 
 
The value of Cmax is 25 
 

5.2 SHIFTING BOTTLENECK (SB) HEURISTIC 
 

Several heuristics have been developed by several researchers to solve the job 
shop problem.  Most of these heuristics have been reported by Conway, Maxwell, and 
Miller (1967), Baker (1974), Rinnooy (1976), Bellman, Esogbue, and Nabeshima 
(1982), French (1982), Morton and Pentico (1993), and Pinedo (1995).  However, this 
section will be devoted to the recently developed heuristic which is known as the 
Shifting Bottleneck (SB) algorithm.  The SB algorithm was developed in 1988 by 
Adams, Balas, and Zawack.  Then, in 1993 it was modified by Dauzere-Peres and 
Lasserre.  The SB algorithm was extended by Balas, Lenstra, and Vazacopoulos 
(1995).  The SB algorithm is this chapter for four reasons: 

1)  It is the only well-known heuristic that simulates the management of 
bottleneck machines in the job shop environment. 

2)  It is known to be superior among all heuristics that were used to solve the 
job shop problems. 

3)  The SB algorithm and genetic algorithms were combined in several 
implementations. 

4)  The results obtained by the SB algorithm have been used as a benchmark 
to test the performance of several genetic algorithms.  

The SB algorithm was developed to solve the general sequencing problem, 
where the makespan was minimized.  The idea of the SB algorithm was described by 
Adams, Balas, and Zawack (1988), who stated:  

...We sequence the machines one at a time, consecutively.  In order to 
do this, for each machine not yet sequenced we solve to optimality a one-
machine scheduling problem that is a relaxation of the original problem, and 
use the outcome both to rank the machines and to sequence the machine with 
highest rank.  Every time a new machine has been sequenced, we reoptimize 
the sequence of each previously sequenced machine that is susceptible to 

Machine Jobs Sequence 
M1 j1, j3, j2 
M2 j2,  j1, j3 
M3 j2, j1, j3 
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improvement by again solving a one-machine problem. (Adams, Balas, and 
Zawack 1988; 393) 

The above description of the SB algorithm can be re-stated as follows.  The 
SB algorithm sequences machines sequentially one at a time.  The machines that have 
not yet been sequenced are ignored, and the machines that have been sequenced have 
their sequences held fixed.  At each step, the SB algorithm determines a bottleneck 
machine from the set of machines that have not yet been sequenced by performing 
two steps:  

1. Solving a one-machine scheduling problem for each un-sequenced 
machine. 

2. The machine that yielded the maximum makespan is selected to be the 
bottleneck machine from the set of machines that have not yet been 
sequenced.  

Then, the associated sequence that was obtained by the one-machine 
scheduling problem is used to sequence the bottleneck machine chosen.  Every time a 
bottleneck machine is sequenced, a re-optimization procedure for the set of machines 
that have been sequenced is performed.  The re-optimization is performed by freeing 
up and re-sequencing each machine in turn with the sequences on the other machines 
held fixed. 

To test the quality of solutions obtained by the SB algorithm, several small 
problems for which an optimal solution was known were solved by Adams, Balas, 
and Zawack.  Also, this team solved large problems which had up to 500 operations 
and ten machines.  From the results obtained, they found out that the SB algorithm 
was able to find the optimal solution in all the problems with ten machines and over 
30 jobs.  The SB algorithm found in five minutes the optimal solution to a difficult 
problem that was designed by Fisher and Thompson (1963).  In comparison, the 
optimal solution had only recently been found with extensive effort.  The SB 
algorithm determination of the bottleneck machine was stable and accurate when 
there were many more jobs than machines, and this situation led the SB algorithm to 
converge to the optimal solution. 

Adams, Balas, and Zawack solved forty problems to compare their algorithm 
to ten dispatching rules.  These dispatching rules were FCFS, late start time (LST), 
early finish time (EFT), late finish time (LFT), most immediate successor (MIS), first 
available (FA), SPT, LPT, RANDOM, and JST.  For the forty problems, they did not 
report the results of each dispatching rule.  However, for each problem, they reported 
the best solution obtained by one of the dispatching rules and compared it to the 
solution obtained by the SB algorithm.  From the results reported, the SB algorithm 
dominated in 38 problems. 

The shifting bottleneck heuristic is an efficient method to find Cmax and Lmax 

objectives in a job shop. It is an iterative method.  At each iteration of the method, a 
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bottleneck machine is identified using 1 | rj | Lmax methodology. A processing 
sequence of jobs on the machine is found so as to minimize Lmax. The method works 
as follows: 

 
Step 1  

Initialization,  
Let MO = set of bottleneck machines.   

            Set M = { φ }. Construct a CPM network of the jobs to find Cmax. 
 Set Cmax = Maximum path length from “S” to “E” nodes in the graph. 
Step 2 

For each machine m not in set MO, solve 1 | rj | Lmax problem to find Lmax and 
optimal sequence of the jobs on the Machine m. Find rj and dj of each job j to 
be processed on the machine m as follows: 
 

rj =  Earliest start time of the job node (m,j) in Graph for the particular 
machine m.     

dj = Minimum latest start time among the nodes those succeeded by 
the job node (m, j)in graph for the particular machine m. 

Step 3  
Identify bottleneck machine; 
Compare Lmax of all machines. The machine with highest value of Lmax is the 
bottleneck machine. 
Update set MO by adding the newly selected bottleneck machine. 
Update Cmax value by adding Lmax of bottleneck to current value of Cmax. 
Update graph G by adding new arcs from the sequence found for bottleneck 
machine.  
If all machines are in set MO stop, otherwise go to step (2) for next iteration. 

 
 
5.2 Example 

Consider J4 || Cmax instance with 4-machine and 3-job problem.  Then, solve it 
using the SB heuristic.  

 
jobs(j) machine sequence process times 

1 1, 2, 3 p11=10, p21=8, p31=4 
2 2, 1, 4, 3 p22=8, p12=3, p42=5, p32=6 
3 1, 2, 4 p13=4,p23=7, p43=3 
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Solution: 
Iteration 1: MO = φ, CPM network graph is as follows. 
 

 
Figure 5.5 Disjunctive arc graphs of the jobs 

 
Cmax = Longest path in the Graph 
Cmax = 22 for job 1 and 2.  
 
Machines required for the first operations for the three jobs are; M1 and M2.  
Thus, we will solve 1 | rj | Lmax for all the four machines (M1, M2, M3, M4) as 
follows: 

 
Machine 1  

1 | rj | Lmax Problem 
 

Table 5.8 1 │ rj │ Lmax problem for machine M1 
Job (j) 1 2 3 

Operation (1,1) (1,2) (1,3) 
p1j 10 3 4 
r1j 0 8 0 
d1j 10 11 12 

 
In order to minimize Lmax for the problem above the following sequence is 

obtained: {j1, j2, j3}. 
The schedule for the jobs on machine M1 using EDD (or B&B) is given in the 

following table 5.9 
 
 
 

1, 1 2, 1 3, 1

1, 2 4, 2 3, 2 

4, 32, 31, 3 

2, 2 S E 

0 

0 

10

0 

8 
4 

p=4

3 5 6 8 

7 
3 

(0, 0) 

(0, 0) 

(10, 10) 

(8, 8) 

(rj = 0, 8) (4, dj = 12)

(18, 18) 

(11, 11) 

(11, 19) 

(16, 16) 
(22, 22) 
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Table 5.9 Schedule for minimization of Lmax for machine M1 
Job (j) P1j r1j S1j C1j d1j L1j 

1 10 0 0 10 10 0 
2 3 8 10 13 11 2 
3 4 0 13 17 12 5 

 
Thus, the maximum lateness on machine M1 (Lmax (1)) is equal to 5. 

 
Machine 2  

1 | rj | Lmax Problem 
 

Table 5.10 1 │ rj │ Lmax problem for machine M2 
Job (j) 1 2 3 

Operation (2,1) (2,2) (2,3) 
p2j 8 8 7 
r2j 10 0 4 
d2j 18  8 19 

 
In order to minimize Lmax, for the problem above, the following sequence is 

resulted: {j2, j3, j1}. 
The schedule for the jobs on machine M2 is given in the following table 5.11 

 
 

Table 5.11 Schedule for minimization of Lmax for machine M2 
Job (j) P2j r2j S2j C2j d2j L2j 

2 8 0 0 8 8 0 
3 7 4 8 15 19 -4 
1 8 10 15 23 18 5 

 
Using EDD (2-1-3) the Lmax = 6, then why did sequence 2-3-1 is selected. The 

logic behind this is use EDD with the ready times. Therefore, the maximum lateness 
on machine M2 (Lmax (2)) is equal to 5. 
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Machine 3 
1 | rj | Lmax Problem 
 

Table 5.12 1 │ rj │ Lmax problem for machine M3 
Job (j) 1 2 3 

Operation (3,1) (3,2) (3,3) 
p3j 4 6 - 
r3j 18 16 - 
d3j 22 22 - 

 
In order to minimize Lmax, for the problem above, the following sequence is 

resulted: {j2, j1}. 
The schedule for the jobs on machine M3 is given in the following table 5.13 

 
Table 5.13 Schedule for minimization of Lmax for machine M3 

Job (j) p3j r3j S3j C3j d3j L3j 
2 6 16 16 22 22 0 
1 4 18 22 26 22 4 

 
Hence, the maximum lateness on machine M3 (Lmax (3)) is equal to 4. 

 
Machine 4 
  1 | rj | Lmax Problem 

 
Table 5.14 1 │ rj │ Lmax problem for machine M4 
job (j) 1 2 3 

Operation (4,1) (4,2) (4,3) 
p4j - 5 3 
r4j - 11 11 
d4j - 16 22 

 
The minimum Lmax for the above data is obtained using the following 

sequence: {j2, j3}. 
The schedule for the jobs on machine M4 is given in the following table 5.13  
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Table 5.15 Schedule for minimization of Lmax for machine M4 
Job (j) p4j r4j S4j C4j d4j L4j 

2 5 11 11 16 16 0 
3 3 11 16 19 22 -3 

 
Thus, the maximum lateness on machine M4 (Lmax (4)) is equal to 0.  

 
Therefore, no more machines to consider which means the bottleneck machine 

can be identified as follows:  
 
Bottleneck Machine is the machine with max {Lmax(1), Lmax(2), Lmax(3), 

Lmax(4) }=  max {5 ,5, 4 , 0 }.  Since, there is a tie between M1 and M2, let us pick M1 
as bottleneck machine with the jobs sequence on M1 is as follows: {j1, j2, j3}.   This is 
the end of iteration 1.  
 
 
Iteration 2: Update MO = {M1} and then updated Graph, 

 
Figure 5.6 Updated disjunctive arc graphs of the jobs 

 
Updating Cmax value; 27522maxmax

'
max =+=+= lCC  

Calculate Lmax for machines M2, M3 and M4 using 1 | rj | Lmax. 
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Machine 2 
1 | rj | Lmax Problem 
 

Table 5.14 1 │ rj │ Lmax problem for machine M2 
Job (j) 1 2 3 

Operation (2,1) (2,2) (2,3) 
p2j 8 8 7 
r2j 10 0 17 
d2j 23 10 24 

 
Minimizing the Lmax will result in the following sequence: {j2, j1, j3}. 
The schedule for the three jobs on machine M2 is given in following table 5.15 

 
Table 5.15 Schedule for minimization of Lmax for machine M2 

Job (j) p2j r2j S2j C2j d2j L2j 
2 8 0 0 8 10 -2 
1 8 10 10 18 23 -5 
3 7 17 18 25 24 1 

 
Hence, the maximum lateness on machine M2; Lmax (2) = 1 

 
Machine 3 

1 | rj | Lmax Problem 
 

Table 5.16 1 │ rj │ Lmax problem for machine M3 
Job (j) 1 2 3 

Operation (3,1) (3,2) (3,3) 
p3j 4 6 - 
r3j 18 18 - 
d3j 27 27 - 

 
The following Sequence: {j1, j2} will minimize the Lmax. 
The Schedule for the jobs on machine M3 is given in the following table 5.17 
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Table 5.17 Schedule for minimization of Lmax for machine M3 
Job (j) p3j r3j S3j C3j d3j L3j 

1 4 18 18 22 27 -5 
2 6 18 22 28 27 1 

Thus, the maximum lateness on machine M3; Lmax (3) = 1 
 
Machine 4 

1 | rj | Lmax Problem 
 

Table 5.18 1 │ rj │ Lmax problem for machine M4 
Job (j) 1 2 3 

Operation (4,1) (4,2) (4,3) 
p4j - 5 3 
r4j - 13 24 
d4j - 21 27 

 
Solving the above problem to minimize Lmax will result in the following 

sequence: {j2, j3}. 
The schedule for the jobs on machine M4 is given in following table 5.19 

 
Table 5.19 Schedule for minimization of Lmax for machine M4 

Job (j) p4j r4j S4j C4j d4j L4j 
2 5 13 13 18 21 -3 
3 3 24 24 27 27 0 

 
Therefore, the maximum lateness on machine M4; Lmax (4) = 0 
Thus, no more machines to consider which means the bottleneck machine can 

be identified as follows:  
Bottleneck Machine is the machine with max {Lmax(2), Lmax(3), Lmax(4) }=  

max {1 ,1, 0 }.  Since, there is a tie between M2 and M3, let us pick M2 as the second 
bottleneck machine with the jobs sequence on M2 is as follows: {j2, j1, j3}.   This is 
the end of iteration 2.  
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Iteration 3: Update MO = {M1, M2} and updated Graph. 

 
Figure 5.7 Updated disjunctive arc graphs of the jobs 

Updating Cmax value; 28127)2(LCC max
'
max

''
max =+=+=  

Calculate Lmax for machines M3 and M4 using 1 | rj | Lmax. 
 
Machine 3 

1 | rj | Lmax Problem 
 

Table 5.20 1 │ rj │ Lmax problem for machine M3 
Job (j) 1 2 3 

operation (3,1) (3,2) (3,3) 
p3j 4 6 - 
r3j 18 18 - 
d3j 28 28 - 

 
Solving the above problem to minimize Lmax will result in the following 

sequence: {j1, j2}. 
The schedule of jobs on machine M3 is given in following table 5.21 
 

Table 5.21 Schedule for minimization of Lmax for machine M3 
Job (j) p3j r3j S3j C3j d3j L3j 

1 4 18 18 22 28 -6 
2 6 18 22 28 28 0 

 
Hence, the maximum lateness on machine M3;  Lmax (3) = 0 
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Machine 4 
1 | rj | Lmax Problem 
 

Table 5.22 1 │ rj │ Lmax problem for machine M4 
Job (j) 1 2 3 

operation (4,1) (4,2) (4,3) 
p4j - 5 3 
r4j - 13 25 
d4j - 22 28 

 
Solving the above problem to minimize Lmax will result in the following 

sequence: {j2, j3}. 
The schedule of jobs on machine M4 is given in following table 5.23 

 
Table 5.21 Schedule for minimization of Lmax for machine M4 

Job (j) p4j r4j S4j C4j d4j L4j 
2 5 13 13 18 22 -4 
3 3 25 25 28 28 0 
 

Hence, the maximum lateness on machine M4;  Lmax (4) = 0 
 
Since, Maximum Lateness for M3 and M4 is zero. Optimal Cmax value does not 

change. Sequence of jobs on machines is as follows: 
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Figure 5.8 Gantt chart for final schedule 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Machine      Job Sequence               Machine     Job Sequence 
M1                   {j1, j2, j3}                     M2          {j2, j1, j3} 
M3                   {j1, j2}                          M4          {j2, j3} 

j1 j2 

j2 

j2  

j1  

j3  M1 

M2 

M3 

M4 

                   8      10                                  18                            25 

                                                          18                22                        28 

j1 j2 

     10           13               17 

j3 

j3 

             13               18                                25          28 
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EXERCISES 
 

5.1 Find a feasible active schedule for the job shop problem using the following data:  
 

Job Jobs routing Processing times 
1 1 - 2 - 3 5 - 10 - 12 
2 1 - 3 - 2 4 - 3 - 8 
3 3 - 2 - 1 9 - 6 - 7 
4 2 - 3 - 1 7 - 5 - 11 

 
Using a common due date of 27 for all jobs, determine,  

A. Makespan 
B. Total flow time 
C. Total Tardiness 
D. Total Lateness 

 
5.2 Consider J4 | | Cmax   problem with the following data:  

 
Job Jobs routing Processing times 
1 1 - 2 - 4 6 - 8 - 5 
2 2- 3 - 4 4 - 4 - 3 
3 4 - 2 - 1 8 - 6 - 4 
4 2 - 3 - 4 5 - 10 - 15 

Find the best makespan using the shifting bottleneck algorithm. Then, 
compute total flow time, total waiting time, and the utilization.   

 
5.3 Consider J4 | | Cmax   problem using the following data: 

 
Job Jobs routing Processing times 
1 1 - 2 - 3 5 - 10 - 12 
2 1 - 3 - 2 4 - 3 - 8 
3 3 - 2 - 1 9 - 6 - 7 
4 2 - 3 - 1 7 - 5 - 11 

 
Find the best makespan using the shifting bottleneck algorithm 
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5.4 Using the SPT rule, develop a feasible schedule that minimizes makespan for the 
following jobs in a job shop problem: 

 
Job Jobs routing Processing times 
1 2 - 4 - 5 7 - 11 - 2 
2 5 - 3 3 - 6 
3 4 - 1 - 5 - 2 15 - 3 - 4 - 6 
4 3 - 2 - 1 - 4 - 5 3 - 1 - 6 - 4 - 2 
5 5 - 1 - 2 - 3 - 4 3 - 7 - 6 - 1 - 3 
6 3 - 1 - 5 - 4 4 - 6 - 5 - 3 

 
 
5.5 Using the EDD rule, develop a feasible schedule that minimizes the total lateness 

penalty for the following jobs in a job shop problem J5 | | Σxj problem: 
 

Job Job routing Processing times Due date 
 

Late Penalty 
(PT) 

Early Penalty 
(PE) 

1 2-4-5 7-11-2 33 11 4 
2 5-3 3-6 11 4 1 
3 4-1-5-2 15-3-4-6 32 1 0 
4 3-2-1-4-5 3-1-6-4-2 47 2 2 
5 5-1-2-3-4 3-7-6-1-3 27 1 0 
6 3-1-5-4 4-6-5-3 28 4 3 

 

Where the total lateness penalty ∑
=

6

1j
jX  is computed as follows: 

61
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Where: 
PTj is the late penalty for job j  
PEj is the early penalty for job j.  

 
Then, construct the Gantt chart to show your solution and then compute the 
total lateness penalty. 
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5.6 Consider J4 || Cmax   problem and use the most work remaining (MWKR) 
dispatching rule to find the best makespan using the following data: 
 

Job Job routing Processing times 
1 1 - 2 - 3 - 4 6 - 8 - 13 - 5 
2 1 - 2 - 3 - 4 4 - 1 - 4 - 3 
3 4 - 2 - 1 - 3 3 - 8 - 6 - 4 
4 2 - 1 - 3 - 4 5 - 10 - 15 - 4 
5 1 - 2 - 4 - 3 3 - 4 - 6 - 4 
6 3 - 1 - 2 - 4 4 - 2 - 4 - 5 

 
5.7 Consider the following instance of the J3 || Cmax problem. 

 
Job Machine Sequence Process Times 
1 1-2-3 p11=5, p21=4, p31=6 
2 2-1 p22=5,p12=7 
3 2-3 p23 =5, p33 =5 

 
Apply the Shifting bottleneck heuristic for this instance and find Cmax. Also, 
draw Gantt chart for your solution. 

 
5.8 Consider J3 | | Cmax with the following data: 

 
Job M/C routing Processing times Due date 
1 1 - 2 - 3 P11 = 4, P12 = 3, P13 = 2 9 
2 2 - 1 - 3 P22 = 4, P21 = 1, P23 = 4 9 
3 3 - 2 - 1 P33 = 3, P32 = 2, P31 = 4 9 
4 2 - 3 - 1 P42 = 3, P43 = 1, P41 = 5 9 

Use the data above to solve the job shop problem according to SPT, Slack 
time, and CR rules.  In each case, show your feasible solution on Gantt chart 
and compute Cmax, Tmax F , and T .  According to our objective function 
which schedule is better? 
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Project management is a set of principles, methods, and techniques that people 
use to effectively plan and control project work. It establishes a sound basis for 
effective planning, scheduling, resourcing, decision making, controlling, and re-
planning. The objective of project management is to ensure that projects meet agreed 
goals of time, cost, and scope. Today, modern project management has emerged as a 
premier solution in business operations. Large and small organizations recognize that 
a structured approach to planning and controlling projects is a necessary core 
competency for success.  

 
6.1    INTRODUCTION  

 
Project work and traditional functional work differ in significant ways. 

Functional work is routine, ongoing work. A manager is assigned to the specific 
function and provides worker training and supervision. In contrast, a project is “a 
temporary endeavor undertaken to create a unique product or service.” A project 
manager is responsible for the approved objectives of a project, such as budget, 
schedule, and scope.  

The need for project management is apparent in the world today as speed, 
quality, and cost control are becoming increasingly important. Implementing a project 
management system requires a long-term commitment and management support. It is 
important to understand how your organization is structured so you can decide how to 
fit project management techniques into it. Organizational structures typically span the 
spectrum from functional to project, with a variety of matrix structures in between. A 
functional organization is a hierarchy in which people are grouped into functional 
divisions, such as marketing or production. Each employee has one clear superior. In 
a project organization, projects are centralized in a separate division of skilled project 
managers that serves the project management needs of all divisions of the company. 
This is often referred to as a project office. Matrix organizations are a blend of 
functional and project organizations. A weak matrix has many of the characteristics 
of a functional organization and the project manager role is more that of a coordinator 
or expediter with limited authority. A strong matrix organization has many of the 
characteristics of a project organization, with a full-time project manager who has 
significant authority and a project administrative staff. In a matrix organization, the 
project team has a dual reporting role to a project manager, coordinator, or expediter 
(who provides project management skills) and a functional manager (who provides 
technical and functional skills). In a strong matrix organizational structure, the project 
manager has more power than the functional manager. In a weak matrix structure, the 
balance of power leans toward the functional manager.  
 It is important to set up a formal planning and control system that is flexible 
enough to operate in the real world, but still rigorous enough to provide control. A 
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project management system must allow for adjustments to the plan as needed 
throughout the project’s life. The system helps you define the problem or opportunity, 
establish project objectives, develop the project plan, begin project work, monitor and 
control the work, and then close the project.  
 

6.2    PLANNING THE PROJECT  
 

Some people put a minimum of effort into planning. They argue that since 
things invariably change during the life of the project, it is a waste of effort to make 
extensive up-front plans. The average organization spends only 5 percent of the total 
project effort on planning. More successful organizations spend up to 45 percent. A 
good rule of thumb is to spend 25 percent of the project effort in concept and 
development and 75 percent in implementation and termination.  

Although it is true that factors might be introduced during the life of the 
project that necessitate minor or major adjustments to the plan, it is still important to 
have a solid plan in place. Without one, a project becomes even more chaotic in the 
face of change. If plans are made using project management software, it is easy to 
make adjustments to the plan as needed.  

In an ideal world, a project would be planned and approved, and then work 
would start and be completed according to the plan. In actual practice, however, you 
might have to adjust the plan throughout the life of the project. Therefore, any good 
planning and control system must be flexible enough to operate in the real world, and 
yet be rigorous enough to provide control.  

Some projects are managed in pieces. Because of time constraints or other 
factors, the project manager might have to develop a plan for only part of the project, 
get it approved, and begin that portion while other parts of the project are still in the 
planning stage.  

Often, planning continues to some extent throughout the life of the project. 
Recognizing this reality, the successful project manager establishes a project 
management system that allows for adjustments to the plan as needed. Figure 6.1 
shows how a project management system allows a project to react to changing 
conditions.  

The key steps in planning are as follows:  
 Define the problem or opportunity that this project addresses.  
 Establish project objectives in terms of time, cost, and scope.  
 Perform project reviews to ensure the project is needed, feasible, 

and practical.  
 Define the work (activities) that must be done to complete the 

project.  
 Estimate the cost and time needed to accomplish each activity.  
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 Sequence the activities into a logical order, considering the 
dependencies between activities.  

 Calculate the critical path to determine the longest sequence of 
activities.  

 Schedule the activities by applying calendar dates.  
 Prepare resource plans by assigning specific personnel and 

equipment to each activity.  
 Prepare budget plans to determine what funds are needed at what 

times.  
 Plan for risk to be ready to respond to events that may effect the 

project for better or worse.  
 Get approvals and compile a formal project plan.  

 
6.3    EXECUTING THE PROJECT  

 
When all plans are in place, approved, and communicated to project personnel, 
project work can begin.  
 
6.3.1 Monitor 

As project work progresses, the project manager gather status information and 
compare it to the plan to determine variances. Deviations from the plan are then 
analyzed to determine if corrective action should be taken.  
 
6.3.2 Control 

When necessary, the project manager takes corrective action to get the project 
back on track. Some deviations might require re-sequencing activities, rescheduling, 
re-budgeting, or reallocating resources. Larger deviations can necessitate 
renegotiating the basic project objectives of cost, time, and scope. In some cases, the 
situation might be serious enough to warrant readdressing the problem or opportunity 
to determine if it has been identified correctly and if the organization has the 
resources, expertise, and commitment necessary to handle it.  

Planning, monitoring, and controlling are not one-time events. They continue 
throughout the life of the project to refine and adjust to current conditions (see Figure 
6.1).   
 
6.3.3 Closing   

A good project management methodology includes formal steps to close the 
project. The purpose of project closure is to verify that all work has been 
accomplished as agreed and that the client or customer accepts the final product. 
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Figure 6.1 Project Management System 
 

6.4    PROJECT SCHEDULING 
 

In terms of classical scheduling theory, project scheduling is concerned with 
execution of m jobs using infinite number of machines with precedence constraints. 
However, scope of project scheduling is highly expanded and applies to vast variety 
of activities in real world. It includes every sphere of discipline not merely 
manufacturing. The term project connotes a synchronized and well coordinated effort 
by a multitude of inputs (men, machines, money) to achieve a well defined target in a 
specific amount of time while living within the resources. Building of a hospital, 
construction of super highway, installation of petroleum refining plant, laying of a gas 
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pipe line from one continent to another continent and development of computer 
network on a university campus are some examples of term project. Typically every 
project is unique as it comprises distinct set of activities (jobs) with specific time and 
resource constraints. The tasks inter-relationship plays a decisive role in project 
scheduling. If resources constraint is not an issue, it is termed as unconstrained 
project scheduling. In this scheduling scenario, scheduling decision problem requires 
these two basic parameters as input;      

• Processing times ( durations)  of the activities 
• Precedence relationship of the activities in the project 

However, activities do require resources for their execution. Often the same 
resources are required by different activities at the same time resulting in resource-use 
conflict situation. Scheduling methodology has to be modified in such scenarios. A 
class of problems called Resource-constrained scheduling has emerged over years to 
tackle these situations. CPM and PERT has gained wide spread use to solve 
unconstrained project scheduling problems. In this chapter, we present these two 
methodologies (CPM & PERT) to deal with unconstrained project scheduling. In next 
chapter, detailed account of Resource-constrained scheduling will be presented.  
 

6.5 CRITICAL PATH METHOD (CPM) 
 

Critical Path Method (CPM) is a project management technique, which has 
been created out of the need of industrial and military establishments to plan, 
schedule and control complex projects. CPM was the discovery of M. R. Walker of 
E.I.Du Pont de Nemours & Co. and J. E. Kelly of Remington Rand, circa 1957. The 
computation was designed for the UNIVAC-I computer. The first test was made in 
1958, when CPM was applied to the construction of a new chemical plant. In March 
1959, the method was applied to maintenance shut-down at the Du Pont works in 
Louisville, Kentucky. CPM helped the company to reduce unproductive time from 
125 to 93 hours. 

CPM provides an integrated frame work for planning, scheduling and control 
of project management. The scheduling of a project includes answers to important 
questions, like; 

• How long will the entire project take to be completed? What are 
the risks involved?  

• Which are the critical activities or tasks in the project which could 
delay the entire project if they were not completed on time?  

• Is the project on schedule, behind schedule or ahead of schedule?  
• If the project has to be finished earlier than planned, what is the 

best way to do this at the least cost?  
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A project is defined by a set of distinguishable, indivisible and distinct set of 
actions called activities. The activities have dependency relationship among 
themselves. Typically, an activity will have some activities preceding it and some 
activities following it. Then each activity will require time for its execution and incur 
costs. In addition, an activity would use specific types of resources (man power, 
equipment) for its completion. 

Five useful questions to ask when collecting data about activities are; 
• Is this a Start Activity?  
• Is this a Finish Activity?  
• What Activity Precedes this?  
• What Activity Follows this?  
• What Activity is Concurrent with this?  

Some activities are serially linked. The second activity can begin only after 
the first activity is completed. In certain cases activities are concurrent, because they 
are independent of each other and can start simultaneously. This is especially the case 
in organizations which have supervisory resources so that work can be delegated to 
various departments which will be responsible for the activities and their completion 
as planned. 

The information collected about activities for project planning and scheduling 
is well depicted by constructing precedence network diagram. The network diagram 
uses nodes and arcs to portray information about the activities. Two types of 
precedence network diagrams are constructed for presenting project activities data.  

Activities-on-arcs (AOA) network diagrams use directed arcs to present an 
activity. Nodes represent start and terminal occurrence of various project activities. 
Besides representing activities, the arcs also contain information about precedence 
relationships and duration of activities. 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 6.2 Activity-On-Arc Precedence Network Diagram 
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The precedence network diagram in Figure 6.2  presents 11-activity AOA 
project network with activities and their attributes as provided in Table 6.1 
 

Table 6.1 Project network data in AOA and AON format 
Sr. No. Activity Duration Immediate Predecessor 

1 (1, 2) 7 -- 
2 (1 , 3) 6 -- 
3 (2, 4) 8 (1, 2) 
4 (3, 4) 3 (1, 3) 
5 (2, 5) 4 (1, 2) 
6 (3, 6) 2 (1, 3) 
7 (4, 5) 2 (2, 4), (3, 4) 
8 (4 , 7) 4 (2, 4), (3, 4) 
9 (4, 6) 1 (2, 4), (3, 4) 

10 (5, 7) 3 (2, 5), (4, 5) 
11 (6, 7) 6 (3, 6), (4, 6) 

 
Activity-on-Node (AON) precedence network diagram is the second way of 

presenting project data. The nodes present activities. Directed arcs present precedence 
relationship which join the nodes. The duration of activities is written inside or above 
the node. The data in Table is converted to Activity-on-node (AON) network format 
from activity-on-arc (AOA) network format and is shown in Table 6.2. 
 

Table 6.2 Project network data in AOA and AON format 

AOA 
Format 

AON 
Format 

 
Duration 

Immediate 
Predecessor 

For AOA Format 

Immediate 
Predecessor 

For AON Format 
( 1 ,2 ) A 7 -- -- 
( 1 , 3 ) B 6 -- -- 
( 2 , 5 ) C 4 ( 1 , 2 ) A 
( 2 , 4) D 8 ( 1 , 2 ) A 
( 3 , 4 ) E 3 ( 1 , 3 ) B 
( 3 , 6 ) F 2 ( 1 , 3 ) B 
( 4 , 5 ) G 2 ( 2 , 4 ) , ( 3 , 4 ) D , E 
( 4 , 7 ) H 4 ( 2 , 4 ) , ( 3 , 4 ) D , E 
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AOA 
Format 

AON 
Format 

 
Duration 

Immediate 
Predecessor 

For AOA Format 

Immediate 
Predecessor 

For AON Format 
( 4 , 6 ) I 1 ( 2 , 4 ) , ( 3 , 4 ) D , E 
( 5 , 7 ) J 3 ( 2 , 5 ) , ( 4 , 5 ) C , G 
( 6 , 7 ) K 6 ( 3 , 6 ) , ( 4 , 6 ) F  , I 

 
The precedence network diagram for the data in Table 6.2 using AON format 

is shown in Figure 6.2. Note two extra nodes have been added in the diagram. Both 
start node and end nodes are dummy nodes and, present starting as well as 
terminating activities of a project.  

 
Figure 6.2 Activity-on-node (AON) precedence network diagram 

 
After setting up the network, CPM technique finds the longest path through 

the activity network. The longest path comprises a set of activities which are 
designated as "critical" activities.  These are the activities which must start and finish 
on exact dates and time, because the entire project completion is dependent upon 
them. CPM technique identifies these activities. When execution of project starts, 
these activities may be assigned to responsible persons. Management resources could 
be optimally used by concentrating on the few activities which determine the fate of 
the entire project. 

A, 7 

B, 6 

D, 8 

E, 3 

G, 2 

H, 4 

I, 1 

C, 4 

F, 2 

J, 3 

K, 6 

Precedence 
Relationship 

Activity 
Name 

Activity 
Duration 

Start End 
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Non-critical activities can be re-planned, rescheduled. Resources for these 
activities can be reallocated flexibly, without affecting the whole project. 
 
6.5.1   CPM Calculations 

Critical path method (CPM) minimizes the project completion time (Cmax) of 
the project by finding longest path from source to sink node in the precedence 
network diagram. Let’s define mathematical notations for activity-on-arc (AOA) 
precedence network as follows; 
 

ji,p   = Duration for activity (i, j)  

iE  = Earliest occurrence time for event i 

iC  = Latest occurrence time for event i 
'

ji,S   = Earliest start time for activity (i, j) 
'

ji,C   = Earliest completion time for activity (i, j) 
"

ji,S   = Latest start time for activity (i, j) 
"

ji,C   = Latest completion time for activity (i, j) 

tψ   = Total slack (float) for activity (i, j) 

fψ   = Free slack for activity (i, j) 
 

The computations are carried out in two stages. First stage comprises forward 
pass calculations to compute earliest event times. The steps are as follows: 

1. Set the start time of the initial event to zero. 
2. Start each activity as soon as its predecessor events occur. 
3. Calculate early event times as the maximum of the earliest completion 

time of activities terminating at the event. 
 
In mathematical terms; 

0E1 ≡  
And,  { } tE..,,.........pE,pE max  E j,iij,iij,iij nn2211

+++=  

Where,  

n21 i ........., , i , i  indicate the preceding events of the n activities that 
terminate at event j. 

Earliest start and completion time for an activity (i, j) is calculated from the 
following expressions. 

'
ji,S  = iE  

ji,i
'

ji, pEC +=  
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Project completion time,  
Cmax = nE  

 
Second stage comprises backward pass calculations to compute latest 

occurrence of event. The steps are as follows: 
1 Set the latest time for the terminal event equal to the earliest time for that 

event. 
2 Start each activity at the latest time of its successor event less the duration 

of the activity. 
3 Determine event times as the minimum of the latest start times of all 

activities emanating from the event. 
 

Set,  nn EL =  
And,          
 n  i      )tL ..,....................  ,   tL  , tmin(LL

vv2211 j , ijj , ijj , iji <−−−=  

Where;  
j1, j2,……., jv indicate the successor events of v activities that emanate 
from event i.   

Latest start and completion time for an activity (i, j) is calculated from the 
following expressions. 

j
"

ji, LC =  

 
 

Total slack time for activity (i, j) is computed from; 

j , iij j , it pELψ −−=  

 
Free slack is the amount of time that activity completion can be delayed 

without affecting the early start ( '
j,iS ) time for any other activity in the network.  

j , iij j , if pEEψ −−=  

 
Critical path consists of all activities with zero slack on the network. 

 
 
 
 
 
 
 

j , ij
"

ji, pLS −=
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Example 6.1 
The data for an 8-activity project is given in following table with activities, 

their durations and corresponding precedence relationships.  
 

Activity ( i , j ) Duration p i, j Immediate Predecessor 
( 1 , 2 ) 4 --- 
( 2 , 4 ) 7 ( 1 , 2 ) 
( 2 , 3 ) 8 ( 1 , 2 ) 
( 2 , 5 ) 6 ( 1 , 2 ) 
( 4 , 6 ) 15 ( 2 , 3 ) , ( 2 , 4 ) 
( 3 , 5 ) 9 ( 2 , 3 ) 
( 5 , 6 ) 12 ( 2 , 5 ) , ( 3 , 5 ) 
( 6 , 7 ) 8 ( 4 , 6 ) , ( 5 , 6 ) 

 
Draw activity-on-arc (AOA) precedence network diagram, find project 

completion time and identify critical path and find slack times. 
 
Solution: 

An Activity-on-arc (AOA) network uses arcs to represent activities and nodes 
to represent occurrence of events. The precedence network diagram is shown in 
Figure 6.3 

 

 
Figure 6.3 AOA Precedence network diagram 

 
Early & late occurrence times calculation of events is shown in Table 6.4. 

 

1 2 6 
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4 

3 7 
4 
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0 
15 

12 

8 8 

7 
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Table 6.4 Early and late occurrence times of Events 
Event E L 

1 0 0 
2 4 4 
3 12 12 
4 12 18 
5 21 21 
6 33 33 
7 41 41 

Computations of various parameters pertaining to activities including early 
start time '

j , iS  , early completion time '
j , iC  , late start time "

j , iS  , late completion time 
"

j , iC  , total slack tψ  and fψ  are shown in Table 6.5. 

 
Table 6.5 Calculated Parameters for Example 6.1 

Activity p (i,j) '
j , iS  '

j , iC  "
j , iS  "

j , iC  tψ  fψ  Status 

(1 ,2) 4 0 4 0 4 0 0 Critical 
(2 , 4) 7 4 11 11 18 7 7 Slack 
(2 , 3) 8 4 12 4 12 0 0 Critical 
(2 , 5) 6 4 10 15 21 11 11 Slack 
(4 , 6) 15 12 27 18 33 6 6 Slack 
(3 , 5) 9 12 21 12 21 0 0 Critical 
(5 , 6) 12 21 33 21 33 0 0 Critical 
(6 , 7) 8 33 41 33 41 0 0 Critical 

The schedule generated by CPM technique in Table 6.5 is shown on Gantt 
hart in Figure 6.4. 
 
  
 
 
 
 
 
 
 

Figure 6.4 Gantt chart for Schedule 

           4                       12                        21                                 33                     41

  11 12                                           27       

(1,2) (2, 3) (3, 5) (5, 6) (6, 7)

(2, 5) 

(2, 4) (4, 6)

 10                               21
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6.5.2 AON Network Computations 
Activity-on-node (AON) network calculations are also carried out in two 

stages. Forward pass calculations are carried out in following steps. 
1. Set early start time for source activity (node) equal to zero. Then, early 

completion time for source node will be equal to  

sourcesourcesource
'
source

'
source pp0pSC =+=+=  

 
2. For activity i, calculate early completion time by the expression; 

{ } i
'
j

'
j

'
j

'
i pC  ,   .........  , C  , C   maxC

v21
+=  

Where, 
 Activities j1, j2, j3,..…., jv are the predecessor activities of activity i 
and v < n as shown in Figure 6.5. 

 
Figure 6.5 Set of predecessor activities for activity i 

 
3. Then, project completion time; Cmax = '

sinkC  
 
In second stage, backward pass calculations are carried out to find late start 

and finish times of activities. 
1. Set late completion time for last (sink) activity equal to early completion 

time;      
'
n

"
n CC ≡  

 
2. For any activity k (k < n), find late completion time from the expression; 

{ }
vv2211 j

"
jj

"
jj

"
j

"
k pC  ,   .........  ,  pC  ,  pC   minC −−−=  

Where, 
Activities j1, j2, j3, …., jv are the successor activities of activity k and v 
< n as shown in Figure 6.6. 

i 

j1 

j2 

jv 

j3 
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j1 

j2 

jv 

j3 k 

Figure 6.6   Set of successor activities for activity k 
 

3. Activities on the critical path have zero slack time. Slack time for any activity 
j is found from the expression; 

'
j

"
j jt CCψ −=  

 
Example 6.2 

Change the data in Example 6.1 to represent activity-on-node (AON) frame 
work. Draw precedence network diagram and find critical path. 
 
Solution: 

The AON version of the data of Example 6.1 is shown in Table 6.6 
 

 Table 6.6 Activity-on-node (AON) data format 
Activity 
Name 

Activity 
( i , j ) 

Duration 
p i , j 

Immediate 
Predecessor 

A ( 1 , 2 ) 4 --- 
B ( 2 , 4 ) 7 ( 1 , 2 ) → A 
C ( 2 , 3 ) 8 ( 1 , 2 ) → A 
D ( 2 , 5 ) 6 ( 1 , 2 ) → A 
E ( 4 , 6 ) 15 ( 2 , 3 ) , ( 2 , 4 ) → B , C 
F ( 3 , 5 ) 9 ( 2 , 3 ) → C 
G ( 5 , 6 ) 12 ( 2 , 5 ) , ( 3 , 5 ) → D , F 
H ( 6 , 7 ) 8 ( 4 , 6 ) , ( 5 , 6 ) → E , G 

 
The precedence network diagram is developed and shown in Figure 6.7 
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Activity 
Duration 

A, 4 

Figure 7.7 Activity-on-node (AON) Precedence network diagram  

B, 7 

C, 8 

D, 6 

E, 15 

F, 9 

G, 12 

H, 8 

Activity Name 

A C F G H 

D 

B E 

           4                       12                        21                                 33                    41 

 10                           

  11 12                                         27         

The time attributes of the activities including early start '
j , iS  , early 

completion  '
j , iC , late start "

j , iS  and late completion "
j , iC  are shown in Table 6.7  

 
Table 6.7 Calculated parameters for Example 6.2 

Activity p (i,j) '
j , iS  '

j , iC  "
j , iS  "

j , iC  tψ  fψ  Status 

A 4 0 4 0 4 0 0 Critical 
B 7 4 11 11 18 7 7 Slack 
C 8 4 12 4 12 0 0 Critical 
D 6 4 10 15 21 11 11 Slack 
E 15 12 27 18 33 6 6 Slack 
F 9 12 21 12 21 0 0 Critical 
G 12 21 33 21 33 0 0 Critical 
H 8 33 41 33 41 0 0 Critical 

The generated schedule in Table 6.7 is shown on the Gantt chart in Figure 6.8 

 
Figure 6.8 Gantt chart for Schedule in Table 6.7 



Chap. 6 / Project Management and Scheduling 

Algorithms for Sequencing & Scheduling 6. 17

6.6    PERT METHODOLOGY 
 

PERT (Program Evaluation Review Technique) was devised in 1958 for he 
POLARIS missile program by the Program Evaluation Branch of the Special Projects 
office of the US Navy, helped by the Lockheed Missile Systems division and the 
Consultant firm of Booz-Allen & Hamilton. The calculations were so arranged so that 
they could be carried out on the IBM Naval Ordinance Research Computer (NORC) 
at Dahlgren, Virginia. 

CPM technique deals with projects, where there is high certainty about the 
outcomes of activities. When there is learning process involved, degree of uncertainty 
is much higher and duration of activities involve considerable degree of estimation. In 
such situations, the PERT approach is useful, because it can accommodate the 
variation in activities completion times, based on an expert’s or an expert 
committee’s estimates. The activities durations are estimated using three horizons, 
namely; optimistic, most likely and pessimistic. Let’s assign notations to activities 
durations for PERT methodology as follows:  

 
'
jp  = Optimistic (minimum) duration of jth activity 
n
jp = Most likely (normal) duration of jth activity 
"
jp = Pessimistic (maximum) duration of jth activity 

jP = Expected duration of jth activity, and is calculated by following; 
 

jP = 
6

p4pp "
j

n
j

'
j ++

 

 

jµ = Expected duration of jth activity which is on the critical path 

       (Note that, jµ = jP ) 

The CPM technique is applied on the problem data using jP  values to find 
critical activities as well as critical path. Let AC is the set of activities on the critical 
path. Then, an estimate of the project completion time is  

 

)(CE max = ∑
∈ cA j

jµ  

 
Variance of the duration of jth activity is given by 
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2'
j

"
j

j 6
pp

σ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=  

 
To obtain an estimate of the variance of the project completion time (Cmax), 

consider only the activities on the critical path in the network. Since these ‘critical’ 
activities occur one after the other, add the variance of process durations of the 
critical activities to obtain an estimate of variance of the project completion time 

 

)(CV max  = ∑
∈ cAj

2
jσ  

 
The distribution of the project completion time (Cmax) is assumed to be normal 

with a mean of  )(CE max  and variance )(CV max . 
 
Example 6.3 

Consider a PERT network problem. The optimistic, most likely and 
pessimistic task durations (in DAYS) are given in Table 6.8 below. Also, the Table 
contains precedence relationships.  

 
Table 6.8 Problem data for Example 6.3 

Activity Duration 
Activity 

Optimistic Most Likely Pessimistic 
Immediate 

Predecessor 

1 4 6 8  
2 6 8 10  
3 7 9 14  
4 3 6 9 1 
5 4 6 8 1,2 
6 2 3 4 2,3 
7 3 8 10 3 
8 10 12 14 4,5 
9 9 12 15 5,6 

10 8 10 18 6,7 
11 2 6 10 8 
12 4 9 14 9 
13 3 8 13 9,10 
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Activity Duration 
Activity 

Optimistic Most Likely Pessimistic 
Immediate 

Predecessor 

14 4 8 12 10 
15 7 10 13 11 
16 2 6 10 12,13 
17 3 7 11 14 

 
a) What is the explicit distribution (mean, variance) of the project completion 

time? 
b) What is the probability of finishing project no later than time 41 days? 
c) What is the probability of finishing no earlier than time 38 days? 
d) Suppose tasks 2 and 3 finish at time 10. What is the probability of 

finishing the project by time 41 days? 
 
 
Solution: 
 The precedence network diagram is shown in Fig. 6.9 
 

 
 

Figure 6.9 Precedence network diagram for Example 6.3 
 
Project calculations are shown in the following Table 6.9. 

 
 
 
 
 

Task, Duration 

1, 6 4, 6 8, 12 11, 6 

2, 8 5, 6 9, 12 12, 9 

10,11 6, 3 3, 9.5 

7, 7.5 

15,10 

16, 6 

17, 7 

End 

13, 8 

14, 8 

Start 
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Table 6.9 Calculated parameters for Example 6.3 

Activity (j) jP  '
jS  '

jC  "
jS  "

jC  Status jµ  2
jσ  

1 6 0 6 3 9 SLCK   
2 8 0 8 1 9 SLCK   
3 9.5 0 9.5 0 9.5 *CRTCL* 9.5 1.36 
4 6 6 12 9 15 SLCK   
5 6 8 14 9 15 SLCK   
6 3 9.5 12.5 13 16 SLCK   
7 7.5 9.5 17 9.5 17 *CRTCL* 7.5 1.36 
8 12 14 26 15 27 SLCK   
9 12 14 26 16 28 SLCK   

10 11 17 28 17 28 *CRTCL* 11 2.78 
11 6 26 32 27 33 SLCK   
12 9 26 35 28 37 SLCK   
13 8 28 36 29 37 SLCK   
14 8 28 36 28 36 *CRTCL* 8 1.78 
15 10 32 42 33 43 SLCK   
16 6 36 42 37 43 SLCK   
17 7 36 43 36 43 *CRTCL* 7 1.78 

 
The critical path on the network is shown in Figure 6.10. 

 
 

Figure 6.10 Critical Path on the network (Example 6.3) 

Task, Duration 

1, 6 4, 6 8, 12 11, 6 

2, 8 5, 6 9, 12 12, 9 

10,11 6, 3 3, 9.5 

7, 7.5 

15,10 

16, 6 

17, 7 

End 

13, 8 

14, 8 

Start 



Chap. 6 / Project Management and Scheduling 

Algorithms for Sequencing & Scheduling 6. 21

a) Expected project completion time: 
Critical Path = {3→7→10→14→17} 

)(CE max = 17141073 µµµµµ ++++ = 43 days 
 

Expected variance of the project completion time; )(CV max  is found from; 

)(CV max  = 
2
17

2
14

2
10

2
7

2
3

Aj

2
j σσσσσσ

c

++++=∑
∈

= 9.06 

 
b) Probability that project is completed no later than 41 days is: 

Probability (X <= 41 days) 

= 0.25460.664)P(z)
9.054

4341
σ

µxP( =−≤=
−

≤
−  

 
Area under the normal curve from -∞ to -0.664 is 0.2546 as shown in Figure 6.11 
 

 
Figure 6.11 Area under normal curve 0.664)P(z −≤   

 
c) Probability that project is completed no earlier than 38 days is: 

Probability (X >= 38 days) = 1 – P(X <= 38) 

     = 1 - 0.95150.048511.66)P(z1)
9.054

4338
σ

µxP( =−=−≤−=
−

≤
−  

 
Area under the normal curve from -∞ to -1.66 is 0.0485 as shown in Figure 6.12 
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Figure 6.12 Area under normal curve 1.66)P(z −≤  
  

d)  If Tasks 2 and 3 finishes at time 10, what is the probability that project will be 
completed by 41 days. 
When Task 2 and Task 3 finish at time 10, the network is revised. The new 
values of earliest and latest completion times are shown in the network (Fig 
6.13) 
 

 
 

Figure 6.13 Revised precedence network with updated calculations 
 

i) The new value of Cmax = 44.  
ii) New critical path is {2→ 5→ 8→ 11→15}.  
iii) Expected Duration (µ) = 44 and, Variance = 3(0.44) +1.78+ 1= 4.11           

Probability ( X <= 41 days)  

= 0.06941.48)P(z)
2.03

4441
σ

µxP( =−≤=
−

≤
− . 

End 

(44, 44) 

(43.5, 44) 

(43, 44) 

(44, 44) 

(36.5, 37) 

(36.5, 38) 

(37, 38) 

(34, 34) (28, 28) 

(28, 29) 

(28.5, 29) 

(17.5, 18) 

(13, 17) 

(16, 16) 

1, 6 4, 6 8, 12 11, 6 

2, 10 5, 6 9, 12 12, 9 

13, 8 10,11 6, 3 3, 10 

7, 7.5 14, 8 

15,10 

16, 6 

17, 7 

(10, 10) 

(6, 10) 

(10, 13) 

(12, 16) 

Start 

(0, 0) 
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Hence, there is 7% probability that project will complete by 41 days. Area 
under the normal curve from -∞ to -1.48 is 0.0694 as shown in Figure 6.14 

 
Figure 6.14 Area under normal curve 1.48)P(z −≤  

 
Whereas PERT is used to estimate durations of activities, the method has 

certain limitations. The activity time estimates are somewhat subjective and depend 
on judgment. For inexperienced planners, duration of activities may be only a guess. 
In other cases, if the person or group performing the activity estimates the time there 
may be bias in the estimate. Even if the activity times are well-estimated, PERT 
assumes a beta distribution for these time estimates, but the actual distribution may be 
different. Even if the beta distribution assumption holds, PERT assumes that the 
probability distribution of the project completion time is the same as that of the 
critical path. Because other paths can become the critical path if their associated 
activities are delayed, PERT consistently underestimates the expected project 
completion time. The underestimation of the project completion time due to alternate 
paths becoming critical is perhaps the most serious of these issues. To overcome this 
limitation, Monte Carlo simulations can be performed on the network to eliminate 
this optimistic bias in the expected project completion time. 
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6.7    TIME / COST TRADE-OFF 
 

One of the major objectives in project scheduling is minimization of project 
completion time (Cmax). There is a relationship between a project's completion time 
(Cmax) and its cost. The relationship depends upon the type of costs. For some types 
of costs, the relationship is direct proportion; i.e., as Cmax increases, the total project 
cost increases. In order to accelerate the pace of the project (minimize Cmax), more 
resources are acquired increasing the cost of the project. Because of these two types 
of costs, there is an optimal project completion time ( *

maxC ) for minimal cost. By 
understanding the time-cost relationship, one is better able to predict the impact of a 
schedule change on project cost. 

 
6.7.1 Types of Costs 

The costs associated with a project can be classified as direct costs or indirect 
costs. Direct costs are those directly associated with project activities, such as 
salaries, travel, and direct project materials and equipment. If the pace of activities is 
increased (to decrease duration of activities) thereby decreasing project completion 
time, the direct costs generally increase since more resources must be allocated to 
accelerate the pace. 

Indirect costs are those overhead costs that are not directly associated with 
specific project activities such as office space, administrative staff, and taxes. Such 
costs tend to be relatively steady per unit of time over the life of the project. As such, 
the total indirect costs decrease as the project duration decreases. The project cost is 
the sum of the direct and indirect costs. 
 
6.7.2 Crashing of Project 

Crashing the project schedule refers to the acceleration of the project activities 
in order to complete the project earlier than normal time. Since project completion 
time (Cmax) is determined by the activities on the critical path, so to crash a project 
schedule one must focus on critical path activities. 

A procedure for determining the optimal project time is to determine the 
normal completion time (duration) for each critical path activity and a crash time 
(duration). The crash time (duration) is the shortest time in which an activity can be 
completed. The direct costs then are calculated for the normal and crash durations of 
each activity.  

Let,  
n
jC = Normal duration cost of jth activity 

  c
jC  = “Crash” duration cost of jth activity 

  n
jp  = Normal duration of jth activity 
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           c
jp                                    n

jp   (Duration →) 

n
jC  

c
jC  

Slope, Cj C
os

t →
  

  c
jp  = “Crash” duration of jth activity 

  jC = cost of reducing duration by one time unit of jth activity 

oC = Fixed cost of project per unit time 
k
pC  = Total project cost at kth iteration. 

 
Slope of each activity’s cost versus time trade-off (Cj) can be found by 

 

Slope = 
Duration)CrashDuration(Normal
Cost)NormalCost(Crash

−
−  

 
In terms of mathematical notations, Cj is determined by; 
 

c
j

n
j

n
j

c
j

j PP
CC

C
−

−
=  

 
The graphical determination of slope Cj is shown in Figure 6.15. 

 
Figure 6.15 Slope calculations (Cj) for Time-Cost Trade-Off 

     
To obtain an optimal value of project completion time ( *

maxC ), the activities 
having the lowest values of Cj should be shortened first. In this way, one can step 
through the critical path activities and create a graph of the total project cost versus 
the project time. The indirect, direct, and total project costs then can be calculated for 
different project durations. The optimal point is the duration resulting in the minimum 
project cost. Attention should be given to the critical path to make sure that it remains 
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the critical path after the activity duration is reduced. If a new critical path emerges, it 
must be considered in subsequent time reductions. 

To minimize the cost, those activities that are not on the critical path can be 
extended to minimize their costs without increasing the project completion time. 
 
6.7.3 Time-Cost Trade-off Assumptions 

The time-cost model described above relies on the following assumptions: 
• The normal cost for an activity is lower than the crash cost.  
• There is a linear relationship between activity time and cost.  
• The resources are available to shorten the activity.  

A formal methodology is described by taking following steps to reduce project 
completion time yielding minimum total project cost. 

i. Use normal durations of all activities and solve project network problem 
by CPM/PERT technique. Find Cmax and, identify critical path/s on the 
network. 

ii. For normal duration, total cost of the project will be equal to  
         0

pC  = Co x Cmax. 

iii. Set iteration counter k = 1. To reduce project cost, find among the 
unmarked activities on the critical path having minimum value of Cj.  

iv. Pick minimum cost unmarked activity on the critical path with least cost, 
and reduce duration by one unit of time. Mark this activity if its duration 
has reached c

jp  value. 

Find Cmax and new critical path/s for revised project network. Project cost 
for the revised network will be equal to; 

k
pC  = C0 × Cmax + ∑

∈Uj
jC  

Where, 
 U is the set of least cost activities in the present network.   

 IF 1k
p

K
p CC −≤  THEN go to next step, otherwise STOP. 

v. Set k = k + 1. From the new critical paths found in step (iv), find if all jobs 
are at their c

jp  value. If yes, STOP. There is no further possibility of 

reduction in Cmax value. If No, go to step (ii). 
The procedure to reduce Cmax by single unit of time in every iteration may 

require enormous amount of calculations. It is possible to speed up the calculations by 
making large reductions in an activity’s duration in one iteration. However, new 
critical paths may emerge in this approach. The activities on the critical paths may hit 
their minimum, making the critical path irrelevant. Special algorithms have to be 
devised for such approaches.  
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Example 6.4 
Consider the precedence graph in Figure 6.16. 

 
Figure 6.16 Precedence network diagram for Example 6.4 

 
The time / cost data for the problem is as under.  

 
Table 6.11 Normal and ‘Crash’ Data for Example 6.4 

Activity (j) 1 2 3 4 5 

max
jp  3 6 4 3 2 

min
jp  2 5 3 2 1 

jC  12 6 10 8 16 

 
Take Co = 12 and find minimum project completion time and corresponding 

cost using Time-Cost Trade-Off. 
 
Solution: 
 

i) Computation of Cmax is shown in Figure 6.17, when activities are executed 
at  normal duration ( max

jp )  value, 

 
Figure 6.17 Computations of Early and Late completion times 

1 2 

4

5 

3 

S E 

(11, 11) 
( "

j
'
j C,C ) 

Activity number 
    
    Activity duration 

(9, 9) 

(4, 6) 

(3, 3) 

1, 3 2, 6 

5, 2 
(7, 9) 

4, 3 3, 4 

S E 

(0, 0) 
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Cmax = 11, Critical Path: 521 →→  
Cost of Project, 0

PC = Co x Cmax = 12 × 11 = 132 
 

ii) The activities on the critical path along with crash costs are; 
Activities 1 2 5 

Cj 12 6 16 
 

Since, activity 2 has minimum Cj value, reduce duration of activity 2 by one 
time unit in the project network.  So, 5pc

2 =  The network with 5pc
2 =  is shown in 

precedence network diagram (Figure 6.18) 

 
 

Figure 6.18 Computations of completion times with activity 2 
being performed at crash duration 

 
For this network, Cmax = 10.   Critical Path: 521 →→  
 
Cost of Project, 1

PC = Co x Cmax + C2 = 12 × 10 + 6 = 126 
 
 

iii) Unmarked Activities on critical path have the following features;  
Activity 1 2 5 

n
jp  3 6 2 
c
jp  2 5 1 

jC  12 6 16 

 
Activity 2 is hitting its minimum value. Hence, there is no further reduction in 

duration of activity 2. So activity 2 is removed from candidate’s list. Out of the 
remaining two activities, activity 1 has lower value of jC . So, reduce duration of 

Activity number 
    
    Activity duration 
 

(8, 8) 

(4, 6) 

(3, 3) 

1, 3 2, 5 

5, 2 
(7, 9) 

4, 3 3, 4 
(10, 10) 
( "

j
'
j C,C ) 

S 
E 

(0, 0) 
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activity 1 by one time unit in the project network.  Set, 2.pc
1 =  Re-compute 

completion times with 2pc
1 =  as shown in Figure 6.19.  The Cmax value of this 

network is 9: 

 
 

Figure 6.19 Computations of completion times with activity 1 
being performed at crash duration 

 

There are two critical paths now;    
543
521

→→
→→

   

 
     Cost of Project, 2

PC = Co x Cmax + C2 + C1 = 12 × 9 + 6 + 12 = 126 
 

There are two critical paths in the above network. The common activity is 
5.   
 

Activities 1 2 3 4 5 
n
jp  - - 4 3 2 
c
jp  2 5 3 2 1 

Cj 12 6 10 8 16 
 

Set 1pc
5 =  in the new network. 

The computations of Cmax are shown below in Figure 6.20. 
 

(7, 7) (2, 2) 
Activity number 
    
    Activity duration 
 

(4, 4) 

1, 2 2, 5 

5, 2 
(7, 7) 

4, 3 3, 4 
(9, 9) 
( "

j
'
j C,C ) 

S E 

(0, 0) 
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Figure 6.20 Computations of completion times with 

activity 5 being performed at crash duration 
 

Cmax = 8  Two critical paths are;               
543
521

→→
→→

   

 
Cost of Project, 3

PC = Co x Cmax + C2 + C1 + C5 = 12 × 8 + 6 + 12 + 16 = 130 
 
The calculations are summarized in table 6.11  
 

Table 6.11 Summary of Calculations 
Iteration (k) Cmax Total Cost 

0 11 12 x 11 = 132 
1 10 12 x 10 + 6 = 126 
2 9 12 x   9 + 6 + 12 = 126 
3 8 12 x   8 + 6 + 12 + 16 = 130 

 
The optimal value of project cost is 126. There are two alternative critical 

paths with Cmax values of 9 and 10. 
 
6.7.4 Additional Considerations 

There are other considerations besides project cost. For example, when the 
project is part of the development of a new product, time-to-market may be extremely 
important and it may be beneficial to accelerate the project to a point where its cost is 
much greater than the minimum cost. 

In contract work, there may be incentive payments associated with early 
completion or penalties associated with late completion. A time-cost model can be 
adapted to take such incentives and penalties into account by modeling them as 
indirect costs. 
 

S 

(7, 7) (2, 2) 
Activity number 
    
    Activity duration 
 

(4, 4) 
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EXERCISES 
 

6.1 Assume we are to construct a pump station.  The following table lists the 
activities to construct a pump station.   

Activity 
No. 

Activity Description 
Duration 
in Days 

Preceding 
Activity 

1 Start 0  

2 Mobilize 2 1 

3 Survey 1 2 

4 Grade site 2 2 

5 Trench footings 5 3, 4 

6 Form and pour concrete 5 5, 8 

7 Cure concrete 8 6 

8 Concrete and material design 5 1 

9 Spec prefab metal building 4 1 

10 Plumbing materials, pump 5 1 

11 Electrical materials, lights, panel 5 1 

12 Install pump 7 7, 9, 10 

13 Erect structural steel 4 7, 9, 10 

14 Install roofing and siding 5 13 

15 Install lights and panels 3 11, 14 

16 Test pump 2 12 

17 Paint 3 15 

18 End 0 16, 17 
 

a. Draw the network diagram for construction of a pump station and perform 
the required computations.  When constructing the network diagram use 
the following format for each node: 

Activity Name 
Activity Number Activity Duration 

Start Date Finish Date 
Early start Time Early finish Time 
Late start Time Late finish Time 
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b. Determine critical path. 
c. Based on the early start and early finish times for each activity and 

assuming that the project will start on March 1st, 2007, construct calendar 
dates for construction of a pump station. (i.e., assign a calendar date to the 
beginning of the first activity and convert the time durations on each 
activity to calendar date.).   

d. Draw the Gantt chart for construction of pump station. 
 
6.2 The following table gives the data for small project.    
 

Project 
Phase 

Preceding 
Phase 

Normal 
Time 

Crash 
Time 

Normal 
Cost 

Crash 
Cost 

A - 40 30 9,000 12,000 
B A 53 50 15,000 15,300 
C A 60 30 7,500 10,000 
D A 35 30 20,000 22,000 
E C, D 28 20 12,000 15,000 
F B, E 30 27 6,000 7,000 

 
a. Draw the network diagram and perform the required computations.  
b. Determine critical path. 
c. Draw the Gantt chart. 
d. There is a penalty of 3000 SR per day beyond the normal CPM duration.  

Perform crashing analysis to compare total normal cost to total crash cost.  
First crash only the critical activities and then crash all activities.  

e. Assume that the variances of the durations of the project phases are as 
given below: 
 

Phase A B C D E F 
Duration Variance 10 9 600 25 40 30 

       Find the probability that total lateness penalty will be less than 3000 SR. 
f. Repeat part e above for probability that total lateness penalty will be less 

than 9000 SR.  
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6.3 For a specific project to be accomplished, you are given the following time 
and predecessor for each activity in the project: 
 
 
 

Activity a m b Immediate 
Predecessor 

A 2 3 4 - 
B 1 2 3 - 
C 4 5 12 A 
D 1 3 5 B&E 
E 1 2 3 A 

 
a. Draw Network Diagram.  
b. Perform forward schedule. 
c. Perform backward schedule. 
d.  In table format, determine the ES, EF, LS, LF, and slack for all activities. 
e. Draw Gantt chart for the Early Start Schedule for the project (5 points). 
f. Find the Critical Path. 
g. What is the variance in completion time for the critical path found?  

 
6.4 Development of a new deluxe version of a particular software product is being 

considered.  The activities necessary for the completion of this project are 
listed in the table below. 
 

Activity Normal 
Time (week) 

Crash Time 
(week) 

Normal 
Cost 

Crash 
Cost 

Immediate 
Predecessor 

A 4 3 2,000 2,600 - 
B 2 1 2,200 2,800 - 
C 3 3 500 500 - 
D 8 4 2,300 2,600 A 
E 6 3 900 1,200 B 
F 3 2 3,000 4,200 C 
G 4 2 1,400 2,000 D, E 

 
a. What is the project expected completion date? 
b. What is the total cost required for completing this project on normal time? 



Chap. 6 / Project Management and Scheduling 

Algorithms for Sequencing & Scheduling 6. 34

c. If you wish to reduce the time required completing this project by 1 week, 
which activity should be crashed, and how much will this increase the 
total cost?  

 
6.5 A project has an expected completion time of 40 weeks and a standard 

deviation of 5 weeks.  It is assumed that the project completion time is 
normally distributed. 
a. What is the probability of finishing the project in 50 weeks or less? 
b. What is the probability of finishing the project in 38 weeks or less? 
c. The due date for the project is set so that there is a 90% chance that the 

project will be finished by this date.  What is the due date? 
 
6.6 Consider the following precedence graph shown below:  

 The time/cost data for the problem is shown in the following table: 
 

Activity (j) A B C D E 
max
jp  5 8 3 8 4 

min
jp  5 7 1 7 3 

jC  8 5 9 5 11 

 
Given that CO is 15 do the following: 
a. Find project completion time ( maxC ) as well as project cost if all activities 

are performed at 
max
jp

 

b. Find project completion time ( maxC ) as well as project cost if all activities 

are performed at  min
jp  

c. Use time-cost trade-off method, and find Minimum Cost project Schedule. 
 
  

A D

C Sink Source 

E B 
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6.7 Precedence graph of a small project comprising 11 jobs/tasks is shown in Fig.1. The 
time/cost trade-off data including maximum process time ( max

jp ), minimum process 

time ( min
jp ) and cost of the jobs/tasks for reducing process time from maximum to 

minimum value per day ( jC ) is shown in Table. Take fixed cost of the project per 

time unit (C0) as equal to 12. 
 

 
 
 

 
 
 
 
Find the optimal project completion time to provide minimum total costs. 
Also show the critical path/s for this schedule. 

 
 
6.8 For a specific project to be completed, you are given the following activities 

and their predecessor, durations, and cost in the table below:  
 

Activity Immediate 
Predecessor 

Optimistic 
time 

Most likely 
time 

Pessimistic 
time 

Cost 

A - 5 9 13 0 
B - 6 14 34 2000 
C A 8 13 30 0 
D C 4 11 18 15000 
E D 9 10 11 4000 
F A 19 38 63 40000 

Job (j) A B C D E F G H I J K 
max
jp  5 3 9 4 2 8 11 12 6 12 7 
min
jp  4 2 8 3 2 7 6 12 5 11 7 

jC  4 3 5 4 9 1 3 2 4 3 5 

F 

A 

B 

E 

C 

I H 

G 

K 

J 

  D 

Precedence Graph 
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Activity Immediate 
Predecessor 

Optimistic 
time 

Most likely 
time 

Pessimistic 
time 

Cost 

G E & F 46 75 80 260000 
H B 10 30 50 15000 
I H 9 16 17 10000 
J F & I 10 17 30 150000 
K F & I 16 22 28 15000 
L K 8 22 24 100000 
M J & K 15 23 43 18000 
N M 8 10 18 7000 
O A 30 36 60 12000 
P D & O 41 47 77 90000 
Q P 4 5 6 80000 
R G & Q 3 6 21 26000 

 
Then, perform the following:  
a. Draw network diagram and do the forward and the backward schedule for 

the project. 
b. Determine the expected completion time and the critical path of this 

project.  
c. In table format, determine the early start, early finish, late start, late finish, 

and slack for all activities,  
d. Draw Gantt chart for the early start schedule for the project and show the 

critical path. 
e. What is the probability of finishing the project in 120 days? 

 
6.9 Assume that the status of the project given in the question 6.8 on the 58 days 

in the project time is as follows: 
 

Activity Percent 
completed Activity Percent 

completed Activity Percent 
completed 

A 100 G 0 M 0 
B 100 H 100 N 0 
C 100 I 100 O 50 
D 100 J 75 P 0 
E 50 K 25 Q 0 
F 100 L 0 R 0 

 
The total expenditures to date are 195000.  Then, perform the following: 
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a. Analyze the progress of the project from both a budget and time point 
of view.   

b. If the project is not completed on the expected completion time, then, 
the event of celebrating the end of the project will be cancelled and 
this will cost 100000. Thus, there are two suggestions to reduce the 
times of the remaining activities as follows: 

 Reduce the most likely and pessimistic times for activity L by 
50% and this will cost 8000. 

 Reduce activity N by three days and this will cost 10000. 
Then, which suggestion or combination of suggestion should you consider 
adopting. 

 
6.10 Perform the CPM analysis for the given project using the following data in the 

table below:  
 

Activity Predecessor Duration 
A - 2 
B A 4 
C B 6 
D A 3 
E B 2 
F E 1 
G C,D 2 
H G 3 
I H 4 

 
When performing the analysis assume the following: 

a. The project cannot start until 3 days from time zero (i.e. ES at start 
node = 3). 

b. There is deadline of 30 days (i.e. LC at finish node = 30). 
Draw the CPM network and perform the required computations. For every 
activity, show in a table ES, LS, EC, LC, and TS.  Also, in the same table for 
every activity show whether the activity is critical or non-critical.  

 



Chap. 6 / Project Management and Scheduling 

Algorithms for Sequencing & Scheduling 6. 38

6.11 Perform the PERT analysis for the project using the following data in the table 
below:  

Activity 
No a m b Preceding 

activity 
1 1 4 5 - 
2 2 3 4 - 
3 6 10 13 1 
4 6 6 7 1 
5 2 2 2 2 
6 1 2 3 3 
7 5 8 9 4,5 
8 12 16 19 2 

For every activity, compute the average activity duration and the standard 
deviation of activity duration.  Then, draw the PERT network and perform the 
required computations.  For every activity, list in a table format the following: 
ES, LS, EC, LC, and TS.  Also, for every activity show in the same table 
whether the activity is critical or non-critical.  Then, find the probabilities of 
finishing the project in 15 unit of time.  Also, find the probabilities of 
finishing the project in 21 unit of time. 

 
 

 



 7 

Resource Constrained 

Project Scheduling 

CHAPTER CONTENTS  

7.1 Introduction 
7.2 Resource Allocation In Project 
7.3 Resource-Constrained Scheduling 
7.4 Resource Allocation Rules 
7.5 Categorization Of Resource Scheduling Techniques 
7.6 Single-Resource Multi-Capacity Scheduling 
7.7 Multiple-Resource Single Capacity Scheduling 
7.8 Multiple-Resource Multiple-Capacity Scheduling 
7.9 Priority Bounds For Scheduling 

7.9.1 Precedence Based Bounds 
7.9.2 Resource Based Bounds 
7.9.3 Hybrid Bounds 

7.10 Resource Leveling 
 
 



Chap. 8 / Resource Constrained Project Scheduling 

Algorithms for Sequencing & Scheduling 7. 2

7.1    INTRODUCTION  
 

The CPM/PERT methodology presented in previous chapter emphasized on 
time factor for project scheduling problem. However, both time and resources are 
equally important in any real world scheduling problem. But, often, resources are 
limited. Scarcity of resources necessitate that these should be utilized optimally. The 
project scheduling problem with limited resources has two fold objectives; 

1. Minimize project completion time (Cmax) 
2. Assign available resources so to ensure their optimal utilization 

 
Optimal solutions to these problems are very difficult to obtain, especially for 

large scale networks. This section is deal with the issues, techniques, and tools for 
resource management in projects. Objectives are achieved through the assignment of 
resources to areas of need. Consequently, resource management is essential to 
achieve successful operations. Resource management strategies will depend on the 
specific resources that are to be managed. Some resources possess special skills. 
Some are in very limited supply. The relative importance of different resource types 
should be considered for resource management purposes. Topics covered in this 
chapter include resource allocation in project networks; resource sharing, human 
resource management, resource utilization analysis.  

Project goals are achieved through the utilization of resources. Resource refers 
to the manpower, tools, equipment, and other physical items that are available to 
achieve project goals. Not all resources are necessarily tangible. Conceptual 
knowledge, intellectual property, and skill can be classified as resources. The lack or 
untimely availability of resources is a major impediment to manufacturing and 
automation efforts. Resource management is a complex task that is affected by 
several constraints. These constraints include:  

 Resource interdependencies  
 Conflicting resource priorities  
 Mutual exclusivity of resources  
 Limitations on resource availability  
 Limitations on resource substitutions  
 Variable levels of resource availability  
 Limitations on partial resource allocation  

 
The above factors determine the tools and techniques that can be used for 

resource management. 
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7.2    RESOURCE ALLOCATION IN PROJECT 
 
Basic CPM and PERT approaches assume unlimited resource availability in 

project network analysis. In this section, both the time and resource requirements of 
activities are considered in developing schedules. Projects are subject to three major 
constraints: time limitations, resource constraints, and performance requirements. 
Since these constraints are difficult to satisfy simultaneously, trade-offs must be 
made. The smaller the resource base, the longer the project schedule. The quality of 
work may also be adversely affected by poor resource allocation strategies. 

Good planning, scheduling, and control strategies must be developed to 
determine what the next desired state of a project is, when the next state is expected 
to be reached, and how to move toward that next state. Resource availability as well 
as other internal and external factors will determine the nature of the progress of a 
project from one state to another. Network diagrams, Gantt charts, progress charts, 
and resource loading graphs are visual aids for resource allocation strategies. One of 
the first requirements for re-source management is to determine what resources are 
required versus what resources are available. Table 7.1 shows a model of a resource 
availability data. The data is essential when planning resource loading strategies for 
resource-constrained projects. 

 
Table 7.1 Format for Resource Availability Data 

Resource 
Type 

Description 
Job 

Function 
When 

Available 
Duration of 
Availability 

How 
many 

1 Manager Planning 3 10 1 
2 Analyst Scheduling Now Indefinite 3 
3 Engineer Design Now 36 2 

… … … … … …. 
… … … … … … 
n Operator Machining Immediate Indefinite 12 

 
7.3    RESOURCE-CONSTRAINED SCHEDULING  

 
A resource-constrained scheduling problem arises when the available re-

sources are not enough to satisfy the requirements of activities that can be performed 
concurrently. To satisfy this constraint, sequencing rules (also called priority rules, 
activity urgency factor, scheduling rules, or heuristics) are used to determine which of 
the competing activities will have priority for resource allocation. Several optimum-
yielding techniques are available for generating resource-constrained schedules. 
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Unfortunately, the optimal techniques are not generally used in practice because of 
the complexity involved in implementing them for large projects.  

Even using a computer to generate an optimal schedule is sometimes 
cumbersome because of the modeling requirements, the drudgery of lengthy data 
entry, and the combinatorial nature of interactions among activities. However, 
whenever possible, effort should be made in using these methods since they provide 
the best solution.  

Most of the available mathematical techniques are based on integer 
programming that formulates the problem using and 1 indicator variables. The 
variables indicate whether or not an activity is scheduled in specific time periods. 
Three of the common objectives in project network analysis are to minimize project 
duration, to minimize total project cost, and to maximize resource utilization. One or 
more of these objectives are attempted, subject to one or more of the constraints 
below:  

1. Limitation on resource availability. 
2. Precedence restrictions. 
3. Activity-splitting restrictions. 
4. Non-preemption of activities. 
5. Project deadlines. 
6. Resource substitutions. 
7. Partial resource assignments. 
8. Mutually exclusive activities.  
9. Variable resource availability.  
10. Variable activity durations. 
 
Instead of using mathematical formulations, a scheduling heuristic uses 

logical rules to prioritize and assign resources to competing activities. Many 
scheduling rules have been developed in recent years. Some of the most frequently 
used ones are presented here. 

 
7.4    RESOURCE ALLOCATION RULES  

 
Resource allocation heuristics facilitate ease of scheduling large projects 

subject to resource limitations. Some heuristics are very simple and intuitive, while 
others require computer implementations. Several scheduling heuristics have been 
developed in recent years. Many of these are widely applied to real projects. Many 
project management software packages use proprietary resource allocation rules that 
are not transparent to the user. A good scheduling heuristic should be simple, 
unambiguous, easily understood, and easily executable by those who must use it. The 
heuristic must be flexible and capable for resolving schedule conflicts. When users 
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trust and use a scheduling heuristic, then project scheduling becomes an effective 
communication tool in project management. Some of the most frequently used 
scheduling rules are presented below.  

 
ACTlM (Activity Time): ACTIM (Whitehouse and Brown, 1979) is one of the earlier 
activity sequencing rules. The rule was developed by George H. Brooks and used in 
his algorithm, Brooks' algorithm (Brooks and White, 1965; Bedworth, 1973). The 
original algorithm considered only the single project, single resource case, but it lends 
itself to extensions for the source cases. The ACTIM scheduling heuristic represents 
the maximum time that an activity controls in the project network on any one path. 
This is represented as the length of time between when the activity finishes and when 
the project finishes. It is computed for each project activity by subtracting the 
activity's latest start time from the critical path time as shown below:  

 
ACTIM = (Critical path time) - (Activity latest start time) 

 
ACTRES (Activity Resource): ACTRES is a scheduling heuristic proposed by 
(1973). This is a combination of the activity time and resource requirements. It is 
computed as 

ACTRES = (Activity time) (Resource requirement) 
 
For multiple resources, the computation of ACTRES can be modified to account for 
various resource types. For this purpose, the resource requirement can be replaced by 
a scaled sum of resource requirements over different resource types. 

 
TIMRES (Time Resources): TIMRES is another priority rule proposed by Bedworth 
(1973). It is composed of equally weighted portions of ACTIM and ACTRES. It is 
expressed as 

TIMRES = 0.5(ACTIM) + 0.5(ACTRES) 
 

GENRES: GENRES is a search technique proposed by Whitehouse and Brown 
(1979) as an extension of Brooks' algorithm (Brooks and White, 1965). It is a 
modification of TIMRES with various weighted combinations of ACTIM and 
ACTRES. GENRES is implemented as a computer search technique whereby 
iterative weights (w) between 0 and 1 are used in the following expression: 

 
GENRES = (w)(ACTIM) + (1 - w)(ACTRES) 

ROT (Resource Over Time): ROT is a scheduling criterion proposed by Elsayed 
(1982). It is calculated as the resource requirement divided by the activity time: 
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The resource requirement can be replaced by the scaled sum of resource 

requirements in the case of multiple resource types with different units. 
 

CAF (Composite Allocation Factor): CAF is a comprehensive rule developed by 
Badiru (1988c). For each activity i, CAF is computed as a weighted and scaled sum 
of two components RAF (resource allocation factor) and SAF (stochastic activity 
duration factor) as follows: 
 

CAFi = (w)RAFi + (1-w)SAFi 
 
where w is a weight between 0 and 1. RAF is defined for each activity i as 

 
where,  
xij = number of resource type j units required by activity i  
yj = Max{xij}, maximum units of resource type j required 
ti = the expected duration of activity i  
R = the number of resource types 
 

RAF is a measure of the expected resource consumption per unit time. In the case of 
multiple resource types, the different resource units are scaled by the yj component in 
the formula for RAF. This yields dimensionless quantities that can be summed in the 
formula for RAF. The RAF formula yields real numbers that are expressed per unit 
time. To eliminate the time -based unit, the following scaling method is used: 

 
The above scaling approach yields unitless values of RAF between 0 and 100 

for the activities in the project. Resource-intensive activities have larger magnitudes 
for RAF and therefore require a higher priority in the scheduling process. To 
incorporate the stochastic nature of activity times in a project schedule, SAF is 
defined for each activity i as 

 
where, 
ti = expected duration for activity i  
si = standard deviation of duration for activity i  
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si/ti = coefficient of variation of the duration of activity i 
 

It should be noted that the formula for SAF has one component (ti) with units 
of time and one component si/ti with no units. To facilitate the required arithmetic 
operation, each component is scaled as shown below: 

 
When the above scaled components are plugged into the formula for SAF, we 

automatically obtain unitless scaled SAF values that are on a scale of 0 to 100. 
However, the 100 weight will be observed only if the same activity has the highest 
scaled ti value and the highest scaled si/ti, value at the same time. Similarly, the 0 
weight will be observed only if the same activity has the lowest scaled ti value and the 
lowest scaled si/ti value at the same time. The scaled values of SAF and RAF are now 
inserted in the formula for CAF as shown below: 

 
CAFi = (w) {scaled RAFi} + (1 - w) {scaled SAFj} 

 
To ensure that the resulting CAF values range from 0 to 100, the following 

final scaling approach is applied: 

 
It is on the basis of the magnitudes of CAF that an activity is assigned a 

priority for resource allocation in the project schedule. Activities with larger values of 
CAF have higher priorities for resource allocation. An activity that last longer, 
consumes more resources, and varies more in duration will have a larger magnitude 
of CAF. 

 
RSM (Resource Scheduling Method): RSM was developed by Brand, Meyer, and 
Shaffer (1964). The rule gives priority to the activity with the minimum value of dij 
calculated as follows:  

dij = increase in project duration when activity j follows activity i  
    = Max {0, (ECi - LSj)}  
where, EC is the earliest completion time of activity i and LS; is the latest 

start time of activity j. Competing activities are compared two at a time in the 
resource allocation process. 
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GRD (Greatest Resource Demand): This rule gives priority to the activity with the 
largest total resource -unit requirements. The GRD measure is calculated as 

 
where  
gj = priority measure for activity j  
dj = duration of activity j  
rij = units of resource type i required by activity j per period  
n = number of resource types (resource units are expressed in common units) 
 

GRU (Greatest Resource Utilization): The GRU rule assigns priority to activities 
that, if scheduled, will result in maximum utilization of resources or minimum idle 
time. For large problems, computer procedures are often required to evaluate the 
various possible combinations of activities and the associated utilization levels. 

 
Most Possible Jobs: This approach assigns priority in such a way that the greatest 
numbers of activities are scheduled in any period.  
 
Other Scheduling Rules  
Most total successors  
Most critical activity  
Most immediate successors  
Any activity that will finish first  
Minimum activity latest start (Min LS)  
Maximum activity latest start (Max LS)  
Minimum activity earliest start (Min ES)  
Maximum activity latest completion (Max LC)  
Minimum activity earliest completion (Min EC)  
Maximum activity earliest completion (Max EC)  
Minimum activity latest completion (Min LC)  
Maximum activity earliest start (Max ES)  
Minimum activity total slack (Min TS)  
Maximum activity total slack (Max TS)  
Any activity that can start first  
Minimum activity duration  
Maximum activity duration  

 
The project analyst must carefully analyze the prevailing project situation and 

decide which of the several rules will be most suitable for the resource allocation 
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requirements. Since there are numerous rules, it is often difficult to know which rule 
to apply. Experience and intuition are often the best guide for selecting and 
implementing scheduling heuristics. Some of the shortcomings of heuristics include 
subjectivity of the technique, arbitrariness of the procedures, lack of responsiveness 
to dynamic changes in the project scenario, and oversimplified assumptions. 

 
7.5    CATEGORISATION OF RESOURCE SCHEDULING TECHNIQUES 

 
In the following paragraphs, heuristic scheduling techniques are introduced. 

The resource constrained scheduling problems can be categorized into four types as 
follows; 

i. Single-Resource, Single-Capacity 
ii. Single-Resource, Multi-Capacity 

iii. Multiple-Resource, Single-Capacity 
iv. Multiple-Resource, Multiple-Capacity 

 
Single-Resource Single-Capacity problems are equivalent to classical Single 

Machine scheduling problems and, are of no practical use in project scheduling. Other 
three types of problems are described in this chapter. 
 

7.6    SINGLE-RESOURCE MULTI-CAPACITY SCHEDULING 
 

In this type of scheduling, only one type of resource is considered in multiple 
quantities. For example, each activity of a construction project requires services of 
labor force. The management has a fixed number of workers in its pool. City transport 
system requires the services of bus drivers. The management has specific number of 
drivers in its staff. A telephone company requires the services of technicians to install 
telephone exchange. The company has a certain number of technicians available on 
its list. When project schedule is prepared, both precedence as well as resource 
constraints have to be taken care off. A heuristic methodology called ACTIM is 
presented to develop project schedule for this type of resource constrained problem. 
 
ACTIM Procedure: 

i) Develop project network to find Cmax 
ii) Determine for each activity, the maximum time it controls through 

network. Call it ACTIM score. Rank the activities in decreasing ACTIM 
sequence. 

iii) Compute jS  for all unscheduled tasks. Schedule tasks according to 

ACTIM rank. 
iv) If all tasks are finished, STOP. Otherwise go to step (3). 
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Example 7.1 
Consider following project network in Figure 7.1. Develop project schedule. 

The resource requirements for this project are workers. Each activity requires one 
worker for the execution. At present two workers are available. 

 
 

Figure 7.1 Project Network For Example 7.1 
 
Solution:  

Find ACTIM for each activity 
Job A B C D E F G 

ACTIM 16 11 16 11 4 8 16 
Rank activities according to ACTIM. Hence, ordered list of activities is 
{A, C, G, B, D, F, E} 
Find earliest start time jS  for all activities from figure 7.2 

 
Figure 7.2 Project Network with Early star and completion time 
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The activities with zero earliest start time are {A, C, G} as shown below in Table 7.2 
 

Table 7.2 Activities with Zero Earliest Start time 
Activity A C G B D F E 

jP  5 5 16 4 7 8 4 
'
jS  0 0 0 5 5 5 12 
'
jC  5 5 16 9 12 13 16 

 
At time zero {TNOW = 0}, three activities with equal rank are schedulable. These 
activities are {A, C, G}. However, two workers are available. Hence, schedule 
activities A and G at time zero. Gantt chart is shown below in Figure 7.3. 

A

G

0 2 4 6 8 10 12 14 16

Worker 1

Worker 2

 
 

Figure 7.3 Gantt chart for partial schedule 
 
Note, worker 1 will be free at time 5, and, worker 2 will be free at time 16. 
 
Update jS  for unscheduled activities in the network as shown in Figure 7.4.  (Add an 

arc from activity A to activity C) 
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Figure 7.4 Project network with new early start and completion time 

 
New jS  values for unscheduled activities are; 

 
Note, activities B and C have earliest 

start time of 5. Since, Worker 1 is available 
at time, t = 5, schedule next activity at time 
5. So, TNOW = 5. Schedulable activities are 
{C, B}. Since, activity C has higher ACTIM 
rank than activity B, schedule C at time 5.  

Updated Gantt chart is shown below. 
 

A C

G

0 2 4 6 8 10 12 14 16

Worker 1

Worker 2

 
 

Figure 7.5 Gantt chart for partial schedule. 
 

Note that worker 1 will be free now at time 10. Update jS  values for 

unscheduled activities as shown in Figure 7.6. (Add arc from C to B) 
 

Activity C B D F E 

jP  5 4 7 8 4 
'
jS  5 5 10 10 17 
'
jC  10 9 17 18 21 

(5, 9) 

(5, 10) 

(0, 16) 

(0, 5) 

(17, 21) 

Start Time Completion Time 

A, 5
SINK

E, 4

C, 5

(21, 21) 

(10, 17)

(10, 18) 

B, 4

F, 8

G, 16 

D, 7
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Figure 7.6 Project network with new early start and completion time 
 
New jS  values for unscheduled activities are; 

 
Activities B, D and F are schedulable at 

time t=10. Only worker 1 is available at this time. 
Since activity B is higher in ACTIM rank, 
schedule activity B at time t = 10. The updated 
Gantt chart is shown below. 
 
 

A C B

G

0 2 4 6 8 10 12 14 16

Worker 1

Worker 2

 
 

Figure 7.7 Gantt chart for partial schedule. 
 

Update jS  values of unscheduled tasks as shown in Figure 7.8 (add arcs from 

B to D and, from B to F) 

Activity B D F E 

jP  4 7 8 4 
'
jS  10 10 10 17 
'
jC  14 17 18 21 

(10, 14) 
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(0, 16) 

(0, 5) 

(17, 21) 
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G, 16 
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Resource 
Constraint 
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Figure 7.8 Project network with new early start and completion time 

 
 

Calculate '
jS  values for unscheduled activities; 

 
Activities D and F are schedulable at time 14. 

Only Worker 1 is available at time 14.  
Hence, TNOW = 14.  Since activity D is higher 

in ACTIM rank, schedule D at time 14. Update Gantt 
chart as follows:  

 
 

A C B D

G

0 5 10 15 20 25

Worker 1

Worker 2

 
 

Figure 7.9 Gantt chart for partial schedule. 
 
Note, worker 2 will be free at time t = 16. 
Calculate new values of early start and completion times (Figure 7.10) 

Activity D F E 

jP  7 8 4 
'
jS  14 14 21 
'
jC  21 22 25 

(10, 14) 

(5, 10) 

(0, 16) 

(0, 5) 
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Start Time Completion Time 
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E, 4

C, 5

(25, 25) 

(14, 21)

(14, 22) 

B, 4

F, 8

G, 16 

D, 7

Resource 
Constraint 
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Figure 7.10 Project network with new early start and completion time 

 
Calculate '

jS  values for unscheduled activities; 

 
Worker 2 is available at t = 16. Schedule 

activity F at time 16 and, engage worker 2. TNOW = 
16, Schedule F. 
Updated Gantt chart is shown below. 
 
 

A C B D

G F

0 5 10 15 20 25

Worker 1

Worker 2

 
 

Figure 7.11 Gantt chart for partial schedule. 
 

Worker 1 is available at time 21. Schedule E at time 21 and engage worker 1. 
The complete schedule is shown by Gantt chart in Figure 7.12. Project completion 
time;  Cmax = 25 

Activity F E 

jP  8 4 
'
jS  14 21 
'
jC  22 25 

(10, 14) 

(5, 10) 

(0, 16) 

(0, 5) 
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Start Time Completion Time 

A, 5
SINK
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(25, 25) 

(14, 21)
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F, 8
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D, 7

Resource 
Constraint 
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A C B D E

G F

0 5 10 15 20 25

Worker 1

Worker 2

 
 

Figure 7.12 Gantt chart for complete project schedule 
 
Example 7.2 

Revise project schedule for Example 7.1 if three workers are available. 
 
Solution: 

The ranked list of activities according to ACTIM is as under; 
{A, C, G, B, D, F, E} 

The earliest start time '
jS  for all activities is shown in table 7.3; 

 
Table 7.3 Activities with Zero Earliest Start time 

Activity A C G B D F E 

jP  5 5 16 4 7 8 4 

'
jS  0 0 0 5 5 5 12 

'
jC  5 5 16 9 12 13 16 

 
 
At time zero {TNOW = 0}, three activities with equal rank are schedulable. 

These activities are {A, C, G}. Since three workers are available, schedule activities 
A, C and G at time zero. Gantt chart is shown below in figure 7.13. 
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A

C

G

0 2 4 6 8 10 12 14 16

Worker 1

Worker 2

Worker 3

 
 

Figure 7.13 Gantt chart for partial schedule 
 

Note, workers 1 and 2 will be free at time 5, and, worker 3 will be free at time 
16. The new available times for workers are as follows: 

Worker 1 Worker 2 Worker 3 
5 5 16 

Update '
jS  for unscheduled activities in the network as shown in Figure 7.14 

(Add an arc from activity C to activity B) 

 
Figure 7.14 Project Network with early start and completion time 
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New '
jS  values for unscheduled activities are; 

 
Note, activities B, D and F have 

earliest start time of 5. Since, Workers 1 and 
2 are available at time, t = 5, schedule next 
activity at time 5. So, TNOW = 5. 
Schedulable activities are {B, D, and F}. 
Since, activities B and D have higher   

 
ACTIM rank than activity F, schedule activities B and D at time 5. Updated 

Gantt chart is shown in Figure 7.15. 
 

A B

C D

G

0 2 4 6 8 10 12 14 16

Worker 1

Worker 2

Worker 3

 
 

Figure 7.15 Gantt chart for three workers assignment. 
 
The new available times for workers are as follows: 

Worker 1 Worker 2 Worker 3 
9 12 16 

 
Note, worker 1 will be free now at time 9.  Add arc from B to F in the network 

diagram and find new '
jS  values for unscheduled activities as shown in Figure 7.16.  

 
 
 
 
 
 
 
 

Activity B D F E 

jP  4 7 8 4 
'
jS  5 5 5 12 
'
jC  9 12 13 16 
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Figure 7.16 Project Network with early start and completion time 

New '
jS  values for unscheduled activities are; 

 
Schedule activity F at time t = 9 and, engage 
worker 1. Similarly, schedule activity E at 
time t = 12, and, engage worker 2. Final 
schedule is shown in completed Gantt chart 
below. Note that Cmax = 17. 
 

A B F

C D E

G

0 2 4 6 8 10 12 14 16 18

Worker 1

Worker 2

Worker 3

 
 

Figure 7.17 Gantt chart for complete project schedule three workers assignment 
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7.7    MULTIPLE-RESOURCES SINGLE-CAPACITY SCHEDULING 
 

This type of scheduling problem is encountered in project management where 
more than one type of resource is included in planning. For example; housing 
construction company will require services of various categories of work force; 
masons, plumbers, electricians, carpenters, steel fixers and ordinary labors. For this 
class of problems, it is assumed that quantity of each resource required is exactly one. 
An algorithm for generating active schedule is presented below to solve this class of 
problems. 
 
7.2.1 Active Schedule Generation 

i.  From the project data, find early completion times of all activities ( '
jC ) 

ii.  Let’s define; 
β = set of unscheduled activities 

   k = iteration index  
   j = activity number 
   k

jC = early completion time of jth activity on kth iteration 

   R  = Particular resource group. 
 
Determine ∆  where 

 

)C  (  min∆ k
jβj∈

=           k = 0, 1, 2, ...... 

 
iii. Check for any conflicts. 

Let’s the activity whose completion time is ∆  [from step (ii)] be 
called j* and, let j* ∈ R .  For each activity j in resource group R , 
compute j

k
*j pC + . The activity j must satisfy these properties; 

   a) βR    j ∩∈  
   b) *j     j ≠  

   If   k
jj

k
*j CpC ≤+  , then activities j and j* are not in conflict.  

 
iv. If all the unscheduled activities j  in resource group R are not in conflict 

with activity j*, then schedule j*. If β is { }, then STOP, otherwise go to 
step (ii). 



Chap. 8 / Resource Constrained Project Scheduling 

Algorithms for Sequencing & Scheduling 7. 21

v. If there is a conflict between j* and any activity j, then arbitrarily select a 
conflicting activity and schedule it. Update all completion times. If β is { 
}, then STOP, otherwise go to step (ii). 

 
Example 7.3 

The precedence graph of a four activities is given in Figure 7.18. The 
activities belong to the following two resource groups. 
  R1 = {T1, T4}                          R2 = {T2, T3} 

Generate all possible schedules. Indicate active, semi-active and infeasible 
schedules also. 

 
Figure 7.18 Precedence Graph 

 
Generate all possible schedules and, find minimum Cmax value schedule. 
 
Solution: 

The following four schedules are possible. 
 

 1: 
⎭
⎬
⎫

⎩
⎨
⎧

→
→

32

41
TT
TT

 2: 
⎭
⎬
⎫

⎩
⎨
⎧

→
→

23

41
TT
TT

 3: 
⎭
⎬
⎫

⎩
⎨
⎧

→
→

32

14
TT
TT

 4:     
⎭
⎬
⎫

⎩
⎨
⎧

→
→

23

14
TT
TT

 

 
Precedence graph for schedule 1 is shown in Figure 7.19. 

 
Figure 7.19 Precedence Graph for schedule 1 

T4, 5 T2, 2 

T3, 4 T1, 3 
Activity Duration 

Activity Number 

Resource 
Precedence 

T4, 5 T2, 2 

T3, 4 T1, 3 

Activity Duration 

Activity Number 
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The Gantt chart for schedule 1 is shown in Figure 7.20.  It is an active-
schedule. The value of Cmax = 8 

T1 T4

T2 T3

0 1 2 3 4 5 6 7 8

R1

R2

 
 Figure 7.20 Gantt chart for schedule 1 

 
Precedence graph for schedule 2 is shown in Figure 7.21 

 
Figure 7.21 Precedence Graph for schedule 2 

 
The Gantt chart for schedule 2 is shown in Figure 7.22. It is semi-active 

schedule. The value of Cmax = 14 

T1 T4

T3 T2

0 2 4 6 8 10 12 14

R1

R2

 
Figure 7.22 Gantt chart for schedule 2 

T4, 5 T2, 2 

T3, 4 T1, 3 
Activity Duration 

Activity Number 

Resource 
Precedence 
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Precedence graph for schedule 3 is shown in Figure 7.23. 

 
 

Figure 7.23 Precedence Graph for schedule 3 
 

The Gantt chart for schedule 3 is shown in Figure 7.24. It is semi-active 
schedule. The value of Cmax = 14 

T4 T1

T2 T3

0 2 4 6 8 10 12 14

R1

R2

 
Figure 7.24 Gantt chart for schedule 3 

 
Precedence graph for schedule 4 in figure 7.25 is infeasible because it forms a cycle. 
 

 
Figure 7.25 Precedence Graph for schedule 3 

 
 

Activity Duration 

T4, 5 T2, 2 

T3, 4 T1, 3 

Activity Number 

Resource 
Precedence 

Activity Duration 

T4, 5 T2, 2 

T3, 4 T1, 3 

Activity Number 

Resource 
Precedence 
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Example 7.4  
 Solve Example 7.3 using active schedule generation algorithm. 
 
Solution: 
 
Iteration 1 

Step (i)  Find early completion time of all activities. 
 

3 7
C0 = 

2 7
 

Step (ii) Minimum completion time is 2;  ∆  = 2 = 0
T2

C  

Step (iii) Check conflicts in Resource group 2 for activity T2 with other 
activities. 

 

yes742CtC 0
TT

0
T 332

→≤+→≤+  (No conflict between T2 & T3) 

 
Step (iv) Schedule activity T2 t = 0, 2C  ,0S

22 TT ==  

   So, scheduled activities set = {T2},    β = {T2, T3, T4} 
 
Iteration 2 

Step (ii) Select next job with minimum value of 0
iC ; 0

T1
C3 ==∆  

Step ( iii)  Check for conflict between activities T1 and T4 in resource 
group R1. 

 

No7853CtC 0
TT

0
T 141

→≤=+→≤+ (Conflict between T1 and T4) 

 
 Step (iv)  (b) Let’s schedule activity T1 ;  3C  ,0S

11 TT ==  

   Scheduled activities set = {T2, T1},    β = {T3, T4} 
 
Iteration 3 

Add resource constraint arc from T1 to T4 and, T2 to T3 as shown in Figure 
7.26. 
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Figure 7.26 Resource constraint arcs between T1/T4 and T2/T3 

 
Compute new completion times for unscheduled activities 
 

3 7
 C1 = 

2 8
 

Step (ii) Minimum completion time for unscheduled activities is 7; 

∆= 1
T3

C =7. Activity T3 is the last activity in its group,  

so schedule T3; 7C  ,5S
33 TT ==  

    Last unscheduled activity is T4; schedule it. 8C ,S
44 T3T == . 

 
Comment: Active schedule generation algorithm generates ‘good’ solution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T4, 5 T2, 2 

T3, 4 T1, 3 
Activity Duration 

Activity Number 

Resource 
Precedence 
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Example 7.5 
A precedence network with activities and durations is shown in Figure 7.27. 
 

 
 

Figure 7.27 Project Network for Example 7.5 
 

The activities belong to two resource groups as follows: 
R1 = {A, E, F}  R2 = {B, C, D} 
Generate active schedule using early completion time approach. 

 
Solution: 
Iteration 1 

Step (i)  Find early completion time of all activities. 
 

- 5 7 
3 6 -  C0 = 
- 7 10 

 
Step (ii) Minimum completion time is 3;  ∆  = 3 = CA

0 

Step (iii) check for conflicts in Resource group 1 for activity A with 
other activities. 

 

yes713CtC 0
EE

0
A →≤+→≤+  No conflict between A & E 

yes1033CtC 0
FF

0
A →≤+→≤+  No conflict between A & F 

 
Step (iv) Schedule activity A at t = 0, SA = 0, CA = 3 

   Scheduled activities set = {A},    β = {B, C, D, E, F} 
 

A, 3 SINK 

E, 1 B, 2 

C, 3 

F, 3 D, 4 
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Iteration 2 

Step (ii) Select next job with minimum value of 0
iC ; 0

BC5 ==∆  
 

Step ( iii)  Check for conflict between jobs B , C and D in resource group 
R2. 

 

No6835CtC 0
CC

0
B →≤=+→≤+  

       Conflict between B, C, D 

 No7945CtC 0
DD

0
B →≤=+→≤+  

 
Step (iv)  (b) Let’s schedule activity B ;  SB = 2, CB = 5. 

   Scheduled activities set = {A, B},    β = {C, D, E, F} 
 
Iteration 3 

Add resource constraints from B to C and, from B to D (Figure 7.28) 

 
 

Figure 7.28 Project Network with new arcs emanating from node B 
 
Compute new completion times 
 

- 5 9 
3 8 -  C1 = 
- 9 12 

 
 
 
 

A, 3 SINK 

E, 1 B, 2 

C, 3 

F, 3 D, 4 Resource 
Constraints 
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Step (ii) Minimum completion time for unscheduled activities is 8; 

∆= 1
cC =8 

Step (iii) Check conflict between unscheduled activities in group 2; 
 

No81248CtC 1
DD

1
C →≤=+→≤+       {Conflict between C & D}. 

 
Step (iv)  (b) Schedule activity C arbitrarily; SC = 5, CC = 8 

Scheduled activities set = {A, B, C},    β = {D, E, F} 
 
Iteration 4 

Revise the project network for unscheduled activities. Add a resource 
constraint from C to D. Remove the constraint from B to D (Figure 7.29). 
Compute new completion times for unscheduled activities. 

 

 
 

Figure 7.29 Project Network with new arcs emanating from node C 
 
 
New completion times for unscheduled activities are; 
 
 

- 5 9 
3 8 -  C2 = 
- 12 15 

 
 
 

C, 3 A, 3 SINK 

E, 1 B, 2 

F, 3 D, 4 Resource 
Constraints 

(0, 3) (5, 8) 

(3, 5) 
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Step (ii) Minimum completion time from among unscheduled activities 
is 9; 9C2

E ==∆  for activity E.  
Step (iii) Activity E belongs to resource group 1. Activity F is the other 

unscheduled activity in this group. Check conflict between 
activities E and F as follows: 

 
No151239CtC 2

FF
2
E →≤=+→≤+ { No conflict between E & F } 

 
Step (iv)  (a) Schedule activity E;  SE = 8 , CE = 9 

Scheduled activities list = { A , B , C , E },    β = { D , F } 
 
Iteration 5 

Step (ii) Find next lower minimum Cj value in C2. 
Next lower minimum value in C2 is 9. 12C2

D ==∆ . Since, 
activity D is the last activity in resource group 2, schedule D; 
SD = 8, CD = 12.  

 
Last remaining activity is F , schedule F, SF = 12, CF = 15 

 
Gantt chart for resources R1 and R2 is shown in Figure 7.30 

A E F

B C D

0 2 4 6 8 10 12 14 16

R1

R2

 
Figure 7.30 Final Gantt chart 
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A D 

C 

B 

7.8     MULTIPLE-RESOURCES MULTI-CAPACITY SCHEDULING 
 

Often, project managers are asked to execute large projects where resources 
are of diverse variety. Various types of resources including man power, equipment, 
machine, tools, transportation vehicles, information processing resources, expert 
knowledge and supervisory staff are required with different levels at different time. 
This type of scheduling problem presents real world scheduling scenario. The optimal 
solution for this problem is very difficult. The solution methodology aims at 
minimizing Cmax while keeping resource utilization within feasible bounds. 
 
Example 7.6 

Consider a 4-activity network as follows: 
 
 
 
 
 
 
 
Activities process times and resource requirements are given in Table 7.4. Find Cmax 
and draw Gantt chart. 
 

Table 7.4 Resources data For Example 7.6 
 

Activity (j) pj Rα Rβ 

A 5 2α  

B 6  3β 

C 7 4α β 

D 3 2α  

Maximum Resource 5α 4β 

Solution: 

Apply CPM technique and find '
jS ,  C'

j  of all activities as shown in Figure 7.31. 
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Figure 7.31 Project Network with early start and completion time 
 
The earliest start and completion times of the activities are shown in Table 7.5. 
 

Activity pj '
jS  '

jC  

A 5 0 5 
B 6 5 11 
C 7 5 12 
D 3 12 15 

Table 7.5 Early start and completion Times 
 

At beginning,  β = {A, B, C, D}, 
Rα = {A, C, D} 
Rβ = {B, C} 

 
Activity A is schedulable at time, t = 0. The resource requirements for activity 

A are shown in Table 7.6. 
 

Table 7.6 Resource requirements for activity A 
 

Resource 
Required 

Resource 
Available 

Activity pj '
jS  Rα Rβ Rα Rβ 

A  5 0 2α --- 5α 4β 
 

The resources for activity A are available. Schedule activity A at time, t = 0. 
The Gantt chart is shown in Figure 7.32. 

A, 5 D, 3 

C, 7 

B, 6 

(0, 5) 

(5, 12)

(12, 15) 

(5, 11) )C,S( '
j

'
j  
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A 

5 

2 

Rα 

Rβ 

A 

5 

2 Rα 

Rβ 
B 

3 

5 

C 

 

C 

12

11

4 

4 

2 

 
 
 
 
 
 
 

Figure 7.32 Initial Gantt chart 
 

Updated information on unscheduled activities is; 
β = {B, C, D},    
Rα ∩ β = {C, D},   
Rβ ∩ β = {B, C} 

Activities B and C can be started as early as at time, t = 5 as shown in Table 7.7 
below.  

Table 7.7 Resource data for activities B & C 
 

Resource 
Required 

Resource 
Available 

Activity pj '
jS  Rα Rβ Rα Rβ 

--- 3β B  6 5 
C  7 5 4α β 

5α 4β 

 
Resources required for activities B and C are available at time, t =5. Schedule 
activities B and C at time, t = 5. Update Gantt chart as shown in Figure 7.33. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.33 Gantt chart with activities A, B and C scheduled. 
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A 

5 

2 
Rα 

Rβ 
B 

3 

5 

C 

 

C 

12

11

4 
2 

D 

4 

15

Update information about unscheduled activities 
  β = {D}, 
 Rα ∩ β = {D}, 
   Rβ ∩ β = Ø 
 
The remaining activity is D. Activity D has earliest start time at t =12 (Table 7.8). 

 
Table 7.8 Resource data for activity D 

 
Resource 
Required 

Resource 
Available 

Activity pj '
jS  α β α β 

D  3 12 --- 4β 5α 4β 
 

Resources required for activity D are available at time, t = 12. Schedule 
activity D at time, t = 12. The updated Gantt chart is shown in Figure 7.34. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.34 Gantt chart for complete schedule. 
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7.9    PRIORITY BOUNDS FOR SCHEDULING  
 

When more than one activity competes for scheduling on resource, there is 
scheduling conflict due to resource scarcity. One activity among the competing set of 
activities is to be assigned to the resource. Selection of an activity will be either done 
randomly or using some type of criteria. Three selection criteria are presented here. 
 
7.9.1 Precedence Based Bound: β1(Tj) 

A first criterion uses precedence-based bound approach. This bound 
represents the length of the critical path in project network if activity Tj is scheduled. 
An example is cited here to demonstrate the bound calculations.  
 
Example 7.7 

A 6-activity project network is shown in Figure 7.35.  

 
Figure 7.35 Precedence Network with T1 already scheduled 

 
The activities belong to resource groups as under: 

R1 = {T1, T5, T6}  R2 = {T2, T3, T4} 
Find the bounds β1(T2), β1(T3) and β1(T4) for the activities in resource group R2. 
Assume activity T1 is already scheduled.  
 
Solution: 

Let β is the set of unscheduled activities. Then, β = {T2, T3, T4, T5, T6} 
 
To find β1(T2), add arcs from T2 to T3 and from T2 to T4; since activities T2 , 
 
T3 and T4 belong to the same group. The updated network is shown in Figure 
7.36. 

 
 

T1, 3 

T2, 2 

T5, 1 

T3, 3 

T6, 3 

T4, 4 
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Figure 7.36 Precedence Network with arcs from T2 to T3 and from T2 

 
Critical path length calculations are shown with earliest start and completion times in 
Table 7.9. 
 

Activity 
(j) 

Early Start Time 
'
jS  

Early Finish Time 
'
jC  

Activity 
Significance 

T1 0 3 Critical 
T2 3 5 Critical 
T3 5 8  
T4 5 9 Critical 
T5 8 9  
T6 9 12 Critical 

 
Table 7.9 Early start and completion time of activities 

 
Hence, β1(T2) = 12. Similarly, it can be proved that β1(T3) = 13, and, β1(T4)=13 
 
 
 
 
 
 
 
 
 
 
 
 

T1, 3 

T2, 2 

T5, 1 

T3, 3 

T6, 3 

T4, 4 
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7.9.2 Resource Based Bound 
This bound is used to resolve scheduling conflict using characteristics of the 

unscheduled activities in the resource groupings. The bound is designated as β2, and 
expressed as under; 

⎭
⎬
⎫

⎩
⎨
⎧

+= ∑
∩∈ βRT

T

^

kkj2
kk

k
pSmax)(Tβ  

Where,   
^

kS = Early start time of any unscheduled activity on resource type k.    
(k = 1, 2, ...) 

β   = Set of unscheduled activities. 
Tj  = Activity whose lower bound is to be computed. 
Tk = Activity belonging to resource type RK and still unscheduled ∈  

(β). { jk TT ≠ }. 

kTp = Duration of activity Tk. 

 
Example 7.8 

For the precedence network shown below, activity T1 is already scheduled. 
Compute β2(T2). Resource groupings are as under: 

R1 = {T1, T5, T6}  R2 = {T2, T3, T4} 

Figure 7.37 Precedence Network with T1 already scheduled 
 

Solution: 
Since activity T1 is scheduled already, β = {T2, T3, T4, T5, T6}.  Activity T2 

belongs to group R2. Add resource constraint arcs from T2 to T3 and T2 to T4 as shown 
in Figure 7.38 
 

T1, 3 

T2, 2 

T5, 1 

T3, 3 

T6, 3 

T4, 4 
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Figure 7.38   Precedence Network with arcs from T2 to T3 T2 to T4 

 

=1
^
S Early start time of unscheduled activity in Resource type R1 from Figure 
7.38 is; 

 

8S1
^

≅  
 
 
 
 

=2
^
S Early start time of unscheduled activity in Resource type R2 from Figure 
7.38 is; 

5S2
^

≅  
 
 
 
 
 

Hence,  

12
12435ppS

12318ppS
max)T(

43
^
2

65
^
1

22 =
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=++=++

=++=++
≅β  

 
 
 
 

Activity =1
^
S  

5T  8 
T6 8 

Activity =2
^
S  

T3 5 

T4 5 

T1, 3 

T2, 2 

T5, 1 

T3, 3 

T6, 3 

T4, 4 

(0, 3) 

EST ECT 
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Example 7.9 
For the precedence network shown in Fig. 7.37, compute β2(T3). Resource 

groupings are as under: 
R1 = {T1, T5, T6}  R2 = {T2, T3, T4} 

 
Solution: 

Since activity T1 is scheduled already, β = {T2, T3, T4, T5, T6}. Activity T3 
belongs to group R2. Add resource constraint arcs from T3 to T2 and T3 to T4 as shown 
in Figure 7.39. 

 
Figure 7.39 Precedence Network with arcs from T3 to T2 and from T3 to T4 

 

=1
^
S Early start time of unscheduled activity in Resource 
type R1 from Figure 7.39 is; 
 

8 )10  ,  8(  min  S1
^

=≅  
 
 

=2
^
S Early start time of unscheduled activity in Resource 
type R2 from Figure 7.39 is; 
 

6S2
^

≅  
 

 

Hence, 12
12426ppS

12318ppS
max)T(

42
^
2

65
^
1

32 =
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=++=++

=++=++
≅β  

Activity 
=1

^
S  

T5 8 

T6 10 

Activity 
=2

^
S  

T2 6 

T4 6 

T1, 3 

T2, 2 

T5, 1 

T3, 3 

T6, 3 

T4, 4 

(0, 3) 

EST ECT 
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Example 7.10 
For the precedence network shown in Fig 7.37, compute β2(T4). Resource 

groupings are as under: 
R1 = {T1, T5, T6}  R2 = {T2, T3, T4} 

 
Solution: 

Since activity T1 is scheduled already, β = {T2, T3, T4, T5, T6}. Activity T4 
belongs to group R2. Add resource constraint arcs from T4 to T2 and T4 to T3 as shown 
in Figure 7.40. 

Figure 7.40 Precedence Network with arcs from T4 to T2 and from T4 to T3 
 
 

=1
^
S Early start time of unscheduled activity in Resource 
type R1 from Figure 7.40 is; 
 

10  S1
^

≅  
 

=2
^
S Early start time of unscheduled activity in Resource 
type R2 from Figure 7.40 is; 
 

7S2
^

≅  
 

 

14
12327ppS

143110ppS
max)T(

32
^
2

65
^
1

42 =
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=++=++

=++=++
≅β  

 

Activity =1
^
S  

T5 10 

T6 10 

Activity 
=2

^
S  

T2 7 

T3 7 

T1, 3 

T2, 2 

T5, 1 

T3, 3 

T6, 3 

T4, 4 

(0, 3) 

EST ECT 
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The bound β2 for three activities in resource group R2 are shown in the tree in 
Figure 7.41. Hence, either activity T2 or T3 can be selected for scheduling. 
 

 
 

Figure 7.41 Resource based bound β2 values for R2 group activities 
 
 
7.9.3 Hybrid Bound 

It is a combination of resource as well as precedence based bounds and, is 
denoted by β3(Tj). To compute β3(Tj), proceed as follows: 

 
Calculate jπ  for each activity Tj,  

Where,  
≅π j Length of the longest path in the sub network consisting of all successors 

of Tj 
Order the unscheduled activities in order of non-decreasing values of π in each 
resource grouping Rk such that 

   
  Rk  ∩ β  ≠  φ 
Iteratively, calculate λj; 

]j[]j[1jj p)max( +π+λ=λ −     ;   j = 1, 2, ..., nk 

Where,  
p[j] =  duration of activity j 
[j] = sequence position of activity j in Resource grouping Rk   
nk = no of unscheduled activities in Resource grouping Rk [Rk  ∩ β] 

 
Let the last λj computed be equal to Wk, 
  i.e.;  Wk knλ≡   

Then,  
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+=β kk
^

k
j3 WSmax)T(  

 

β2(T3)=12β2(T2)=12 β2(T4)=14 
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Example 7.11 
For the precedence network shown in Figure 7.42, activity T1 is already 

scheduled. Compute β3(T2). Resource groupings are as under: 
 

R1 = {T1, T5, T6}  R2 = {T2, T3, T4} 

 
Figure 7.42 Precedence Network with T1 already scheduled 

 
Solution 

Since activity T1 is scheduled already, and, activity T2 is being scheduled,  
β = {T3, T4, T5, T6}.  

R1  ∩ β = {T5, T6},  n1 = 2 
R2  ∩ β = {T3, T4},  n2 = 2 

Compute πj’s 
π5 = 0,  π6 = 0,  π4 = 3,  
π3 = 3,  π2 = 1,  π1 = 7 

Order the unscheduled activities in R1 and R2 according to non-decreasing values of 
corresponding πj’s.  
Hence, R1 ∩ β = {T5, T6}, and, R2 ∩ β = {T3, T4}. 
Calculate W1 for R1 ∩ β; 

{ }
{ } 43}0 , 1max{pmax

51}0 , 0max{pmax

6612

5501
=+=+π+λ=λ

=+=+π+λ=λ
 

    So,  4W 21 =λ≡  
Calculate W2 for R2 ∩ β; 

{ }
{ } 10  4  } 3 , 6 max{pmax

6 3  } 3 , 0 max{pmax

4402

3301
=+=+π+λ=λ

=+=+π+λ=λ
 

    So,  10W 22 =λ≡  

T1, 3 

T2, 2 

T5, 1 

T3, 3 

T6, 3 

T4, 4 

(0, 3) 

EST ECT 
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To find k
^
S  values, add resource constraint arcs in the network. Since, activity 

T2 belongs to group R2, add resource constraint arcs from T2 to T3 and T2 to T4 as 
shown in Figure 7.43. 

Figure 7.43 Precedence Network with arcs from T2 to T3 and from T2 to T4 
 

=1
^
S Early start time of unscheduled activity in Resource 
type R1 from Figure 7.43 is; 

8S1
^

≅  
 

=2
^
S Early start time of unscheduled activity in Resource 
type R2 from Figure 7.43 is; 
 

5S2
^

≅  
 
 
Compute β3(T2) by formula; 
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Activity =1
^
S  

T5 8 
T6 8 

Activity =2
^
S  

T3 5 

T4 5 

T1, 3 

T2, 2 

T5, 1 

T3, 3 

T6, 3 

T4, 4 

(0, 3) 

EST ECT 
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Example 7.12 
 A 9-activities project network is shown in Figure 7.44.     
 
 
 
 
 
 
 
 
 
 
 

Figure 7.44 Precedence Network for Example 8.13 
 
Resource groupings are as under: 

R1 = {A, B, G}  R2 = {D, E, C}  R3 = {F, H, I} 
 
At present, all activities are unscheduled. Suppose activity B is to be scheduled. 
Compute β3(B). Show all your calculations. 
 
Solution: 
Since activity B is being scheduled, β = { A , C , D , E , F, G , H , I }.  

 
R1 ∩ β = {A, G}, n1 = 2 
R2 ∩ β = {D, E, C}, n2 = 3 
R3 ∩ β = {F, H, I}, n3 = 3 

 
Compute πj’s 

πA = 9,  πB = 9,  πC = 8,  
πD = 6,  πE = 6,  πF = 6 
πG = 2,  πH = 0,  πI = 0 

 
Order the unscheduled activities in R1, R2 and R3 according to non-decreasing values 
of corresponding πj’s.  
 
Hence,  

R1 ∩ β = {G, A}, and,  
R2 ∩ β = {D, E, C}, and, 
R3 ∩ β = {H, I, F} 

A, 3 

B, 2 

C, 4 

D, 3 

E, 5 I, 2 

H, 3 

G, 4 

F, 2 
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Calculate W1 for R1 ∩ β = {G, A} 
{ }
{ } 1239} , max{6pπ,λmaxλ

642} , max{0pπ,λmaxλ

AA12

GG01

=+=+=
=+=+=

 

So,   
12W 21 =λ≡  

 
Calculate W2 for R2 ∩ β = {D, E, C} 

{ }
{ }
{ } 184}8 {14,max p π,λmaxλ

14  5  6} {9,max p π,λmaxλ
9 3  6} {0,max p π,λmaxλ

CC23

EE12

DD01

=+=+=
=+=+=
=+=+=

 

So,   
18W 32 =λ≡  

 
Calculate W3 for R3 ∩ β = {H, I, F}; 

{ }
{ }
{ } 826} {5,max pπ,λmaxλ

5  2  0} {3,max pπ,λmaxλ
3 3  0} {0,max pπ,λmaxλ

FF23

II12

HH01

=+=+=
=+=+=
=+=+=

 

So, 
8W 33 =λ≡  

 
If activity B is scheduled first, add a resource constraint arc from activity B to activity 
A. The early start times of all activities are shown in Figure 7.45. 

 
 

Figure 7.45 Precedence Network with resource arc from B to A 
 

A, 3 

B, 2 

C, 4 

D, 3 

E, 5 I, 2 

H, 3 

G, 4 

F, 2 

(2, ) (5, ) 

(0, ) 

(0, ) 

(2, ) 

(4, ) 

(8, ) (12, ) 

(6, ) 
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Early start times for resource groupings are; 
 

44} 12, , {6min S,S,SminS

00} 2, , {5min S,S,SminS

28} {2,min S,SminS
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So,  

β3(B) = 18 
 

 
7.10    RESOURCE LEVELING 

 
Resource leveling is a commonly used project planning technique to avoid 

extraordinary demands or excessive fluctuations in labor and plant resources required 
for a project, which could otherwise lead to a drop in productivity or an increase in 
production cost. After assigning resources, it is likely that at certain times there will 
be more work assigned than there are resources available. The main purpose of 
resource leveling is to create a smoother distribution of resource usage and reduce 
over-allocation of resources. Leveling requires delaying tasks until resources are 
available, thus enabling the project to be finished, though often resulting in a later 
project finish date. 
 
Resource leveling aims to: 

• Examine resource requirements during specific periods of the project 
• Minimize the variation in resource demand from period to period during 

project execution. 
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Resource Graph  
The resource graph depicts the usage rate of that resource as a histogram. A 

sample resource graph with sudden changes in resource requirements on consecutive 
days is shown in Figure 7.46. It represents workers demand on daily basis over one 
week time. 
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Figure 7.46 Unleveled Schedule 
 

Peak worker requirement is on day 2 when 10 workers are demanded. The 
organization has maximum of 7 workers. There is abrupt change in worker’s 
requirement for successive days with variations in resource utilization as given in the 
following Table 7.10. 

Table 7.10 Variation in the requirement of resource 
Day→ 1 2 3 4 5 6 7 
Workers 4 10 3 6 2 9 1 
Change(+/-) -3 +6 -7 +3 -4 +7 -8 

 
The resource leveling effort intends to smooth out the demand of a resource 

over time. The effect is to reduce the size of the peaks and troughs on the resource 
graphs (histograms) - or as a more practical interpretation to improve the efficiency of 
resource utilization. It can be achieved by a variety of different techniques; (i) 
adjusting the timing of activities within their float, (ii) by the moving of allocated 
resources between activities, (iii) by more radical approaches - such as the hiring in of 
contract staff and the pre-production of certain products. Both the float and the 
critical path will need continual attention as the resource leveling process proceeds. 

Benefits of leveling (smoothing) will include; (i) reduce management 
overheads of sudden changes, (ii) improves morale of human resources, (iii) 
implications for smooth cost profiles. A sample resource graph after resource leveling 
is shown in Figure 7.47. It presents minor changes in resource usage between days 
with maximum resource requirement within available limits of the resources. 
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Figure 7.47 Leveled Resource Schedule 
 

In performing resource leveling, many planners or managers would adopt 
standard heuristic approaches to obtain an acceptable solution. This is because 
mathematical methods are only considered suitable for small to medium networks due 
to the combinatorial non-deterministic nature of the problem. The leveling of multiple 
resources is also dominated by the chosen heuristic methods, e.g. whether by leveling 
multiple resources in series or through combined resource leveling. Although 
heuristic approaches are easy to understand, they are problem-dependent. Hence, it is 
difficult to guarantee that an optimal solution can be achieved.  

One commonly used heuristic technique starts with constructing a Gantt chart 
using early start and completion time of all activities. A resource graph is constructed 
from the Gantt chart reflecting the distribution of resource usage over time. If sudden 
crests and troughs are found on the graph, then slack activities are rescheduled to shift 
the resource usage from high peak areas to low trough valleys over the resource 
graph. Sometimes, some activities are split to produce smooth usage of the resources. 
An example will demonstrate the approach.  
 
Example 7.13 

A project network is shown in Figure 7.48. Each activity requires Workers for 
its execution. The resource requirements for each activity are given below. 
 

Activity A B C D E F G 
No of Workers 4 6 4 4 2 2 3 

 
a) Generate project schedule. Draw Gantt chart and develop Resource Graph. 
b) Is the resource graph leveled? (Why or why not!) 
c) If not, apply resource leveling heuristic and obtain leveled schedule. 



Chap. 8 / Resource Constrained Project Scheduling 

Algorithms for Sequencing & Scheduling 7. 48

A, 3 

B, 2 

C, 1 

D, 4 

E, 3 

F, 5 

G, 2 

Sink 

A, 3 

B, 2 

C, 1 

D, 4 

E, 3 

F, 5 

G, 2 

Sink 

(3, 5) (4, 6) 

(11, 11) 

(6, 6) 

(2, 2) 

(5, 9)

(7, 11) 

(11, 11) 

Figure 7.48 Project network for Example 7.13. 
Solution 

The computations of earliest '
jC  and latest completion times ( "

jC ) are shown 

in the table 7.11  

Activity jp'  jS  '
jÇ  "

jS'  "
jC  Critical Slack 

A 3 0 3 2 5  2 
B 2 0 2 0 2 Yes - 
C 1 3 4 5 6  1 
D 4 2 6 2 6 Yes - 
E 3 2 5 6 9  4 
F 5 6 11 6 11 Yes - 
G 2 5 7 9 11  4 

Table 7.11 Earliest and Latest Completion time 
 
The critical path over the network is shown in Figure 7.49. 

Figure 7.49 Critical Path for network (Example 7.14) 
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The Gantt chart based on early and late schedules is shown in Figure 7.50 

 
 

Figure 7.50 Gantt chart for solution of Example 
 

The grey colored boxes represent activities on the critical path. The solid line 
rectangles represent early start and finish time of each slack activity. The dotted line 
rectangles represent late start and finish time of each slack activity. The following 
Table 7.12 shows number of units of the resource required in each period.  

  
Task pj 1 2 3 4 5 6 7 8 9 10 11 

A 3 4 4 4           
B 2 6 6          
C 1    4         
D 4   4 4 4 4      
E 3   2 2 2          
F 5       2 2 2 2 2 
G 2       3 3      

 
Table 7.12 No. of units of resource required 
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 The resource profile over Gantt chart is shown in Fig below. Note the Gantt 
chart is constructed using '

jS  values. The daily resource requirements for 11 days are 

shown in attached data boxes. Total of the squared resource requirements is 514.  
 

    1 2 3 4 5 6 7 8 9 10 11 
A 3 4 4 4         
B 2 6 6          
C 1    4        
D 4   4 4 4 4      
E 3   2 2 2       
F 5       2 2 2 2 2 
G 2       3 3    
  total  10 10 10 10 6 4 5 5 2 2 2 
    100 100 100 100 36 16 25 25 4 4 4 

 
Table 7.13 Total of the squared resource requirement (ΣR2 = 514) 

 
The resource usage graph for resource requirements over 11 days is shown 

below in Figure 7.51. The graph shows large resource requirements in the beginning 
periods.  The requirements drop to low levels in last periods.  

 

0
1
2
3
4
5
6
7
8
9
10

Re
so
ur
ce
 L
ev
el

1 2 3 4 5 6 7 8 9 10 11

Days

Figure 7.51 Resource usage graph 
 

Shift the slack Task G to its late start time ( "
jS ) as shown in following Table 7.14. 
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Task pj 1 2 3 4 5 6 7 8 9 10 11 
A 3 4 4 4         
B 2 6 6          
C 1    4        
D 4   4 4 4 4      
E 3   2 2 2       
F 5       2 2 2 2 2 
G 2          3 3 
 total 10 10 10 10 6 4 2 2 2 5 5 
  100 100 100 100 36 16 4 4 4 25 25 

 
Table 7.14 Total of the squared resource requirement after shifting task G  

(ΣR2 = 514) 
 
The resource usage graph after shifting task G to its new start time is shown 

below in figure 7.52. 
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Figure 7.52 Resource usage graph after shifting task G 

 
The lowest use of the resource shifts from left towards center. However, value 

of ∑ 2R remains equal to 514. The resource usage is still maximum at the beginning 

periods (i.e.; from day 1 to day 4).  
Next shift Task E to its late start time (From day 7 to day 9). The value of 

∑ 2R  drops sharply from 514 to 458 is shown in Table 7.14. 
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Task pj 1 2 3 4 5 6 7 8 9 10 11 
A 3 4 4 4         
B 2 6 6          
C 1    4        
D 4   4 4 4 4      
E 3       2 2 2   
F 5       2 2 2 2 2 
G 2          3 3 
 total 10 10 8 8 4 4 4 4 4 5 5 
  100 100 64 64 16 16 16 16 16 25 25 

 
Table 7.15 Total of the squared resource requirement after shifting task E  

(ΣR2 = 458) 
 

The resource usage graph after shifting task E to its new start time is shown 
below in figure 7.53. 
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Figure 7.53 Resource usage graph after shifting task E 

 
 

Next shift Task C to its late start time (From day 4 to day 6). The revised 

Gantt chart and the value of ∑ 2R  are shown in Table 7.16. 
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Task Pj 1 2 3 4 5 6 7 8 9 10 11 
A 3 4 4 4         
B 2 6 6          
C 1      4      
D 4   4 4 4 4      
E 3       2 2 2   
F 5       2 2 2 2 2 
G 2          3 3 
  tota

l  
10 10 8 4 4 8 4 4 4 5 5 

  100 100 64 16 16 64 16 16 16 25 25 
 

Table 7.16 Total of the squared resource requirement after shifting task C  
(ΣR2 = 458) 

 

There is no improvement in the value of ∑ 2R .The resource usage graph 

also does not show any marked improvement in resource leveling as shown in Fig 
7.54. 
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Figure 7.54 Resource usage graph after shifting task C 
 

Finally, shift the Task A to its latest start time (From day 1 to day 3) and, 

compute resource requirements as below. The value of ∑ 2R  drops down from 458 

to 426 is shown in Table 7.17. 
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Table 7.17 Total of the squared resource requirement after shifting task C  

(ΣR2 = 458) 
 

The resource usage graph after shifting task E to its new start time is shown 
below in figure 7.53. 
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 Figure 7.54 Resource usage graph after shifting task A 
 

The Resource usage graph after shifting activity A indicates that maximum 
requirement for the resource in any period has dropped from 10 to 8. 

 

Task Pj 1 2 3 4 5 6 7 8 9 10 11 
A 3   4 4 4       
B 2 6 6          
C 1      4      
D 4   4 4 4 4      
E 3       2 2 2   
F 5       2 2 2 2 2 
G 2          3 3 
  total  6 6 8 8 8 8 4 4 4 5 5 
    36 36 64 64 64 64 16 16 16 25 25 
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EXERCISES 
 

7.1 Consider the project data presented in the following table: 

Activity Activity time Predecessors 

A 4 ------- 
B 4 A 
C 5 A, B 
D 3 A 
E 3 C 
F 3 C 
G 4 D 
H 5 G, F, E 
I 10 H,F, G 
J 8 I 
K 7 J 

All these tasks require technicians to finish it. If there are three technicians 
available in the company, how much time will be required to finish it? Use 
ACTIM procedure to solve the problem 
 

7.2 A maintenance project consist of ten activities labeled A, B, …, J.  The 
duration (in days) and the precedence for the activities are given in the table 
below:  

 

Activity 
Number of 
resources 
required 

Precedes Resources 
requirements 

A 7 B, C 5 
B 2 D, F 5 
C 4 E, G 4 
D 3 H 6 
E 5 I 2 
F 6 I 3 
G 1 J 1 
H 5 -- 4 
I 9 -- 7 
J 8 -- 4 
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a. Develop the project network. 
b. Do the forward and backward calculations. 
c. What is the slack for activities D, F, and J? 
d. Determine all critical paths. 
e. If there are ten mechanics available, draw a resource profile (Gantt chart load) 

using the early start schedule in which ties are broken by the smallest slack 
activity 

f. What is the criticality index (CI) for this problem? (Note: the criticality 
index is computed as follows: it is the ratio of average per-unit resource 
requirement divided by per-unit time resource availability).  

g. Discuss the pro and cons of using 8, 10, or 12 mechanics by comparing the 
three scenarios using the project completion time and resources utilization.  

 
7.3 Project scheduling problem which uses two resources α and β, where α is the 

electricians and β is the plumbers.  The company has two electricians and 
three plumbers. Hence, it is Multi-Resources/Multi-Capacity resource 
scheduling problem. Generate a schedule to minimize the maxC  for following 
project network which is shown below: 

 
The resource requirement for each task is given in the following table:  

 
Resource Name List of Tasks that require the resources 
Electrician (α) A(1) , D(1) , F(2), G(1) 
Plumber (β) B(1), C(2) , D(2),E(2),G(1) 

 
The time for each activity is given in the following table:  
 

 
 
 

 
 

Activity(j) A B C D E F G 
Time(Hrs) 5 3 9 4 2 8 11 

A 

B 

C D 

F 

E 

Source G 
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7.4 A small project network with 10 tasks is shown in precedence diagram (Fig. 
1). The task durations are shown in Table as under. 

 
 

There are two different types of resources required by tasks. The resource 
requirements for tasks are; 

Resource 
Name 

List of Tasks that  
require the resource 

R1 A , D , G, I , J 
R2 B, C , E , F , H 

Exactly one unit of each resource is available.  Generate schedule to minimize 
Cmax. 

 
 

Task (j) A B C D E F G H I J 
Pj 3 6 5 4 7 3 8 7 4 2 

A 

B 

C G 

F 

E 

  

J 

I 

H D 

Source Sink 

Precedence Graph 
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8.1    INTRODUCTION  
 
The heuristics described before in all chapters are the constructive type. They 

start without a schedule and gradually construct a schedule by adding one job at a 
time. The heuristic scheduling techniques presented in this chapter are algorithms of 
the improvement type. These heuristics aim to find relatively good solutions for 
scheduling problems with less computational effort. Algorithms of the improvement 
type are conceptually completely different from algorithms of the constructive type. 
They start out with a complete schedule, which may be selected arbitrarily, and then 
try to obtain a better schedule by manipulating the current schedule.  

An important class of improvement type algorithms is the local search 
procedures. A local search procedure does not guarantee an optimal solution. It 
usually attempts to find a schedule that is better than the current one in the 
neighborhood of the current one. Two schedules are neighbors, if one can be obtained 
through a well defined modification of the other. At all iteration, a local search 
procedure performs a search within the neighborhood and evaluates the various 
neighboring solutions. The search process within a neighborhood can be done in a 
number of ways. A simple way is to select schedules in the neighborhood at random, 
evaluate these schedules and decide which one to accept. However, it may pay to do a 
more organized search and select first schedules that appear promising. One may 
want to consider swapping those jobs that affect the objective the most.  

The procedure either accepts or rejects a candidate solution as the next 
schedule to move to, based on a given acceptance-rejection criterion. The acceptance-
rejection criterion is usually the design aspect that distinguishes a local search 
procedure the most. The difference between the two procedures discussed in the 
remaining part of this section, simulated annealing and tabu-search, lies mainly in 
their acceptance-rejection criteria. In simulated annealing the acceptance-rejection 
criterion is based on a probabilistic process while in tabu-search it is based on a 
deterministic process. 

Three techniques are quite popular for local search. These include simulated 
annealing, tabu search, and genetic algorithms. These Local search techniques start 
with a schedule and try to look for a better solution in the neighborhood. The method 
is performed through iterations. Many neighbor solutions are generated by making 
changes in the current solution at each iteration and, compared with current solution. 
Local search continues through iterations till termination criteria are reached. 
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8.2   SIMULATED ANNEALING 
 

It is a search process that was originated in materials science. It was first 
developed for simulating the physical annealing process of solids. In scheduling 
theory, it is applied as a local search tool to improve the starting schedule. The 
following algorithm specifies the steps for creating a schedule for single machine 
problem. 
 
Algorithm 

Let’s term,  
SC  = Candidate schedule  
SO          = Best schedule found so far  

  SK        = Schedule constructed at kth iteration (k = iteration counter) 
  G(SO)   = Aspiration criterion (value of best schedule) 
  G(SK)   = Value of schedule constructed at Kth iteration. 
  G(SC)   = Value of candidate schedule  
                        P(SK , SC) = Probability of moving from Sk schedule to SC schedule at 

kth iteration. 

  k C
k C

k

G(S ) G(S )P(S ,S ) exp
β

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
 

   
Where,  

βk is called cooling parameter in annealing terminology 
Usually, βk = ak   where a = [0, 1] 

Step 1: Initialize 
Set k = 1, set β1 equal to given value. 
Form starting sequence by any heuristic; call it S1 
Let   SO = S1, then G(SO) = G(S1) 

Step 2: 
Select SC from SK 

IF G(SO) <  G(SC) < G(SK),  
THEN SK+1 = SC    
GOTO Step (3) 

IF G(SC) < G(SO), 
THEN SO = SK+1 = SC           
GOTO Step (3) 

IF G(SO) > G(SK),  
THEN generate a random number Uk ~ [0, 1] 
IF UK ≤  P(SK , SC),  
THEN SK+1 = SC 
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            ELSE   SK+1 = SK 
GOTO STEP (3) 

Step 3: 
Set βK+1 ≤  βK.    Set k = k + 1.   

IF k <= N  
THEN GOTO Step (2) 

      ELSE Stop 
 

Example 8.1   
For the 1 || ∑ jjTw  instance, solve the following problem using Simulated 

Annealing method. Apply the technique for FIVE iterations (K <= 5). 
 
 
 
 
 
 
Use the following U values = {0.8, 0.01, 0.52, 0.43} in the problem. Take initial 
value of β equal to 0.9. Start with first sequence as {j1, j2, j3, j4} 
 
Solution: 
Step 1: Initialize; 

Given: 
β1=0.9, k=1 , S1 = {j1, j2, j3, j4} 
Set SO = S1 

Find ∑ jjTw  
 
 
 
 
 
 
 
 
 
 
 

Table 8.1 Calculation of G(S1) 
 

Job 1 2 3 4 
Pj 3 6 2 5 
Dj 4 7 13 9 
wj 3 1 2 4 

Job j1 j2 j3 j4 
Pj 3 6 2 5 
Dj 4 7 13 9 
Cj 3 9 11 16 
Tj 0 2 0 7 
wj 3 1 2 4 

wjTj 0 2 0 28 
∑wjTj = 30 
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So, G(SO) = 30, G(S1) = 30, 
 
Step 2: Iteration #1 

Select a candidate sequence SC from neighborhood of S1 
Let SC = {j2, j1, j3, j4} 
Find ∑ jjTw for sequence SC 

Job j2 j1 j3 j4 
Pj 6 3 2 5 
Dj 7 4 13 9 
Cj 6 9 11 16 
Tj 0 5 0 7 
wj 1 3 2 4 

wjTj 0 15 0 28 
∑wjTj = 43 

Table 8.2 Calculation of G(SC) 
 
Hence, G(SC) = 43,  

 
Now test the conditions; 

 
IF G(SO) <  G(SC) < G(S1) ,THEN S2 = SC   GOTO Step (3) 

 
IF G(SC) < G(SO) , THEN SO = SC & S2 = SC  GOTO Step (3) 
 
IF G(SC) > G(S1) ,  
 
THEN 

   
 Generate U1 between [0, 1].      Given U1 = 0.8    

      Find P(S1 , SC) = exp ⎭
⎬
⎫

⎩
⎨
⎧ −

=
⎭
⎬
⎫

⎩
⎨
⎧

β
− 9.0

4330

1

C1 e)S(G)S(G = e
14.4−

5.574 10 7−×=  

      IF U1 <= P(S1 , SC)  → No  
So, Set S2 = S1, S2 = {j1, j2, j3, j4} 
GOTO Step (3) 
 

Step 3: 
 Select β2 β2 = (β1)2 = 0.81 
 k = 2, N=5 
 IF k <= N.  

These conditions are False 

This condition is true 
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GOTO Step (2), otherwise STOP 
.......................................................................................................................................... 
Step 2: Iteration #2 

Select a candidate sequence SC from neighborhood of S2 as follows 
S2 = {j1, j2, j3, j4} 
SC = {j1, j3, j2, j4} 
Find ∑ jjTw for sequence SC 

Job j1 j3 j2 j4 
Pj 3 2 6 5 
Dj 4 13 7 9 
Cj 3 5 11 16 
Tj 0 0 4 7 
wj 3 2 1 4 

wjTj 0 0 4 28 
∑wjTj = 32 

Table 8.3 Calculation of G(SC) 
 
Hence, G(SC) = 32 

Now test the conditions; 
IF G(SO) <  G(SC) < G(S2) ,THEN S3 = SC   GOTO Step (3) 

 
IF G(SC) < G(SO) , THEN SO = SC & S3 = SC  GOTO Step (3) 

 
IF G(SC) > G(S2) ,  
 
THEN 

 
Generate U2 between [0, 1].      Given U2 = 0.01    

      Find P(S2 , SC) = exp ⎭
⎬
⎫

⎩
⎨
⎧ −

=
⎭
⎬
⎫

⎩
⎨
⎧

β
− 81.0

3230

2

C2 e)S(G)S(G = 0.085 

      IF U2 <= P(S2 , SC)  → Yes  
So, Set S3 = SC, S3 = {j1, j3, j2, j4} 
GOTO Step (3) 

Step 3: 
 Select β3 β3 = (β1)3 = 0.729 
 k = 3, N = 5 

IF k <= N. GOTO Step (2), otherwise STOP    
------------------------------------------------------------------------------------------------------ 

These conditions are False 

This condition is true 
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Step 2: Iteration #3 
Select a candidate sequence SC from neighborhood of S3 as follows  
S3 = {j1, j3, j2, j4} 
SC = {j3, j1, j2, j4} 
Find ∑ jjTw for sequence SC 

 
 
 
 
 
 
 
 
 
 
 

Table 8.4 Calculation of G(SC) 
 
Hence, G(SC) = 35 

Now, test the conditions 
IF G(S0) <  G(SC) < G(S3) ,THEN S3 = SC   GOTO Step (3) 

 
IF G(SC) < G(S0) , THEN S0 = SC & S3 = SC  GOTO Step (3) 

 
IF G(SC) > G(S3),  
 
THEN 

 
 

Generate U3 between [0, 1].      Given U3 = 0.52   

      Find P(S3 , SC) = exp ⎭
⎬
⎫

⎩
⎨
⎧ −

=
⎭
⎬
⎫

⎩
⎨
⎧

β
− 729.0

3530

3

C3 e
)S(G)S(G

= e
5−

0.729
0.00105=  

      IF U3   <=    P(S3, SC) → No 
 SO, Set S4 = S3,     S4 = {j1, j3, j2, j4} 
 GOTO Step (3) 

Step 3: 
 Select β4 β3 = (β1)4 = 0.6561 
 k = 4, N = 5 
 IF k <= N. GOTO Step (2), otherwise STOP 
------------------------------------------------------------------------------------------------------- 

Job j3 j1 j2 j4 
Pj 2 3 6 5 
Dj 13 4 7 9 
Cj 2 5 11 16 
Tj 0 1 4 7 
wj 2 3 1 4 

wjTj 0 3 4 28 
∑ wjTj = 35 

These conditions are False 

This condition is true 
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Step 2: Iteration #3 
Select a candidate sequence SC from neighborhood of S4 as follows 
S4 = {j1, j3, j2, j4} 
SC = {j1, j3, j4, j2} 
Find ∑ jjTw for sequence SC 

Job j1 j3 j4 j2 
Pj 3 2 5 6 
Dj 4 13 9 7 
Cj 3 5 10 16 
Tj 0 0 1 9 
wj 3 2 4 1 

wjTj 0 0 4 9 
∑wjTj = 13 

Table 8.5 Calculation of G(SC) 
 
Hence, G(SC) = 13 

Now, test the conditions 
IF G(SC) < G(SO),  
 
THEN  

New values of SO and S5 are; 
SO = SC = {j1, j3, j4, j2}, G(SO) = 13 
S5 = SC = {j1, j3, j4, j2}, G(S5) = 13 

   GOTO Step (3) 
 
 
Step 3: 
 Select β5 β5 = (β1)5 = 0.6561 
 k = 5, N=5 
 IF k <= N. GOTO Step (2), otherwise STOP 
------------------------------------------------------------------------------------------------------ 
Step 2: Iteration 5 

Select a candidate sequence SC from neighborhood of S5 as follows 
S5 = {j1, j3, j4, j2} 
SC = {j1, j4, j3, j2} 
Find ∑ jjTw for sequence SC 

 

 

This condition is true 
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Job j1 j4 j3 j2 
Pj 3 5 2 6 
Dj 4 9 13 7 
Cj 3 8 10 16 
Tj 0 0 0 9 
wj 3 4 2 1 

wjTj 0 0 0 9 
∑wjTj = 9 

Table 8.6 Calculation of G(SC) 
 

Hence, G(SC) = 9 
Now, test the conditions 
IF G(SC) < G(SO),  
 
THEN  

New values of SO and S5 are; 
SO = SC = {j1, j4, j3, j2}, G(SO) = 13 
S6 = SC = {j1, j4, j3, j2}, G(S6) = 13 

   GOTO Step (3) 
 
Step 3: 
 Select β6 β6 = (β1)6 = 0.6561 
 k = 6, N=5 
 IF k <= N. GOTO Step (2), otherwise STOP 
 
We stop at the end of Iteration #5. Best Sequence =  S0 = { j1, j4, j3, j2 } 
 
Minimum weighted Tardiness = ∑ jjTw  = 9 

 
 

This condition is true 
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8.3    TABU SEARCH 

It is local search procedure like simulated annealing. However, the selection 
of neighborhood schedule is deterministically decided as opposed to simulated 
annealing where probabilistic approach is followed. A record of Tabu moves is kept 
in Tabu list to avoid duplication of job swaps in the list. 

 
Tabu List 

The main components of a tabu-search algorithm are memory structures, in 
order to have a trace of the evolution of the search, and strategies for using the 
memory information in the best possible way. The fundamental memory structure is a 
so-called tabu list, which stores attributes characterizing solutions that should not be 
considered again for a certain length of time. Usually a first-in-first-out (FIFO) 
strategy is applied to the list. Old attributes are deleted as new attributes are inserted. 
 
Algorithm 
Step 1: Initialize 

Set k = 1 
Form starting sequence by any heuristic; call it S1 
Let   SO = S1,  
Then G(SO) = G(S1) 

Step 2: 
Select SC from neighborhood of SK 
IF move from SK to SC is not allowed in the Tabu List 
THEN SK+1 = SK, GOTO step (3) 
IF G(SC) < G(S0) ,  
THEN S0 = SC           
Delete the oldest Tabu move in the Tabu List 
Add fresh Tabu move at head of the list. 
GOTO Step (3) 

Step 3: 
Set k = k + 1.   
IF k <= N  
THEN GOTO Step (2) 
ELSE Stop 

 
Example 8.2 

Solve the problem in Example 8.1 using Tabu Search. Apply the technique for 
FIVE iterations. Make the length of the Tabu List equal to two. (i.e. the pair of jobs 
that were interchanged during last moves can not be interchanged again). 
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The data from Example 8.1 is shown below. 
 
 
 
 
 
 
 
Solution: 
 
Iteration 1 

Initially, Tabu List = { },  
Let, starting sequence, S1 = {j1, j2, j3, j4}  
Let, S0 = Overall best sequence, 
Set, S0 = S1.  
So, S0 = {j1, j2, j3, j4} 
Then, G(S0) = 30,  G(S1) = 30. 

 
The neighborhood of a schedule is defined as all schedules that can be 

obtained through adjacent pair wise interchanges.  

 
 

Figure 8.1 Sequences of S1 by adjacent pair wise interchange 
 
The computations of ∑wjTj for three sequences are shown in Tables 8.7 below. 
 

Job j1 j2 j3 j4 
Pj 3 6 2 5 
Dj 4 7 13 9 
wj 3 1 2 4 

S1 = {j1, j2, j3, j4 } 

{j2, j1, j3, j4} {j1, j3, j2, j4} {j1, j2, j4, j3} 

∑wjTj = 30 

∑wjTj = 28 ∑wjTj = 32 ∑wjTj = 43 

Current Best Sequence 
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Table 8.7 Computations of ∑wjTj for three sequences 
 

Let SC = Current best sequence 
Then, from three sequences from S1, the current best sequence is {j1, j2, j4, j3},  
So, SC = {j1, j2, j4, j3}.  
The value of SC is then; G(SC) = 28, 
 
Since, G(SC) < G(S0),   

S0 = SC, and, New value of G(S0) = 28,  
 
Since, the current best sequence SC has been obtained by interchanging jobs 3 
and 4 in sequence S1; Tabu Move = (3, 4), and, Tabu List = {(3, 4)} 
Set,   S2 = SC  
And, go to next iteration. 
 

Iteration 2: 
 

Now, generate all sequences of S2 by interchanging adjacent pairs as shown below 
 

Sequence S2 Pair to be interchanged New Sequence 
{j1, j2, j4, j3} {1, 2} {j2, j1, j4, j3} 
{j1, j2, j4, j3} {2, 4} {j1, j4, j2, j3} 
{j1, j2, j4, j3} {4, 3} {j1, j2, j3, j4} 

 
 

Job(j) j2 j1 j3 j4 j1 j3 j2 j4 j1 j2 j4 j3 
Pj 6 3 2 5 3 2 6 5 3 6 5 2 
Dj 7 4 13 9 4 13 7 9 4 7 9 13 
Cj 6 9 11 16 3 5 11 16 3 9 14 16 
Tj 0 5 0 7 0 0 4 7 0 2 5 3 
Wj 1 3 2 4 3 2 1 4 3 1 4 2 

wjTj 0 15 0 28 0 0 4 28 0 2 20 6 
∑wjTj 43 32 28 
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Figure 8.2 Sequences of S2 by adjacent pair wise interchange 
 

The computations of ∑wjTj for sequences {j2, j1, j4, j3} & {j1, j4, j2, j3} are 
shown in the Table 8.8 below. 
 

Job(j) j2 j1 j4 j3 j1 j4 j2 j3 
Pj 6 3 5 2 3 5 6 2 
Dj 7 4 9 13 4 9 7 13 
Cj 6 9 14 16 3 8 14 16 
Tj 0 5 5 3 0 0 7 3 
Wj 1 3 4 2 3 4 1 2 

wjTj 0 15 20 6 0 0 7 6 
∑wjTj 41 13 

 
Table 8.8 Computations of ∑wjTj for two sequences 

 
Current best sequence by adjacent pair wise interchanges in Sequence S2 is      
{j1, j4, j2, j3},  
So, SC = {j1, j4, j2, j3}. The value of SC is; G (SC) = 13, 
 
Since, G(SC) < G(S0),   
S0 = SC, and, New value of G (S0) = 13,  

 
Since, the current best sequence SC has been obtained by interchanging 

jobs 2 and 4 in sequence S2;  
Tabu Move = (2, 4), and, Tabu List = {(3, 4), (2, 4)} 

S2 = {j1, j2, j4, j3} 

{j2, j1, j4, j3} {j1, j4, j2, j3} {j1, j2, j3, j4} 

Tabu Move 
Current 
Best Sequence: 

Tabu List = {3, 4} 

Move: (1,2) Move: (2,4)} 

∑wjTj = 28 

∑wjTj = 31 
∑wjTj = 41 
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Set,   S3 = SC = {j1, j4, j2, j3}, G(S0) = 13  
GOTO, next iteration. 

 
Iteration 3: 
 

Now, generate all sequences of S2 by interchanging adjacent pairs as shown 
below in Figure 8.3 
 
 

 

 
 

Figure 8.3 Sequences of S3 by adjacent pair wise interchange 
 

The computations of ∑wjTj for sequences {j4, j1, j2, j3} & {j1, j4, j3, j2} are 
shown in Table 8.9; 

Job(j) j4 j1 j2 j3 j1 j4 j3 j2 
Pj 5 3 6 2 3 5 2 6 
Dj 9 4 7 13 4 9 13 7 
Cj 5 8 14 16 3 8 10 16 
Tj 0 4 7 3 0 0 0 9 
Wj 4 3 1 2 3 4 2 1 

wjTj 0 12 7 6 0 0 0 9 
∑wjTj 25 9 

 
Table 8.9 Computations of ∑wjTj for two sequences 

 

S2 = {j1, j4, j2, j3} 

{j4, j1, j2, j3} 

Move: (1, 4) 
Tabu Move 

∑wjTj = 13 

Current 
Best Sequence 

Tabu List = {(2,4), (3,4)} 

∑wjTj = 9 
∑wjTj = 25 

Move: (2, 3) 

{j1, j4, j3, j2} 

{j1, j2, j4, j3} 
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Current best sequence by adjacent pair wise interchanges in Sequence S3 is       
{j1, j4, j3, j2},  
So, SC = {j1, j4, j3, j2}. The value of SC is; G (SC) = 9, 
Since, G (SC) < G(S0),  
S0 = SC, and, New value of G (S0) = 9,  
 
Since, the current best sequence SC has been obtained by interchanging jobs 2 
and 3 in sequence S3;  
Tabu Move = (2, 3). Since length of Tabu List is 2, we update the list. 
Remove (2, 4) from List and add (2, 3). New Tabu List = {(3, 4), (2, 3)}. 

 
Set, S4 = SC = {j1, j4, j3, j2}.    G(S0) = 9   
 

Iteration 4: 
 

Now, generate sequences of S4; 
 

 
 

Figure 8.4 Sequences of S4 by adjacent pair wise interchange 
 
The computation for sequence {j4, j1, j3, j2} is; 

Job(j) j4 j1 j3 j2 
Pj 5 3 2 6 
Dj 9 4 13 7 
Cj 5 8 10 16 
Tj 0 4 0 9 
Wj 4 3 2 1 

wjTj 0 12 0 9 

{j1, j3, j4, j2} {j1, j2, j3, j4} 

Tabu Move Tabu Move 

S2 = {j1, j4, j3, j2 } 

{j4, j1, j3, j2} 

21 

9 

Best Sequence: 

Tabu List = {(3, 4), (2, 3)} 

Move: (4, 1) Move: (3, 4) Move: (2, 3) 
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∑wjTj 21  
 

Table 8.10 Computations of ∑wjTj for two sequences 
 
Only possible move is (1,4) with G(SC) = 21. 
Since, G(SC) > G(S0),    G(S0) remains at value 9.  
 
With Tabu Move = (4, 1) in Sequence S4, update Tabu List. Remove (3, 4) 
from List and add (4, 1). New Tabu List = {(2, 3), (4, 1)} 
 
Set, S5 = SC = {j4, j1, j3, j2}.    G(S0) = 9 
GOTO, next iteration. 

 
Iteration 5: 
 

Now, generate sequences of S5 as follows: 

 
 

Figure 8.5 Sequences of S4 by adjacent pair wise interchange 
 

The computation for sequence {j4, j3, j1, j2} is; 
 

Job(j) j4 j3 j1 j2 
Pj 5 2 3 6 
Dj 9 13 4 7 
Cj 5 7 10 16 
Tj 0 0 6 9 
Wj 4 2 3 1 

wjTj 0 0 18 9 

S2 = {j4, j1, j3, j2 } 

{j1, j4, j3, j2} {j4, j3, j1, j2} {j4, j1, j2, j3} 

27

Tabu Move 

21 

Current 
Best Sequence:

Tabu List = {(2,3),(4,1)} 

Move: (4, 1) Move: (1, 3) Move: (2, 3) 
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∑wjTj 27  
 

Table 8.11 Computations of ∑wjTj for two sequences 
 
Only possible move is (1, 3) with G(SC) = 27. 
Since, G(SC) > G(S0),    G(S0) remains at value 9.  
With Tabu Move = (1, 3) in Sequence S5, update Tabu List. Remove (2, 3) 
from List and add (1, 3). New Tabu List = {(4, 1), (1, 3)} 
Set, S6 = SC = {j4, j3, j1, j2}.    G(S0) = 9 

  
At the end of Iteration #5, G(S0) = 9, and best overall sequence = {j1, j4, j3, j2}.
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EXERCISES 
 

8.1 Consider 1 || ∑ Tj   problem for the data given in the following Table 
 

jobs 1 2 3 4 

Pj 10 8 12 6 
Dj 7 5 8 3 

Solve the problem by using Simulated Annealing method. Take the initial 
parameters as follows: 
β1 = 0.9,  Initial Sequence = { j4, j3, j2, j1}.Take U values in the following 
order 

 1 2 3 
U values 0.17 0.92 0.67 

Perform THREE iterations and find the best sequence.  
 
8.2 Consider 1 || ∑ Tj   problem for the data given in the following Table 

   
jobs 1 2 3 4 
pj 10 8 12 6 
dj 7 5 8 3 

 
Solve the problem by using tabu-search method. Take Initial Sequence = {j4, 
j3, j2, j1}. Keep length of tabu list equal to 2. Perform THREE iterations and 
find the best sequence.  
 

8.3 Consider the instance of P2 || ∑ wjTj with following 6 jobs 
 

jobs 1 2 3 4 5 6 
pj 13 9 13 10 8 11 
dj 6 18 10 11 13 18 
wj 2 4 2 5 4 3 

 
Solve the problem using Simulated Annealing method. Using the initial 
parameters β1 = 0.8, Initial Sequence = {j5, j4, j2, j1, j6, j3}.Take U values in the 
following order U1 = 0.23, U2 = 0.54, U3 = 0.93. Perform THREE iterations 
and find the best sequence. 
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8.4 Consider the instance of F3│pij = pi │∑wjTj for following problem 
 

jobs 1 2 3 4 
pj 9 9 12 3 
dj 10 8 5 28 
wj 14 12 1 12 

 
Apply tabu-search consider as the neighborhood again all schedules 

that can be obtained through adjacent pair wise interchanges. Start out with 
sequence 3, 1, 4, 2 and apply the technique for four iterations. Keep the length 
of the tabu-list equal to 2. Determine whether the optimal sequence is reached. 
 

8.5 Consider the same instance as in problem 8.4. Now apply simulated annealing 
to this instance. Adopt the same neighborhood structure and select neighbors 
within the neighborhood at random. Choose βk = (0.9)k. Start with 3, 2, 1, 4 as 
the initial sequence. Terminate the procedure after two iterations and compare 
the result with the result obtained in the previous exercise. Use the following 
numbers as uniform random numbers: U1 = 0.91, U2 = 0.27, U3 = 0.83, U4 = 
0.17. 
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9.1    INTRODUCTION  

Genetic algorithms were developed by Holland in 1975.  Since genetic 
algorithms (GAs) are adaptive and flexible, the GAs were shown to be successfully 
applied to several optimization problems.  For example, they have been applied to 
routing, scheduling, adaptive control, game playing, cognitive modeling, 
transportation problems, traveling salesman problems, optimal control problems, 
database query optimization, etc.  

The GAs are stochastic search techniques whose search algorithms simulate 
natural phenomena (biological evolution).  The basic idea of the GAs is that the 
strong tend to adapt and survive while the weak tend to die.  One of the strengths of 
GAs is that they use past information to direct their search with the assumption of 
improved performance.  The formal description of the GA which was provided by 
Grefenstette is as follows: 

 
...A genetic algorithm is an iterative procedure maintaining a 

population of structures that are candidate solutions to specific domain 
challenges.  During each temporal increment (called a generation), the 
structures in the current population are rated for their effectiveness as domain 
solutions, and on the basis of these evaluations, a new population of candidate 
solutions is formed using specific genetic operators such as reproduction, 
crossover, and mutation. (Grefenstette 1985) 

9.2    METHODOLOGY 

The general procedures of the GA are as follows:  
1. Initialize a population of binary or non-binary chromosomes. 
2. Evaluate each chromosome in the population using the fitness function. 
3. Select chromosomes to mate (reproduction). 
4. Apply genetic operators (crossover and mutation) on chromosome 

selected. 
5. Put chromosomes produced in a temporary population. 
6. If the temporary population is full, then go to step 7.  Otherwise, go to step 

3.  
7. Replace the current population with the temporary population. 
8. If termination criterion is satisfied, then quit with the best chromosome as 

the solution for the problem.  Otherwise, go to step 2. 
 

In the above steps, the first element is the size of the population and how to 
generate the initial population.  The initial population of chromosomes can be 
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generated randomly or by using some heuristics that are suitable for the problem 
considered.  The determination of the population size is a crucial element in the GAs.  
Selecting a very small population size increases the risk of prematurely converging to 
a local optimal.  Large population sizes increase the probability of converging to a 
global optimal, but it will take more time to converge.  In most of the GA 
applications, the population size was maintained at a constant. 

The second element of the GAs is the fitness function, which is very important 
to the GAs process of evolution.  The GA without a fitness function is blind because, 
as mentioned earlier, the GA directs its search using historical data which are the 
fitness values of each chromosome.  The GA will use the fitness value of each 
chromosome to determine if the chromosome can survive and produce offspring, or 
die. 

The selection of chromosomes to reproduce is the third element of the GA.  
This is a very important element in the GA because it plays an important role in the 
convergence of the GA.  If the selection process is always biased to only accept the 
best chromosome, the algorithm will quickly have a population of almost the same 
chromosomes which will cause the GA to converge to a local optimum.  Several 
selection methods have been employed by several researchers to select among the 
best performers.  Some of these methods are: the proportional selection scheme; the 
roulette wheel selection; deterministic selection; ranking selection; tournament 
selection, etc. 

In step four, two genetic operators were used.  The first operator is crossover, 
which combines the features of two fittest chromosomes and carries these features to 
the next generation by forming two offspring. The SGA performs the crossover by 
selecting two chromosomes and a random crossover position (single-position 
crossover method), then the corresponding parental segments are swapped to form 
two new children.  Several crossover methods have been developed and applied to 
binary representation.  One of them is the two-position crossover method, which is 
performed by selecting two crossover positions in two chromosomes and then 
swapping segments between the two chromosomes.  The multi-position crossover 
method is a natural extension of the two-position crossover.  A version of the multi-
position crossover method is the segmented crossover method, which varies the 
number of segments during the implementation of the GAs while the multi-position 
crossover uses a fixed number of segments.  Shuffle crossover was proposed as a 
crossover method which first shuffles the crossover positions in the two selected 
chromosomes.  Then it exchanges the segments between the crossover positions and 
finally un-shuffles the chromosomes.  The final crossover method proposed is the 
uniform crossover, a generalization of the one-position and multi-position crossover 
methods.  The uniform crossover method produces two new children by exchanging 
genes in two chromosomes according to a crossover probability and a random value 
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given to the same gene in both chromosomes.  The random value assigned to each 
gene is uniformly distributed between 0 and 1 and denoted by Xi,     i = 1,...,n where n 
is the number of genes.  The uniform crossover is performed as follows: Let P1 and P2 
be two parents in which each has n genes so that P1 = {P11, P12, P13,..., P1n} and P2 = 
{P21, P22, P23,..., P2n}.  These two parents will produce two children which are 
denoted by C1 and C2.  Hence, if the crossover probability is Pc, then the uniform 
crossover is performed as follows:  

If Xi < Pc then C1i = P1i and C2i = P2i  and If Xi ≥ Pc then C1i = P2i and C2i = P1i 

To demonstrate how the uniform crossover method works, assume that there are two 
chromosomes and each gene is assigned a random value as shown below: 

P1: 0110000111, and P2: 0001011111 

Assume Xi = 0.79, 0.83, 0.44, 0.88, 0.11, 0.89, 0.59, 0.7, 0.45, and 0.14,  
 for i = 1,...,10. 

Assume that the Pc is 0.5.  The implementation of the uniform crossover 
method will result in the following children: 

C1: 0011011111, and C2: 0100000111 

The second operator is mutation, which alters one or more of the chromosome 
genes randomly to ensure search diversification, which hopefully will lead the 
population out of the local optimum.  In the SGA approach, the mutation is performed 
by first selecting a mutation position.  Then, if the gene value is 0, it is flipped to 1.  If 
the gene value is 1, then it is changed to 0. 

Finally, the last element in the GA procedures is the stopping criterion.  
Several criteria have been suggested.  One of them is that the GA will stop if the 
maximum number of generations has been reached, or if the population has 
converged.  The convergence of the population has been interpreted by researchers 
through several measures.  One of them is that the GA converges after a chromosome 
with a certain high fitness value is located.  Another one is that the GA converges 
after all chromosomes have attained a certain degree of homogeneity (that is, all of 
them have almost the same fitness value). 

7.3    SEQUENCING AND SCHEDULING PROBLEMS 

A binary representation of a population was not suitable for all applications.  
One of the applications that the binary representation was not suitable for, but can be 
applied to, is the combinatorial optimization problems.  Some of these combinatorial 
optimization problems are the traveling salesman problem (TSP), the bin packing 
problem, the job scheduling problem (JSP), the plant layout, etc.  Several 
representations of population have evolved from the applications of the genetic 
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algorithms (GAs) to the TSP.  Because of the similarities between TSP and JSP, these 
representations have been used in JSP.  In the following paragraphs, population 
representations and the associated genetic operators that have been applied to JSP will 
be discussed. 

Ordinal representation was developed by Grefenstette et al. (1985).  It was 
developed to represent a population in a GA approach that solved a TSP.  In the 
ordinal representation method, all classical crossover methods that were explained 
earlier can be applied to the ordinal representation method.  However, the classical 
mutation method cannot be applied because there is no gene that can be flipped to 
either 0 or 1.  Therefore, several mutation methods have been developed to handle 
such population representations and other representations.  One of these mutation 
methods is the simple inversion, which is performed by first selecting two mutation 
positions in a chromosome.  The segment between these two positions is reversed.  
The second mutation method, called insertion, is where a gene is selected and inserted 
in a random place.  Displacement is the third method, which is performed by selecting 
a string of genes which is inserted in a random position.  Order-based mutation 
(OBM) is the fourth method, which selects two genes randomly and swaps them.  A 
version of the order-based mutation is position-based mutation (PBM), which selects 
two genes randomly and then inserts the second gene before the first.  Scramble sub-
sequence mutation (SSM) is another mutation method, which selects a sub-sequence 
in a chromosome, and scrambles the genes in the sub-sequence to produce a new 
chromosome.   

The second representation method is an order-based representation (also 
called permutation ordering representation, path representation, natural 
representation, or direct representation) where a chromosome is represented by a 
sequence of jobs.  In the order-based representation method, a chromosome is formed 
as a sequence of jobs, such as: 4-6-9-7-5-3-1-2-8.  This chromosome is interpreted as 
follows: job 4 is sequenced first, job 6 is sequenced second, and likewise until job 2 is 
sequenced second to last, and then job 8 is sequenced last.  Clearly this representation 
is simple and has a meaningful interpretation.  All mutation methods that are applied 
to the ordinal representation method can be applied to the order based representation 
method.  However, infeasible chromosomes will be generated when the classical 
crossover method that was explained in the previous section are performed. The 
infeasible chromosomes produced by the classical crossover can be demonstrated by 
the following example.  Assume that in the initial population there are two parents 
which are: 

Parent 1: 4-6-9-7-5-3-1-2-8 and  Parent 2: 8-2-4-6-9-1-3-5-7 

A single-position crossover method is performed on the two parents, where the 
single-position crossover is denoted by ‘|’ as shown below. 
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Parent 1: 4-6-9-7-5-3-|1-2-8  and  Parent 2: 8-2-4-6-9-1-|3-5-7 

The result of the crossover is shown below: 

Child 1: 4-6-9-7-5-3-3-5-7 and Child 2: 8-2-4-6-9-1-1-2-8 

It is obvious that both of the children represent infeasible sequences because 
both of them have only six jobs out of the nine jobs, and each has three duplicated 
jobs.  Therefore, to solve this infeasibility problem, several crossover methods that 
produce feasible chromosomes were proposed by several researchers: 

1. Order Crossover (OX) by Davis (1985). 
2. Partially Mapped Crossover (PMX) by Goldberg and Lingle (1985). 
3. Sub-sequence-Swap crossover (SSX) and Sub-sequence-Chunk Crossover 

(SCX) by Grefenstette et al. (1985). 
4. Cycle Crossover (CX) by Oliver, Smith, and Holland (1987). 
5. Edge Recombination Crossover (ERX) by Whitley, Starkweather, and 

Fuguay (1989). 
6. Linear order Crossover (LOX) by Falkenauer and Bouffouix (1991). 
7. Order-based Crossover (OBX) and Position-based Crossover (PBX) by 

Syswerda (1991). 
8. Enhanced edge recombination crossover (EERX) by Starkweather et al. 

(1991). 
 

The PMX was developed by Goldberg and Lingle (1985) to handle the 
infeasibility problem in a GA approach that was applied to TSP. Given two parents, 
the PMX first randomly selects two positions which are the same in both parents.  
Then segments between these two positions are exchanged.  The exchanging of the 
segments will define a series of mappings between genes.  The defined mappings will 
be used to replace genes that are causing infeasibility in the new chromosomes.  The 
following example will show how the PMX works assuming that the following 
parents are given: 

Parent 1: 4-6-9-7-5-3-1-2-8 and  Parent 2: 8-2-4-6-9-1-3-5-7 

The two cutting positions on the two parents are selected where the two positions are 
denoted by ‘|’ as shown below:  

Parent 1: 4-6-|9-7-5-3|-1-2-8  and  Parent 2: 8-2-|4-6-9-1|-3-5-7 

The result of the segment swapping is shown below: 

Child 1: x-x-|4-6-9-1|-x-x-x and Child 2: x-x-|9-7-5-3|-x-x-x 

From the segments swapped, the defined mappings are as follows: 4⇔9, 6⇔7, 9⇔5, 
and 1⇔3.  Therefore, the defined mappings will be used to correct infeasibility.  In 
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parent 1, job 4 is mapped as follows: 4⇔9⇔5 (job 4 is replaced with job 5).  Job 6 is 
replaced with job 7.  Job 1 is replaced with job 3.  Both jobs 2 and 8 are not causing 
infeasibility, hence, they are not involved.  In parent 2, job 3 is replaced with job 1.  
Job 5 is replaced with job 4, because of the mapping, 5⇔9⇔4.  Job 7 is replaced 
with 6.  The result of the PMX is two feasible children given below: 

Child 1: 5-7-|4-6-9-1|-3-2-8 and Child 2: 8-2-|9-7-5-3|-1-4-6 

 
9.4 GENETIC ALGORITHM WITH PMX OPERATOR 

 
Step #1:  

Set k=1,  
From the given data, create population of fixed size. 

Step #2   
Evaluate the sequences, by finding the values of given criteria. Arrange the 
sequences in ascending order, from best sequence to the worst. 

Step #3  
Select the top two sequences as parents. Call them parent 1 and parent 2 
respectively. 

Step #4  
Apply cross-over operator PMX on the parents to generate two child 
sequences. 

Step #5   
Apply mutation on the generated children. 

Step #6   
Find values for the newly created (child) sequences. 

Step #7  
Replace these child sequences with poor sequences in the existing population, 
if it is feasible. 

Step #8  
If (k < N) 
Go to Step #2. And k = k+1, 
Else 
Go to step #9, 

Step #9   
Stop.  
The best sequence is lowest value in the population (at the top). 
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Example 9.1 
 The following problem represents an instance of 1 || Lmax. Apply genetic 
Algorithm and find best sequence. 
 
 
 
 
 

Take a population size of six with the following sequences as initial 
population. 

1. {j3, j1, j2, j5, j4}  
2. {j1, j4, j2, j5, j3}  
3. {j2, j1, j5, j4, j3}  
4. {j5, j4, j1, j2, j3} 
5. {j5, j3, j2, j1, j4} 
6. {j5, j3, j4, j1, j2} 
 
For PMX cross over operator, take the 3rd and 4th sequence positions as cut-off 

positions. 
For mutation, interchange the positions of the jobs within the cut-off 

positions. 
Apply the genetic algorithm methodology for THREE iterations. 
 
Solution: 
Iteration #1 
 
Find the Lmax values of sequences in initial population. 
 

Job(j) 3 1 2 5 4 

pj 6 3 4 2 10 
dj 17 3 10 15 18 
Cj 6 9 13 15 25 
Lj -11 6 3 0 7 

Lmax = 7 

Job(j) 5 3 4 1 2 

pj 2 6 10 3 4 
dj 15 17 18 3 10 
Cj 2 8 18 21 25 
Lj -13 -9 0 18 15 

Lmax = 18 

Job(j) 1 2 3 4 5 

pj 3 4 6 10 2 

dj 3 10 17 18 15 
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Job(j) 1 4 2 5 3 

pj 3 10 4 2 6 
dj 3 18 10 15 17 
Cj 3 13 17 19 25 
Lj 0 -5 7 4 8 

Lmax = 8 

Job(j) 5 4 1 2 3 

pj 2 10 3 4 6 
dj 15 18 3 10 17 
Cj 2 12 15 19 25 
Lj -13 -6 12 9 8 

Lmax = 12 

Job(j) 2 1 5 4 3 

pj 4 3 2 10 6 
dj 10 3 15 18 17 
Cj 4 7 9 19 25 
Lj -6 4 -6 1 8 

Lmax = 8 

Job(j) 5 3 2 1 4 

pj 2 6 4 3 10 
dj 15 17 10 3 18 
Cj 2 8 12 15 25 
Lj -13 -9 2 12 7 

Lmax = 12 

 
Table 9.1 Calculation of Lmax for all population 

  
The values of Lmax for the six sequences in ascending order are; 
 

Sequence           Lmax 

1 3 1 2 5 4 7 
2 1 4 2 5 3 8 
3 2 1 5 4 3 8 
4 5 4 1 2 3 12 
5 5 3 2 1 4 12 
6 5 3 4 1 2 18 

 
Table 9.2 Arranging the sequences in ascending order of Lmax 
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Select the two least Lmax value sequences as parents from Table 9.2. Apply the cross-
over operator (PMX) to yield the two children as under: 
 
Parent 1:  3 - 1 - | 2 - 5 | - 4 
Parent 2: 2 - 1 - | 5 - 4 | - 3 
   
Child 1: x - x - | 2 - 5 | - x 
From the mapping, 4 2  4,5   ,52 ⇔⇔⇔   
Hence, Child 1:  4 - 1 - | 2 - 5 | - 3 
 
Similarly, find child 2 from cross over of Parent2 and Parent 1 as under; 
 
Parent 2: 2 - 1 - | 5 - 4 | - 3 
Parent 1:  3 - 1 - | 2 - 5 | - 4 
 
Child 2: x - x - | 5 - 4 | - x 
From the mapping, 4 2  4,5   ,52 ⇔⇔⇔   
Hence, Child 2:  3 - 1 - | 5 - 4 | - 2 
 
Now apply Mutation on child 1 and child 2; i.e., change the adjacent jobs within cut-
off position. 
 
  Before Mutation   After mutation   
Child 1:   4 - 1 - | 2 - 5 | - 3         4 - 1 - | 5 - 2 | - 3  
Child 2:   3 - 1 - | 5 - 4 | - 2   3 - 1 - | 4 - 5 | - 2 
 
Calculations of Lmax for sequences (4, 1, 5, 2, 3) and (3, 1, 4, 5, 2) are as under; 

Job(j) 4 1 5 2 3 
pj 10 3 2 4 6 
dj 18 3 15 10 17 
Cj 10 13 15 19 25 
Lj -8 10 0 9 8 

Lmax = 10 

Job(j) 3 1 4 5 2 
pj 6 3 10 2 4 
dj 17 3 18 15 10 
Cj 6 9 19 21 25 
Lj -11 6 1 6 15 

Lmax = 15 

 
Table 9.3 Computation of Lmax value for child sequences 
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Comparing Lmax values of the two children with sequences in Table 9.2, it is 
found that these sequences may be replaced with worst valued sequences from Table 
9.2 as, Sequences 5 and 6 will leave the population to make room for the two children 
sequences as follows: 
 

Sequence           Lmax 

1 3 1 2 5 4 7 
2 1 4 2 5 3 8 
3 2 1 5 4 3 8 
4 5 4 1 2 3 12 
* 4 1 5 2 3 10 
* 3 1 4 5 2 15 

  
Arranging values of Lmax for the sequences in ascending order are; 
 

Sequence           Lmax 

1 3 1 2 5 4 7 
2 2 1 5 4 3 8 
3 1 4 2 5 3 8 
4 4 1 5 2 3 10 
5 5 4 1 2 3 12 
6 3 1 4 5 2 15 

 
Table 9.4 Arranging the sequences in ascending order of Lmax 

 
Iteration #2 

Since, sequence 1 and 2 did not produce children better than parents, choose 
now sequence 1 and 3 for cross over and apply cross-over operator (PMX) as follows: 
 
Parent 1:  3 - 1 - | 2 - 5 | - 4 
Parent 2: 1 - 4 - | 2 - 5 | - 3 
   
Child 1   : x - x - | 2 - 5 | - x 
From the mapping, 52 ⇔   
Hence, Child 1:  1 - 4 - | 2 - 5 | - 3 
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Similarly, find child 2 from cross over of Parent2 and Parent 1 as under; 
 
Parent 2: 1 - 4 - | 2 - 5 | - 3 
Parent 1:  3 - 1 - | 2 - 5 | - 4 
 
Child 2: x - x - | 2 - 5 | - x 
From the mapping, 52 ⇔   
Hence, Child 2:  3 - 1 - | 2 - 5 | - 4 
 
Now apply Mutation on child 1 and child 2; i.e., change the adjacent jobs within cut-
off position. 
 
  Before Mutation   After mutation   
Child 1    1 - 4 - | 2 - 5 | - 3             1 - 4 - | 5 - 2 | - 3    
Child 2   3 - 1 - | 2 - 5 | - 4   3 - 1 - | 5 - 2 | - 4 
 

Job(j) 1 4 5 2 3 Lmax=9 

Job(j) 3 1 5 2 4 Lmax=15 

 
Table 9.5 Computation of Lmax value for child sequences 

 
The sequence (1, 4, 5, 2, 3) has better value of Lmax than sequence 6 in Table 9.4. 
Hence, this sequence will replace sequence 6. New population is as under; 
 

Sequence           Lmax 

1 3 1 2 5 4 7 
2 2 1 5 4 3 8 
3 1 4 2 5 3 8 
4 1 4 5 2 3 9 
5 4 1 5 2 3 10 
6 5 4 1 2 3 12 

 
Table 9.6 Arranging the sequences in ascending order of Lmax 

 
Iteration #3 

Since, sequence 1 and 3 did not produce children better than parents, choose 
now sequence 1 and 4 for cross over and apply cross-over operator (PMX) as follows: 
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Parent 1:  3 - 1 - | 2 - 5 | - 4 
Parent 2: 1 - 4 - | 5 - 2 | - 3 
   
Child 1: x - x - | 2 - 5 | - x 
From the mapping, 52 ⇔   
Hence, Child 1:  1 - 4 - | 2 - 5 | - 3 
 
Similarly, find child 2 from cross over of Parent 2 and Parent 1 as under; 
 
Parent 2: 1 - 4 - | 5 - 2 | - 3 
Parent 1:  3 - 1 - | 2 - 5 | - 4 
 
Child 2: x - x - | 2 - 5 | - x 
From the mapping, 52 ⇔   
Hence, Child 2:  3 - 1 - | 5 - 2 | - 4 
 
Now apply Mutation on child 1 and child 2; i.e., change the adjacent jobs within cut-
off position. 
 
  Before Mutation   After mutation   
Child 1    1 - 4 - | 2 - 5 | - 3               1 - 4 - | 5 - 2 | - 3    
Child 2   3 - 1 - | 5 - 2 | - 4   3 - 1 - | 2 - 5 | - 4 
 
These two sequences have already been evaluated. Since, three iterations are 
complete, best sequence is (3, 1, 2, 5, 4) with Lmax = 7 
 
 
 The order-based representation can be easily interpreted and applied to single 
machine and flow shop problems because both the single machine and the flow shop 
problems are permutation scheduling problems.  However, a job shop problem is not 
a permutation scheduling problem and hence the order-based representation is not 
easily interpreted and applied to job shop problems.  As a result of this difficulty, 
several variations of the order-based representation have been developed to handle 
the interpretation problem faced in the job shop implementations.  These variations 
will be discussed in the next section. 
 As mentioned earlier, the population representations can be represented by 
various representations such as integer values.  The integer value representation of 
population was suggested by Dorndorf and Pesch (1995).  They proposed two GA 
applications to use this type of representation.  In the first, the chromosomes were 
formed of genes which represented an integer value which corresponded to a 
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dispatching rule number from a given list of dispatching rules.  The integer values in 
the second application depict a machine number.  This means a chromosome was 
formed of genes each of which represented a machine number from a list of machines 
that were in the shop.  In this representation, all classical crossovers will always 
produce feasible chromosomes.  Also, all mutation methods that are applied to the 
ordinal representation method can be applied to this representation. 
 

9.5    CONSTRAINED GENETIC ALGORITHM 
 
 In this section, an introduction will be given to the constrained genetic 
algorithm (CGA) which was developed by Al-Harkan and Foote (1994, 1996).  The 
CGA was developed to address the single machine total weighted tardiness (TWT) 
problem which is strongly NP-hard.  The proposed CGA approach obtained close to 
optimal solutions with much less deviation from optimal and much less 
computational effort than the conventional or unconstrained GA (UGA), which does 
not exploit the problem structure.  This superior performance was achieved by 
combining sequencing and scheduling theory with the genetic algorithms 
methodology.  Their approach can be called a hybrid GA, since it incorporates local 
search features in its procedures.  However, they offered an additional feature that of 
constraining the order of certain elements of the chromosomes according to 
precedence relationships established theoretically.  Hence, they called this approach a 
constrained GA.   
 This study was motivated by several scheduling problems that are classified as 
NP-hard problems which can be solved by using implicit enumerative methods which 
are branch and bound (B&B) and dynamic algorithm (DA).  One of these problems is 
the total weighted tardiness.  For large-sized problems, B&B and DA will take a long 
time to find the optimal solution; also, the time required by the B&B is unpredictable.  
Hence, these implicit enumeration methods are only efficient when time is not 
considered a factor.  When faced with this reality, a search for a substitution method 
that is efficient and gives good results was the next alternative.  Several methods have 
been found to solve such NP-hard problems: one of them is the GA approach.  
Researchers claim that GAs give fairly good and close to optimal solutions faster than 
the implicit enumeration methods. 
 Wainwright expanded on that where he stated: The GAs are a robust search 
technique that will produce “close” to optimal results in a “reasonable” amount of 
time....  The GAs should be used when a good fitness function is available; when it is 
feasible to evaluate each potential solution; when a near-optimal, but not optimal 
solution is acceptable; and when the state-space is too large for other methods 
(Wainwright 1993, 12-13). 
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 Also, Koulamas, Antony, and Jaen elaborated on the robustness of these 
search techniques: OR researchers are increasingly turning towards new solution 
techniques such as neural networks, genetic algorithms, simulated annealing, and tabu 
search to solve management science problems.  These techniques can be used as 
heuristics for finding near optimal solutions to a problem, and serve as alternatives to 
problem specific heuristics....  Typically, these techniques have been successfully 
applied to NP-hard problems. (Koulamas, Antony, and Jaen 1994, 41) 
 
Unconstrained Genetic Algorithm 
 The Unconstrained Genetic Algorithm (UGA) parameters were selected 
according to pilot runs that were done previously.  These parameters are: the 
population size; the number of generations; the generation of the initial population; 
the selection methods; the reproduction methods (crossover and mutation), and 
termination criterion. The population size and the number of generations are 
determined as a function of the problem size (i.e., the number of jobs).  The initial 
population for the UGA was randomly generated.  Two selection methods were used 
in this study.  The first method was the elitist method, which enforces preserving the 
best chromosomes in the reproduction process.  Thus, at each generation the elitist 
method will be used to move a fraction of the population to the next generation.  The 
second was a variant of the binary tournament that was suggested by Norman and 
Bean (1994).  The variant method is performed by first randomly selecting two 
chromosomes from the population.  Then the genetic operators are applied to these 
two chromosomes.  Next, the best of the two produced chromosomes will be selected 
and allowed to enter the pool of the potential chromosomes for the next generation.  
The tournament procedures will be repeated until a new generation of chromosomes 
is produced.  The linear order crossover (LOX) and order-based mutation (OBM) 
were used as the genetic operators.  The UGA terminated its procedures when the 
maximum number of generations had been reached. 
 
Constrained Genetic Algorithm 
 The section will give a discussion of the proposed constrained genetic 
algorithm (CGA).  In the UGA, a random population of feasible sequences was 
generated to be used as an initial population.  This starting initial population will 
affect the quality of solutions and the time taken to obtain the solution.  This claim 
was the conclusion of a sensitivity study that will be discussed later.  Hence, this step 
can be improved by using one of the heuristics that solve for the TWT.  Three 
heuristics were used to generate three of the initial sequences.  These three heuristics 
are the SPT, the EDD, and the ATC.  Thus, when the CGA was implemented, three 
chromosomes were generated according to the SPT, the EDD, and the ATC 
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heuristics.  The rest of the population was randomly generated to avoid the bias that 
might be caused by the three heuristics. 
 As mentioned earlier, the OBM procedures were to select two jobs at random 
and swap them; however, swapping these two jobs could fail to satisfy standard 
dominance conditions of the TWT problem.  Hence, dominance rules can be used to 
avoid dominated swapping of jobs, and so better objective values can be obtained.  
Two theorems can be used as dominance rules for the TWT problem.  These are: 
  
Rule 1: For two jobs j and k, if  

Pj ≤ Pk, dj ≤ dk, and Wj ≥  Wk, 
 then there exists an optimal sequence in which job j appears before job k. 
 
Rule 2: If there exists a job k that satisfies  

d Pk j
j

n
≥ ∑

=1  
 then there exists an optimal sequence in which job k is assigned the last 
position in the sequence.   
 
 The dominance rules were implemented on the children produced by the LOX 
operator by ordering the set of jobs located in the segment between the crossover 
positions according to a precedence constraint based on the dominance rule.  The 
motivation behind only ordering the jobs in the crossover block was to avoid the bias 
that might be caused if the whole chromosome was sorted, which would tend to 
create a whole set of chromosomes that were similar, tending to localize the search.  
Further, sorting the whole chromosome is time-consuming.  These two conjectures 
are the conclusions of a sensitivity test study that will be discussed in the following 
section.  The UGA approach was modified to adopt all mentioned improvements, 
which resulted in the CGA approach.  For detailed explanations for both the UGA 
and the CGA, the reader can refer to Al-Harkan and Foote (1994, 1996). 

 
9.6    APPLICATIONS OF GENETIC ALGORITHMS TO SCHEDULING PROBLEMS 

 
 In this section, a listing of most of the genetic algorithm (GA) studies that 
have been applied to all sequencing and scheduling problems will be given.  
However, since the focus is on the job shop problem, the GAs that has been applied to 
job shop problems will be discussed in more depth. 
 The GAs were applied to single machine problems by Liepins et al. (1987), 
Gupta, Gupta, and Kumar (1993), Lee and Choi (1995), Lee and Kim (1995), and 
Rubin and Ragatz (1995).  Liepins et al. (1987) applied a GA approach to minimize 
lateness.  In their study, they compared the performance of three crossover methods 
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(PMX, greedy weak crossover heuristics, and greedy powerful crossover heuristic).  
They concluded that PMX dominated both crossover methods.  Gupta, Gupta, and 
Kumar (1993) tried to minimize flow time variance using a GA approach.  In their 
study, they tested the effect of the GA parameters, which were population size, 
number of generations, problems size, crossover rate, and mutation rate.  They found 
that most of these parameters have significant effects on the GA approach--especially 
the population size and the number of generations.  Only the crossover rate had an 
insignificant effect.  Lee and Choi (1995) applied a GA approach to solve a single 
machine problem where the total earliness and tardiness penalties was minimized.  
Lee and Kim (1995) developed a parallel GA to solve a single machine, using a 
common due date where the weighted sum of the total earliness and total tardiness 
was minimized.  A GA approach to handle sequence dependent set-up time has been 
applied by Rubin and Ragatz (1995) where the total tardiness was minimized. 
 Cleveland and Smith (1989) used a GA approach to solve a flow shop 
problem where the total flow time was minimized.  Neppalli (1993) tested the effect 
of the genetic parameters on the GA approach, using both total flow time and the 
makespan as performance measures.  Neppalli concluded that the application of GAs 
are problem dependent, and the non-random initial population has a significant effect 
on the GA convergence.  A GA approach was used to minimize the Cmax in flow shop 
problems by Stöpller and Bierwirth (1992), Vempati, Chen, and Bullington (1993), 
Sridhar and Rajendran (1994), Chen, Vempati, and Aljaber (1995), and Reeves 
(1995). Stöpller and Bierwirth (1992) developed a parallel GA to the solve the flow 
shop problem.  Reeves (1995) compared GA and simulated annealing, and found that 
when the problem is small, the two are comparable, but as the problem gets bigger, 
the GA performs better. 
 Davis (1985) was the first to apply GAs to job shop problems.  However, he 
was not the only one.  Several researchers have been attempting to solve the job shop 
problem using GAs.  These attempts were made by Bagchi et al. (1991), Falkenauer 
and Bouffouix (1991), Nakano and Yamada (1991), Fang, Ross, and Corne (1993), 
Gen, Tsumjimura, and Kubota (1994), Norman and Bean (1994), Bierwirth (1995), 
Bierwirth, Kopfer, Mattfel, and Rixen (1995), Kobayashi, Ono, and Yamamura 
(1995), Croce, Tadei, and Volta (1995), Dorndorf and Pesch (1995), and Mattfeld 
(1996). 
 Davis (1985) presented a conceptual and instructional study to show how the 
GA can be applied to job shop.  Davis attempted to solve a job shop problem, using 
an indirect representation of the population which allows the use of Holland’s 
crossover operator.  Davis represented a chromosome as a preference list of 
operations where the chromosome is time dependent and machine controlling.  Each 
machine has a list of these chromosomes, which are activated sequentially as time 
passes.  Davis’s representation of each chromosome has four elements.  The first 
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element is the activation time of the chromosome.  The second element is a 
preference list of operations, and the third and fourth elements are keys to control the 
machine, which are ‘wait’ and ‘idle’.  However, for reasons that have been reported 
by several researchers, Davis’s work can be summarized by the following statements: 

 ...The performance of the Davis-style approach in initial runs on 
Problem 1 was not particularly notable.  Some improvement was observed 
over time, but the final solution obtained was not as good as that obtained by 
the standard-GA. (Cleveland and Smith 1989, 167) 
 ...Davis (1985) uses an intermediate representation which is 
guaranteed to produce legal schedule when operated upon by genetic 
recombination operators.  However, the example used is not very complicated, 
and there are no significant results. (Bagchi et al. 1991, 11) 
 ...Davis (1985) discusses a more indirect encoding that permits the use 
of the traditional crossover operator.  For this encoding, a chromosome 
consists of a sequence of job preferences combined with times at which these 
job preferences become active.  However, this encoding suffers from 
inflexibility due to the need to determine an appropriate time scale and 
appropriate machine idle and waiting time periods. (Norman and Bean 1994, 
6) 
 ...Davis (1985) presented an application of genetic search to a simple 
job shop scheduling problem.  The focus of the paper was on developing a 
workable representation of the problem.  Only a single example problem was 
presented, with very limited computational experience. (Rubin and Ragatz 
1995, 87) 

  
 Bagchi et al. (1991) developed and implemented a GA approach to solve a job 
shop problem.  They designed a hypothetical job shop that had three machines and 
could process three products.  The eleven orders produced by the job shop were 
orders for one of three products with a specific batch size.  Each of the three products 
had several alternative process plans, including three process plans for product one, 
and two process plans for products two and three.  All the process plans had three 
operations except one.  All operations could be processed by two alternative 
machines except two of them were processed by only one alternative machine.  
 In their study, Bagchi et al. used three representations of the population which 
are variants of the order-based representation.  The first representation is a simple 
order-based representation, but the second and third representations are known as 
problem-specific-based representation.  In the first representation, each gene in a 
chromosome represented the order priority.  A chromosome in the second 
representation was formed by genes that had two elements.  The first element of a 
gene was the order priority, and the second was the process plan assigned to the 
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order.  The third representation was the same as the second representation; however, 
the third representation was more specific than the second representation.  In the 
second element of the gene, the third representation not only assigns a process plan to 
an order, but also specifies the machines to perform the operations in the process plan 
assigned.  Bagchi et al. compared the three representations using machine utilization 
as the performance measure and found that the third representation was superior.  The 
major conclusion of their study was:  

 ...To enhance the performance of the algorithm and to expand the 
search space, a chromosome representation which stores problem-specific 
information is devised. (Bagchi et al. 1991, 10) 

 Falkenauer and Bouffouix (1991) solved a job shop problem using a GA 
approach where jobs had different release times.  Falkenauer and Bouffouix used an 
order-based representation version which is known as preference-list-based 
representation.  In this representation a chromosome is formed by several sub-
chromosomes.  These sub-chromosomes contain genes which represent the preference 
list for a specific machine.  Each gene in the sub-chromosome represents an operation 
to be performed on that machine.  For example, if there are three machines in the job 
shop, then there will be three sub-chromosomes in a chromosome.  Also, if each 
machine performs five operations, there will be five genes in each sub-chromosome.  
In their implementation, each chromosome was evaluated, using a simulation model 
for the problem under consideration.  The LOX and PMX were used as the crossover 
operators and inversion was the mutation operator.  Each of these crossover methods 
was implemented on two chromosomes by crossing the first sub-chromosome of one 
parent with the first sub-chromosome of the other parent, the second with the second, 
and likewise until the last with the last.  
 Falkenauer and Bouffouix performed their experiment using three job shop 
models which they called small, big, and giant.  The small model had 24 operations, 
the big had 60 operations, and the giant had 250 operations.  In their GA approach 
they maximized the difference of the summation of weighted earliness and the 
summation of squared tardiness where the earliness was given a weight between 0 
and 1.  Falkenauer and Bouffouix used a pilot study to determine the GA parameters.  
From the pilot study, they fixed the following parameters: crossover rate was 0.6; 
mutation rate was 0.033; the population size was 30, and the number of generations 
was 100.  To evaluate the performance of the GA, they used the following 
dispatching rules: SPT and JST.  Falkenauer and Bouffouix performed ten replicates 
for each model mentioned above.  From their results, they concluded the following: 
the GA is superior when compared to the dispatching rules, and LOX performed 
better than PMX. 
 Nakano and Yamada (1991), as mentioned in the previous section, developed 
a GA approach to solve job shop problems using binary representation of the 
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population.  The classical crossover and mutation operators were applied as they were 
by Holland.  They evaluated their chromosomes using semi-active schedules.  In their 
experiment they solved three well-known problems designed by Fisher and 
Thompson (1963).  From their results, it was clear that their GA approach obtained 
results comparable to the results obtained by other approaches.   
 Fang, Ross, and Corne (1993) and Gen, Tsumjimura, and Kubota (1994) 
implemented GA approaches that utilized a variant of an order-based representation 
known as operation-based representation.  In this representation a chromosome is 
formed by genes which represent an integer value which corresponds to a job number.  
In each chromosome, a job's number will be repeated according to its number of 
operations.  Therefore, a chromosome becomes a sequence of operations for all jobs.  
For example, if there are three machines and three jobs in the job shop and all jobs go 
through all machines, then there will be 9 genes in a chromosome as follows: 3-1-1-3-
2-3-2-1-2, where the first 3 stands for operation 1 of job 3, the first 1 stands for 
operation 1 of job 1, the second 1 stands for operation 2 of job 1, and likewise until 
the third 2 stands for operation 3 of job 2.  In the chromosome given, each job was 
repeated three times because each of them had three operations.  The given 
chromosome can be interpreted when the process plan of each job is given.  Hence, 
assume that the process plans for jobs 1, 2, and 3 are as follows: 1-2-3, 1-3-2, and 2-
1-3 respectively (where numbers in the process plans indict the machine number).  
Then, the chromosome above can be interpreted as follows: job 3 is processed first at 
machine 2, job 1 is processed first at machines 1 and 2, job 3 is processed second at 
machine 1, job 2 is processed third at machine 1, job 3 is processed first at machine 3, 
job 2 is processed second at machine 3, job 1 is processed third at machine 3, and job 
2 is processed third at machine 2. 
 Gen, Tsumjimura, and Kubota (1994) implemented their GA approach to 
solve a job shop problem where the makespan was minimized.  In their 
implementation, each chromosome was evaluated using deterministic Gantt charting.  
Specifically, for each chromosome, they constructed a semi-active schedule.  Gen, 
Tsumjimura, and Kubota developed their own crossover operator which they named 
partial schedule exchange crossover (for detailed explanations for the developed 
crossover operator, the reader can refer to Gen and Cheng 1997).  They developed 
their own crossover method because all the other crossover methods that can be 
applied to the order-based representation cannot be applied to operation-based 
representation.  The OBM was used as the mutation operator and the elitist method 
was used as the production method.  Dynamic population size was utilized where at 
the end of each generation the population size was increased by a percent of the 
summation of mutation and crossover rates.  Then, the population size was reduced to 
the original size, where only the best individuals were selected from the inflated 
population size.  Gen, Tsumjimura, and Kubota solved three well-known benchmarks 
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from Fisher and Thompson (1963).  In their experiment, they used the following 
parameters: crossover rate was 0.4; mutation rate was 0.3; the population size was 60, 
and the number of generations was 5000.  They compared their results to branch and 
bound approaches and other GAs.  From their results, it is clear that they performed 
better than the other GAs but not better than branch and bound approaches. 
 Norman and Bean (1994) performed a study in which they developed and 
implemented a GA approach to solve a job shop problem using a random key 
representation method.  They designed the GA approach to solve a job shop with m 
machines and n jobs where these jobs arrive at the job shop separately.  Also, setup 
times were sequence dependent, and machine down time and scarce tools were 
incorporated.  The GA approach was applied to the described job shop model to 
minimize the total tardiness.  In the GA implementation, the elitist method, which 
enforces preserving the best chromosomes, was used in the reproduction process.  A 
variant of the binary tournament was used to select two chromosomes to reproduce.  
Uniform crossover and immigration mutation were the two genetic operators used.  In 
every generation, the immigration mutation method inserted a new random 
chromosome.  By using the immigration mutation, the study tried to eliminate the 
effect of the elitist reproduction, which causes premature convergence.  In this study, 
the GA approach terminates if the best solution found has not changed for 15 
generations.   
 Norman and Bean incorporated problem specific data to enhance the 
performance of the GA approach by using ready times and due dates to prioritize 
jobs.  They stated: 
 The scheduling application incorporates problems specific into the random 
keys encoding to improve the rate of convergence.  Recall that for the general random 
keys encoding the random keys for all the genes are uniform (0,1) variates.  The 
scheduling application contains problem specific data which can be used to bias the 
random key values of the jobs.  If the problem objective is to minimize total tardiness 
then it is likely that jobs that have early ready and due times will be found early in the 
optimal sequence.  Likewise, jobs with late ready and due times will probably be 
found late in the optimal sequence.  (Norman and Bean 1994, 13) 
 The enhancement incorporated in their model was performed when the 
chromosomes were generated.  That is, if job 5 has to be before job 2 in the optimal 
sequence, the uniform random number assigned to job 2 will be biased to be large (for 
example, the random number for job 2 will be uniformly distributed between 0.8 and 
1 instead of being uniformly distributed between 0 and 1).  By doing so, job 2 will 
usually be located in later positions in the sequence.  On the other hand, job 5 will be 
assigned a smaller random number which will often locate it in earlier positions.  The 
example given by Norman and Bean was not a good example to demonstrate the data 
specific enhancement.  In addition, they did not give any explanations of how to 
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handle difficult situations.  This enhancement does not incorporate job processing 
times, which does not make it robust enough.  The reason for not being robust enough 
is that their objective function, total tardiness, is a function of ready times, due dates, 
and processing times.  Also, this enhancement is performed only on the initial 
population and not during the evolution process.  This implies that this enhancement 
is predictive and not reactive. 
 Norman and Bean performed an elementary testing by solving three types of 
data sets.  The first consisted of a single machine and 16 jobs.  The second set had 
seven problems which each contained two machines and 350 jobs.  Five problems 
were in the third data set, with each problem having ten machines and 250 jobs.  For 
the first data set, ten replications were performed and the GA approach was able to 
obtain the optimal solution provided by Kanet and Sridharan (1991).  They concluded 
that the results of all the data sets were encouraging, and claimed that the GA 
approach was good in solving the job shop problem. 
 Bierwirth (1995) developed a GA approach (GP-GA) to solve a job shop 
problem using an operation-based representation where the makespan was minimized.  
In the GP-GA, each chromosome was evaluated according to an active schedule.  As 
mentioned earlier, all the crossover methods that can be applied to an order-based 
representation cannot be applied to operation-based representation.  Therefore, 
Bierwirth developed a crossover method which is a generalization of OX (GOX).  In 
the conducted experiment, the following parameters were used: the population size 
was 100, and two levels of the number of generations were 100 and 150.  Ranking 
selection method was used to select chromosomes to reproduce.  Bierwirth solved 
twelve standard problems which were designed by Fisher and Thompson (1963) and 
Lawrence (1984).  Bierwirth performed a total of 100 replicates for the two problems 
that were designed by Fisher and Thompson and 25 replicates for the other ten 
problems that were designed Lawrence (1984).  From the results obtained, Bierwirth 
reported that the average solutions for all problems were within a percentage of 
deviation of errors that ranged between 0.7% and 7%.  Also, Bierwirth concluded that 
the GP-GA was a promising approach.  Bierwirth, Kopfer, Mattfel, and Rixen (1995) 
performed a preliminary study in which they extended the GP-GA to solve dynamic 
job shop problem where jobs had different release times.  
 Croce, Tadei, and Volta (1995) developed a GA approach to solve a job shop 
problem using a preference-list-based representation that was developed by 
Falkenauer and Bouffouix (1991).  In their implementation, each chromosome was 
evaluated using a simulation model for the problem considered.  Croce, Tadei, and 
Volta claimed that schedules produced by the simulation model were only non-delay 
schedules.  Hence, they constructed schedules with look-ahead function to introduce 
delay.  The look-ahead function used by Croce, Tadei, and Volta violated the 
definition of non-delay schedule to a certain extent so that some of the delay 
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schedules could be incorporated in the final solution.  The look-ahead function was 
accomplished as follows: when a machine finishes processing and becomes available 
to process the operations waiting for it, an operation with the highest priority will be 
scheduled to be processed.  However, before scheduling this operation, the look-
ahead function will first determine the processing time and the completion time of the 
candidate operation.  Then, the look-ahead function will check to see if there is an 
operation which will arrive before the candidate operation finishes and has higher 
priority than the candidate operation.  If there is an operation that satisfies both 
conditions, then the machine will stay idle until the new operation arrives.  Otherwise, 
the candidate will be scheduled.  
 The LOX was the crossover method used by Croce, Tadei, and Volta.  The 
OBM was applied by swapping genes within a sub-chromosome.  The steady-state 
reproduction was the reproduction method used, where at each generation a number 
of new chromosomes were inserted.  Croce, Tadei, and Volta performed a pilot study 
to determine the GA parameters.  From the pilot study, they fixed the following 
parameters: crossover rate was 1; mutation rate was 0.03; the population size was 
300, and ten new chromosomes were inserted at each generation for the reproduction 
method.  Croce, Tadei, and Volta applied the GA approach developed to minimize the 
makespan using eleven standard problems by performing five runs for each of them.  
Three of these problems were designed by Fisher and Thompson (1963), and the 
other eight were designed by Lawrence (1984).  The optimal solutions for these 
problems were provided by Fisher and Thompson (1963), and Lawrence (1984).  
Croce, Tadei, and Volta obtained the results for the eleven problems and compared 
the best obtained result for each problem with the best obtained results of three other 
studies which had solved the same eleven problems.  One of these studies which 
solved the eleven problems by the simulated annealing (SA) algorithm was performed 
by Laarhoven, Aarts, and Lenstra (1992).  The second study was performed by 
Dell’Amico and Trubian (1993) who solved the eleven problems using the tabu 
search (TS) approach.  The Shifting Bottleneck (SB) algorithm (Adams, Balas, and 
Zawack 1988) was the third heuristic that also was used to solve the eleven problems. 
From the results of this study and the other three studies, it is clear that the tabu 
search approach was superior.  Out of the eleven problems, the TS converges to the 
optimal solution in ten problems.  The SA approach found the optimal solution to 8 
problems.  The SB and GA found the optimal solutions to 7 and 6 problems 
respectively. 
 As mentioned earlier, Dorndorf and Pesch (1995) proposed a GA approach 
that used an integer value representation of population which was used to solve a job 
shop problem where the makespan was minimized.  Recall from the previous section 
that they proposed two GAs, which they named P-GA and SB-GA.  In the P-GA, 
each chromosome consisted of n-1 genes where n-1 is the number of operations in the 
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problem under consideration.  Each gene was represented by an integer value which 
corresponded to a dispatching rule number from a list of twelve dispatching rules 
(SPT, LPT, LRPT, SRPT, RANDOM, FCFS, TWORK, TLPT, MWR, LWR, longest 
operation successor, and longest operation reaming processing time).  This implies 
that each gene can have an integer value between 1 and 12.  In the P-GA, the 
schedules were constructed using an active schedule algorithm which was developed 
by Giffler and Thompson (1960).  At each iteration of Giffler and Thompson’s 
algorithm a conflict set of operations is formed which can have one or more 
operations.  From the conflicting set of operations, an operation is selected randomly 
or by using a single dispatching rule.  Hence, this selection problem motivated 
Dorndorf and Pesch to developed their P-GA approach, which was used to solve the 
conflict in selecting an operation.  The selection of an operation was performed by 
referring to the gene that was associated with this operation, and this gene would 
prioritize this operation according to the relevant dispatching rule. 
 In the second application, the developed GA approach (SB-GA) was part of 
the shifting bottleneck (SB) algorithm.  Recall that the SB algorithm sequences 
machines sequentially, one at a time until all machines are sequenced.  It should be 
clear that the sequence of machine selection affect the quality of solutions obtained.  
Again, the selection problem motivated Dorndorf and Pesch to develop the SB-GA 
approach which controlled the machine selection at the first step of the SB algorithm.  
Each chromosome in the SB-GA approach consisted of m genes where m is the 
number of machines in the job shop.  Each gene represented a machine number which 
could have any value between 1 and m.   
 Dorndorf and Pesch used three well-known benchmarks by Fisher and 
Thompson (1963) to tune their parameters.  They used the elitist method in both GA 
approaches.  For the P-GA, they used the following parameters: crossover rate was 
0.65; mutation rate was 0.001; inversion rate was 0.7, and the population size was 
200.  In the SB-GA, mutation and inversion were not implemented, the crossover rate 
was 0.75, and the population size was 40.  Dorndorf and Pesch randomly generated 
and solved 105 problems by the P-GA and the SB-GA, and then compared the results 
obtained to the results of four other heuristics.  These were: a random selection; 
dispatching rules, and two versions of the SB algorithm.  Also, they solved 40 
problems that were designed by Lawrence (1984).  Then they concluded that with 
respect to the makespan, the SB-GA performed better than the SB and the other 
heuristics.  However, in terms of CPU time, the SB performed better than all 
heuristics.  On the other hand, the SB algorithm dominated the P-GA approach in 
both time and objective function.  The improvement gained by using the SB-GA over 
the SB algorithm was on the average very small.  Also, the CPU time needed by SB-
GA was increased by a huge percentage in both small and large problems. 
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 Kobayashi, Ono, and Yamamura (1995) implemented a GA approach to solve 
a job shop problem where chromosomes were represented using the preference-list-
based representation.  In their implementation, each chromosome was evaluated using 
an active schedule.  The OX and sub-sequence exchange crossover (SXX) were used 
as the crossover methods and mutation was not applied.  Kobayashi, Ono, and 
Yamamura tuned their GA with two well-known benchmarks which were designed 
by Fisher and Thompson (1963).  From the pilot study, they fixed the following 
parameters: crossover rate was 1.0, and the population size was 600.  Random 
selection without replacement was used to select chromosomes.  In their final 
experiment, they performed a total of 100 replicates for Fisher and Thompson’s 
problems and they concluded that SXX performed better than OX, and the GA 
approach developed was promising. 
 Mattfeld (1996) developed three GA approaches to solve the job shop 
problem using operation-based representation.  In all the GAs developed (GA1, GA2, 
and GA3), each chromosome was evaluated using a semi-active schedule, then the 
resultant schedule was re-optimized using a hill climbing algorithm.  Also, a 
proportional selection method was used.  Using GA1, they compared three mutation 
operators, PBM, OBM, and SBM, and concluded that PBM was the best.  Also, using 
GA1, they compared two crossover operators, GOX and a developed version of PBX 
(called GPX).  The conclusion of the second experiment was that the GOX was 
superior.  Also, Mattfeld performed an experiment where the GA1 was compared 
with pure GA.  The pure GA used neither semi-active schedules nor hill climbing 
algorithm.  Then he concluded that GA1 achieved better results than the pure GA in 
fewer generations.  The parameters used in the GA1 implementation were as follows: 
crossover rate was 0.6; mutation rate was 0.03; the population size was 100; the 
number of generations was 100, and the number of neighbors was 100.  Using the 
parameters mentioned, Mattfeld solved twelve benchmarks to evaluate the 
performance of the GA1.  Two of these problems were designed by Fisher and 
Thompson (1963), three of them were designed by Adams, Balas, and Zawack 
(1988), and the other seven were designed by Lawrence (1984).  From the results 
obtained, Mattfeld reported that the average percentage error of deviation ranged 
between 1.3% and 4.8%.  In the GA2, Mattfeld (1996) introduced structured 
population GA.  Using the same parameters except for the crossover rate was 1, and 
the number of neighbors was 4, using a population structure of 10x10.  In the GA2, 
Mattfeld used an acceptance criterion to either accept or reject the replacement of a 
parent by its offspring.  The same twelve problems were solved by the GA2 and 
Mattfeld reported that the average percentage of errors ranged between 0.4% and 
1.1%.  The GA3 used the same parameters used by GA2, except the crossover and 
mutation rates were auto-adaptive.  When the same twelve problems were solved by 
the GA3, the percentage of errors ranged between 0.3% and 1%. 
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EXERCISES 
 

9.1 Consider 1 || ∑ Tj   problem for the data given in the following Table 
   

jobs 1 2 3 4 
pj 10 8 12 6 
dj 7 5 8 3 

 
Solve the problem by using Genetic Algorithm method. Start with a 
population of the three sequences (3, 4, 1, 2), (4, 3, 1, 2) and (3, 2, 1, 4) 
perform three iterations. Apply cross-over operator PMX on the parents to 
generate two child sequences 
 

9.2 Consider the instance of P2 || ∑ wjTj with following 6 jobs 
 

jobs 1 2 3 4 5 6 
pj 13 9 13 10 8 11 
dj 6 18 10 11 13 18 
wj 2 4 2 5 4 3 

 
Solve the problem using Genetic Algorithm. Using the initial population 
generated by SPT, LPT, EDD and WSPT. Perform THREE iterations and find 
the best sequence. 
 

9.3 Consider the instance of F3│pij = pi │∑wjTj for following problem 
 

jobs 1 2 3 4 
pj 9 9 12 3 
dj 10 8 5 28 
wj 14 12 1 12 

 
Apply the Genetic Algorithm to the instance. Start with a population of the 
three sequences (2, 4, 1, 3), (1, 3, 4, 2) and (1, 2, 3, 4) perform three iterations. 



Appedix A 

Normal Distribution Table 

 
 

 

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 
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z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

-3.6 0.00016 0.00015 0.00015 0.00014 0.00014 0.00013 0.00013 0.00012 0.00012 0.00011 

-3.5 0.00023 0.00022 0.00022 0.00021 0.00020 0.00019 0.00019 0.00018 0.00017 0.00017 

-3.4 0.00034 0.00032 0.00031 0.00030 0.00029 0.00028 0.00027 0.00026 0.00025 0.00024 

-3.3 0.00048 0.00047 0.00045 0.00043 0.00042 0.00040 0.00039 0.00038 0.00036 0.00035 

-3.2 0.00069 0.00066 0.00064 0.00062 0.00060 0.00058 0.00056 0.00054 0.00052 0.00050 

-3.1 0.00097 0.00094 0.00090 0.00087 0.00084 0.00082 0.00079 0.00076 0.00074 0.00071 

-3.0 0.00135 0.00131 0.00126 0.00122 0.00118 0.00114 0.00111 0.00107 0.00103 0.00100 

-2.9 0.00187 0.00181 0.00175 0.00169 0.00164 0.00159 0.00154 0.00149 0.00144 0.00139 

-2.8 0.00256 0.00248 0.00240 0.00233 0.00226 0.00219 0.00212 0.00205 0.00199 0.00193 

-2.7 0.00347 0.00336 0.00326 0.00317 0.00307 0.00298 0.00289 0.00280 0.00272 0.00264 

-2.6 0.00466 0.00453 0.00440 0.00427 0.00415 0.00402 0.00391 0.00379 0.00368 0.00357 

-2.5 0.00621 0.00604 0.00587 0.00570 0.00554 0.00539 0.00523 0.00508 0.00494 0.00480 

-2.4 0.00820 0.00798 0.00776 0.00755 0.00734 0.00714 0.00695 0.00676 0.00657 0.00639 

-2.3 0.01072 0.01044 0.01017 0.00990 0.00964 0.00939 0.00914 0.00889 0.00866 0.00842 

-2.2 0.01390 0.01355 0.01321 0.01287 0.01255 0.01222 0.01191 0.01160 0.01130 0.01101 

-2.1 0.01786 0.01743 0.01700 0.01659 0.01618 0.01578 0.01539 0.01500 0.01463 0.01426 

-2.0 0.02275 0.02222 0.02169 0.02118 0.02067 0.02018 0.01970 0.01923 0.01876 0.01831 

-1.9 0.02872 0.02807 0.02743 0.02680 0.02619 0.02559 0.02500 0.02442 0.02385 0.02330 

-1.8 0.03593 0.03515 0.03438 0.03362 0.03288 0.03216 0.03144 0.03074 0.03005 0.02938 

-1.7 0.04456 0.04363 0.04272 0.04181 0.04093 0.04006 0.03920 0.03836 0.03754 0.03673 

-1.6 0.05480 0.05370 0.05262 0.05155 0.05050 0.04947 0.04846 0.04746 0.04648 0.04551 

-1.5 0.06681 0.06552 0.06425 0.06301 0.06178 0.06057 0.05938 0.05821 0.05705 0.05592 

-1.4 0.08076 0.07927 0.07780 0.07636 0.07493 0.07353 0.07214 0.07078 0.06944 0.06811 

-1.3 0.09680 0.09510 0.09342 0.09176 0.09012 0.08851 0.08691 0.08534 0.08379 0.08226 

-1.2 0.11507 0.11314 0.11123 0.10935 0.10749 0.10565 0.10383 0.10204 0.10027 0.09852 

-1.1 0.13566 0.13350 0.13136 0.12924 0.12714 0.12507 0.12302 0.12100 0.11900 0.11702 

-1.0 0.15865 0.15625 0.15386 0.15150 0.14917 0.14686 0.14457 0.14231 0.14007 0.13786 

-0.9 0.18406 0.18141 0.17878 0.17618 0.17361 0.17105 0.16853 0.16602 0.16354 0.16109 

-0.8 0.21185 0.20897 0.20611 0.20327 0.20045 0.19766 0.19489 0.19215 0.18943 0.18673 

-0.7 0.24196 0.23885 0.23576 0.23269 0.22965 0.22663 0.22363 0.22065 0.21769 0.21476 

-0.6 0.27425 0.27093 0.26763 0.26434 0.26108 0.25784 0.25462 0.25143 0.24825 0.24509 

-0.5 0.30853 0.30502 0.30153 0.29805 0.29460 0.29116 0.28774 0.28434 0.28095 0.27759 

-0.4 0.34457 0.34090 0.33724 0.33359 0.32997 0.32635 0.32276 0.31917 0.31561 0.31206 

-0.3 0.38209 0.37828 0.37448 0.37070 0.36692 0.36317 0.35942 0.35569 0.35197 0.34826 

-0.2 0.42074 0.41683 0.41293 0.40904 0.40516 0.40129 0.39743 0.39358 0.38974 0.38590 

-0.1 0.46017 0.45620 0.45224 0.44828 0.44433 0.44038 0.43644 0.43250 0.42857 0.42465 

-0.0 0.50000 0.49601 0.49202 0.48803 0.48404 0.48006 0.47607 0.47209 0.46811 0.46414 
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Add the following refernce to the book as we talked last time and we need to 
meet this week to finalize and wrap up the issues: 
  


