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Integrating ant colony and genetic algorithms in the balancing and 

scheduling of complex assembly lines  

Ibrahim Kucukkoc1,2,*, David Z. Zhang1  

 
1 College of Engineering, Mathematics and Physical Sciences, University of Exeter,  

Streatham Campus, Exeter, England, UK 
2 Department of Industrial Engineering, Balikesir University, Cagis Campus, Balikesir, Turkey 

Different from a large number of existing studies in the literature, this paper addresses two important 

issues in managing production lines, the problems of line balancing and model sequencing, 

concurrently. A novel hybrid agent based ant colony optimization – genetic algorithm approach is 

developed for the solution of mixed-model parallel two-sided assembly line balancing and sequencing 

problem. The existing agent based ant colony optimization algorithm is enhanced with the integration 

of a new genetic algorithm based model sequencing mechanism. The algorithm provides ants the 

opportunity of selecting a random behavior among ten heuristics commonly used in the line balancing 

domain. A numerical example is given to illustrate the solution building procedure of the algorithm 

and the evolution of the chromosomes. The performance of the developed algorithm is also assessed 

through test problems and analysis of their solutions through a statistical test, namely Paired-Sample t-

Test. In accordance with the test results, it is statistically proven that the integrated genetic algorithm 

based model sequencing engine helps agent based ant colony optimization algorithm robustly find 

significantly better quality solutions.  

Keywords: assembly line balancing; model sequencing; mixed-model parallel two-sided assembly 

lines; agent based ant colony optimization; genetic algorithm; artificial intelligence. 

1. Introduction 

Assembly line is a flow-line production system and is usually comprised of a set of sequentially linked 

workstations in which a set of tasks is performed by operators. Since the first assembly line was 

utilized by Henry Ford and his colleagues in 1913, the design and implementation of assembly lines 

have been critical issues for practitioners and academics [1].   
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Assembly line balancing problem is determining the optimal partitioning of tasks to the workstations 

by satisfying certain constraints (i.e. capacity constraint, precedence relationship constraint) [2,3]. 

Additional constraints may also arise depending on the line configuration, model variation, 

assumptions used etc.  

With an increasingly consumer-centric global market, single model lines, where only one model is 

produced on the line, come up short in satisfying growing trend for highly customized product 

variability. In this context, mixed-model production lines have become popular as a result of 

companies’ high-mix/low-volume manufacturing strategies. Thus, manufacturers can produce 

different models of a base product on a mixed-model assembly line (which was introduced by 

Thomopoulos [4]) instead of constructing and maintaining a new line for each model [5].  

Mainly two types of problems arise for mixed-model assembly lines: line balancing problem and 

model sequencing problem. While the decision of which task will be performed in which workstation 

is made in the line balancing problem, the model sequencing problem determines the production 

sequence of different product models assembled on the same line. These two problems are tightly 

interrelated to each other and must be handled together to obtain a successfully implemented mixed-

model assembly line. This is particularly important if more than one mixed model line, which is 

constructed in parallel to each other, is balanced together. Kucukkoc and Zhang [6] illustratively 

showed the dependency of line balancing problem on model sequencing problem (and vice versa). 

However, many researches addressed these two problems separately (for instance, see Erel and 

Gokcen [7], Matanachai and Yano [8], Vilarinho and Simaria [9], McMullen and Tarasewich [10], 

Yagmahan [11], Hamta et al. [12], Kucukkoc et al. [13] for the line balancing problem; and Yano and 

Rachamadugu [14], Kim et al. [15], Zheng et al. [16], Bautista and Cano [17], Zhu et al. [18], 

Manavizadeh et al. [19] and Xu and Li [20] for the model sequencing problem) with various 

objectives. The reader can refer to Kucukkoc and Zhang [6] and Zhang and Kucukkoc [34] for a 

summary of main contributions on Mixed-model Assembly Line Balancing Problems (MALBPs) and 

to Boysen et al. [21] for a comprehensive survey on sequencing mixed-model assembly lines.  

http://link.springer.com/article/10.1007/s00170-015-7320-y
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Based on the operation side utilization of the lines, assembly lines could be classified into two 

groups: (i) one-sided assembly lines and (ii) two-sided assembly lines [22]. Two-sided assembly lines 

-introduced by Bartholdi [23]- are chiefly used in the production of large-sized products and are more 

practical for large-sized products (e.g. buses and trucks) than for small ones (e.g. electrical drills). 

Workers at each pair of opposite stations work in parallel on different tasks but on the same individual 

item. Two-sided lines differ from one-sided lines by means of necessity to perform some tasks on a 

specific side (Left-L or Right-R) of the line and some can be performed on any of the sides (Either-E) 

[24]. 

Various solution techniques were proposed ever since the parallel assembly line balancing 

problem [25] and two-sided assembly line balancing problem [23] were introduced. Large numbers of 

researchers have addressed mixed-model lines, two-sided lines and parallel lines (where two lines are 

located in parallel to each other [25]) and related problems separately in the literature. On the other 

hand, few researchers dealt with the combination of any of those problems (i.e. mixed-model two-

sided lines, parallel mixed-model lines, etc.) although such lines have wide application areas and are 

commonly encountered in industry. Parallel two-sided assembly line balancing problem was 

introduced by Ozcan et al. [26] and a Genetic Algorithm (GA) based solution technique was proposed 

by Kucukkoc and Zhang [22,27]. Kucukkoc and Zhang [28] balanced parallel-two sided assembly 

lines using ant colony optimization algorithm with the aim of minimizing two conflicting objectives: 

cycle time and total number of workstations. Simaria and Vilarinho [29], Ozcan and Toklu [30] and 

Chutima and Chimklai [31] dealt with mixed-model two-sided assembly line balancing problem and 

developed different approaches; namely ant colony optimization, simulated annealing and particle 

swarm optimization, respectively. Nevertheless, parallel mixed-model assembly lines were studied by 

Ozcan et al. [32] only. The study of Ozcan et al. [32] differentiate from others as they consider the 

model sequencing problem as well as the line balancing problem. Please refer to Battaïa and Dolgui 

[33] for a comprehensive taxonomy of those problem types and their solution approaches. 

Zhang and Kucukkoc [34] defined the Mixed-model Parallel Two-sided Assembly Line Balancing 

Problem, which is comprised of complex characteristics of different line configurations: mixed-model 
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lines, parallel lines, and two-sided lines. Kucukkoc and Zhang [35] developed an agent based ACO 

approach for the general solution of the problem, which is independent from the launched model 

sequence. Kucukkoc and Zhang [6] improved it by taking the model sequencing problem into 

consideration along with the line balancing problem and introduced the Mixed-model Parallel Two-

sided Assembly Line Balancing and Sequencing (MPTALB/S) problem. Framework of a possible 

solution approach, Agent Based Ant Colony Optimization Algorithm (called ABACO/S), was also 

reported by Kucukkoc and Zhang [6] with no experimental results.  

Another research was carried out by Kucukkoc and Zhang [36] (i) to mathematically model the 

MPTALB/S problem, (ii) to test the performance of the previously proposed ABACO/S algorithm, 

and (iii) to comparatively show the significance of solving line balancing and model sequencing 

problems together. In their research, an agent deploys ant colonies to build balancing solutions for 

appointed model sequences. The user is allowed to choose between two different schemes provided 

for the determination of model sequences: (i) combinatorial sequencing, and (ii) random sequencing. 

If combinatorial sequencing is chosen, the algorithm generates all possible model sequences for 

assembly lines and tries all model sequence combinations one by one. If the second option is chosen 

by the user, the algorithm tries a user defined number of random model sequences. While the former 

option increases the possibility of obtaining a well-balanced solution, the latter one returns solutions 

faster than the other. Therefore, a model-sequencing mechanism is needed to be able to obtain robust 

solutions with less effort. With this motivation, a GA based model sequencing procedure is integrated 

to the ABACO/S and a new hybrid Agent Based Ant Colony Optimization – Genetic Algorithm 

(ABACO/S-GA) approach is proposed for the solution of MPTALB/S problem in the current work.  

Several real world characteristics of manufacturing systems could be of interest for assembly lines 

to have more realistic as well as sustainable designs [37]. However, due to the sophisticated nature of 

the studied problem in this research, some assumptions have been made to keep its complexity at a 

minimum level and make it solvable using today’s computerized technology. The most important of 

these assumptions are as follows: 

- Operators are multi-skilled and they have no preference(s) on tasks and/or models. 

http://link.springer.com/article/10.1007/s00170-015-7320-y
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- Task processing times may differ from one model to another but not from one workstation to 

another. 

- Demand is known and deterministic in a planning horizon. 

In the literature, the studies which attempt to relax such assumptions have considered relaxing only 

a limited number of them at a time and on relatively simple assembly line configurations. Also, such 

studies have not considered both of the line balancing and model sequencing problems, each of which 

is an NP-hard class of combinatorial optimization problem, at the same time. For example, Song et al. 

[38] proposed an approach to balance a straight production line through optimal allocation of 

operators considering operator efficiency. They comparatively showed that the proposed optimization 

method outperforms the industry practice. Corominas et al. [39] considered temporary and permanent 

operators, referred to as skilled and un-skilled workers, for rebalancing of a motorcycle assembly line. 

Manavizadeh et al. [40] considered operator skill levels on mixed-model U-shaped assembly line 

system allowing two types of operators: permanent and temporary. The balancing problem was solved 

and the number of stations required was determined first. Second, workers – who were classified into 

four types based on their skill levels - were assigned to the workstations in which they are qualified to 

work. A general framework to model skill requirements and skill conditions for assembly line 

balancing configurations was provided by Koltai and Tatay [41]. They defined three types of skill 

constraints, i.e. low skill, high skill and exclusive skill; and summarized their mathematical 

descriptions on simple assembly line balancing models. Also, Fattahi et al. [42] addressed multi-

manned workstations where a group of workers can perform tasks simultaneously on the same item. 

When the resource dependent task times are applied, not only tasks but also resource alternatives 

(number of workers and equipment type) are assigned to the workstations [43]. Kara et al. [44] 

addressed resource-dependent task times on straight and U-shaped assembly lines and developed 

integer programming formulations. Jayaswal and Agarwal [43] considered resource dependent task 

times in balancing U-shaped assembly lines and proposed a simulated annealing approach for the 

solution of the problem. As could be seen, it is clear that none of these articles have considered both 

line balancing and model sequencing problems simultaneously. However, as it will be mentioned in 

http://link.springer.com/article/10.1007/s00170-015-7320-y
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Section 6, such assumptions as listed above are the limitations of this work and are left to future study 

which we believe that will be built on the current work. Furthermore, tasks may have different 

processing times based on their processing sequences in the workstations as in the study of Gajpal et 

al. [45] for flow-shop scheduling problem. 

The remainder of this article is organized as follows. In Section 2, the characteristics of the 

MPTALB/S problem are presented with the notations and assumptions. Section 3 depicts the proposed 

ABACO/S-GA solution method by illustrating its component architecture and the main module 

characteristics. In Section 4, the solution building procedure of the algorithm is simulated through a 

numerical example. The experimental results of quantitative analysis of the proposed method are 

reported in Section 5 and, finally in Section 6, the conclusions on the research and outcomes achieved 

are drawn. 

2. Balancing and sequencing of mixed-model parallel two-sided lines 

The main characteristics of the problem addressed in this research (MPTALB/S problem) will be 

provided briefly in this section along with the assumptions made. The problem has already been 

defined by Kucukkoc and Zhang [6] and formulated mathematically by Kucukkoc and Zhang [36].  

2.1. Notation 

The following notations will be used for describing the problem characteristics: 

𝐿ℎ : The ℎ𝑡ℎ line (ℎ = 1, … , 𝐻), 

𝑚ℎ𝑗 : The 𝑗𝑡ℎ product model on line 𝐿ℎ  (𝑗 = 1, … , 𝑀ℎ), where 𝑀ℎ is the number of product 

models made on line 𝐿ℎ, 

𝑥 : Side of the line, 𝑥 = {
0 indicates left side of relevant line

1 indicates right side of relevant line
 , 

𝑊ℎ𝑘𝑥 : The 𝑘𝑡ℎ workstation on line 𝐿ℎ (𝑘 = 1, … , 𝐾ℎ;  𝑥 = 0, 1), where 𝐾ℎ is total number of 

workstations on line 𝐿ℎ, 

http://link.springer.com/article/10.1007/s00170-015-7320-y
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𝑡ℎ𝑗𝑖 : The 𝑖𝑡ℎ task for model 𝑚ℎ𝑗 on line 𝐿ℎ (𝑖 = 1, … , 𝑇ℎ𝑗), where 𝑇ℎ𝑗 is total number of tasks for 

model 𝑚ℎ𝑗 on line 𝐿ℎ, 

𝑃 : A pre-specified planning period, 

𝐷ℎ𝑗 : Demand, over the planning period, for model 𝑚ℎ𝑗 produced on line 𝐿ℎ, 

𝐶ℎ : Cycle time of line 𝐿ℎ, 

𝐶 : Common cycle time for all lines, in other words least common multiple of cycle times 

belonging to each line (𝐶 = 𝐿𝐶𝑀(𝐶1, … , 𝐶𝐻)), 

𝑀𝑃𝑆ℎ : Minimum part set or model mix of line 𝐿ℎ (𝑑ℎ = 𝑑ℎ1, … , 𝑑ℎ𝑀ℎ
), 

𝑐𝑑ℎ : Greatest common divisor of product model demands (𝐷ℎ𝑗) for line 𝐿ℎ, 

𝑑ℎ𝑗 : Normalized demand for model 𝑚ℎ𝑗 in model mix of line 𝐿ℎ, where a normalized demand for 

a product model is defined as the demand in terms of greatest common divisor of the relevant line, 

𝑀𝑆ℎ : Model sequence of line 𝐿ℎ, 

𝑆ℎ : Total number of product models on line 𝐿ℎ for one 𝑀𝑃𝑆ℎ (the length of 𝑀𝑆ℎ for one 𝑀𝑃𝑆ℎ), 

(𝑆ℎ = ∑ 𝑑ℎ𝑗
𝑀ℎ
𝑗=1 ), 

𝐿𝐶𝑀(𝑆1, … , 𝑆𝐻): Least common multiple of 𝑆ℎ values (ℎ = 1, … , 𝐻), 

𝜑 : Production cycle (𝜑 = 1, … , 𝜙), where  𝜙 = 𝐿𝐶𝑀(𝑆1, … , 𝑆𝐻), 

𝑇𝑆ℎ : The total number of possible model sequences for a mixed-model line (𝐿ℎ). 

2.2. Problem characteristics 

A Mixed-model Parallel Two-sided Assembly Line (MPTAL) system consists of more than one two-

sided assembly line (symbolized with 𝐿ℎ (ℎ = 1, … , 𝐻)) located in parallel to each other and at least 

two similar models of a product (where models are symbolized with 𝑚ℎ𝑗 (𝑗 = 1, … , 𝑀ℎ)) are produced 

on each of the lines (see Figure 1). A workstation is represented with 𝑊ℎ𝑘𝑥 (𝑘 = 1, … , 𝐾ℎ;  𝑥 = 0, 1; 
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where 𝑥 is a binary variable and ‘0’ and ‘1’ symbolize left side and right side of the line, respectively) 

and workstations are designated on both sides (Left and Right) of each of the lines.  

 

Figure 1. Mixed-model parallel two-sided assembly line [6]. 

Each model has its own set of tasks, 𝑡ℎ𝑗𝑖 (𝑖 = 1, … , 𝑇ℎ𝑗), that need to be performed by operators 

located in workstations by taking precedence relationships into consideration. A common precedence 

relationship diagram is constituted for product models assembled on the same line and 𝑃ℎ𝑗𝑖 holds the 

set of predecessors of task 𝑡ℎ𝑗𝑖 for model 𝑚ℎ𝑗 on line 𝐿ℎ. By this way, common tasks between 

different models are assigned to the same workstation to minimize machinery costs and maximize the 

benefits of tool sharing. Processing time of a task is represented with 𝑝𝑡ℎ𝑗𝑖 and each task must exactly 

be assigned to one workstation in a feasible solution. The sum of processing times of all tasks assigned 

to a station constitutes its workload and the workload of any workstation cannot exceed the designated 

cycle time for this workstation. In MPTALs, the cycle time (𝐶ℎ) of each line may be different from 

each other. 𝐶ℎ is calculated according to demand over the planning horizon for each line as follows: 

𝐶ℎ =
𝑃

∑ 𝐷ℎ𝑗
𝑀ℎ
𝑗=1

;         ℎ = 1, … , 𝐻;                                                  (1) 

where 𝐷ℎ𝑗 represents demand for model 𝑚ℎ𝑗 on line 𝐿ℎ over a planning period (𝑃).  

However, a common cycle time should be determined to avoid conflicts in multi-line stations that 

may arise due to cycle time differences. For this aim, Least Common Multiple (LCM) of cycle times 
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[25] is designated as common cycle time (𝐶) and task times are normalized according to the ratio of 

original cycle time to common cycle time. This will be exemplified in Section 4 but the reader may 

refer to Gökçen et al. [25] for detailed explanation. 

To tackle the model sequencing problem, the Minimum Part Set (MPS) principle of Bard et al. [46] 

is used [32]. According to this approach the MPS on line 𝐿ℎ (𝑀𝑃𝑆ℎ) is calculated by dividing total 

demands of models by the greatest common divisor of these demands. Let the greatest common 

divisor of 𝐷ℎ𝑗 (𝑗 = 1, … , 𝑀ℎ) be represented by 𝑐𝑑ℎ  (ℎ = 1, … , 𝐻) and model mix of line 𝐿ℎ be 

denoted by the vector 𝑑ℎ = (𝑑ℎ1, … , 𝑑ℎ𝑀ℎ
), where (ℎ = 1, … , 𝐻). 

𝑑ℎ𝑗 =
𝐷ℎ𝑗

𝑐𝑑ℎ
;       𝑗 = 1, … , 𝑀ℎ;  ℎ = 1, … , 𝐻 .                                        (2) 

Regardless of the other model sequences, the model sequence of line 𝐿ℎ is represented by 𝑀𝑆ℎ. The 

length of 𝑀𝑆ℎ for one 𝑀𝑃𝑆ℎ also determines the total number of products on line 𝐿ℎ for one 𝑀𝑃𝑆ℎ 

and is represented by 𝑆ℎ  (𝑆ℎ = ∑ 𝑑ℎ𝑗
𝑀ℎ
𝑗=1 ). The length of the 𝑀𝑆ℎ affects the number of different 

model combinations seen on the lines and determines how many different product cycles (𝜑 =

1, … , 𝜙) the system should be split into. Total number of production cycles (maximum number of 

model show-ups), (𝜙 = 𝑀𝑆𝑚𝑎𝑥), which may appear at a cycle can be calculated as follows: 

𝑀𝑆𝑚𝑎𝑥 = 𝐿𝐶𝑀(𝑆1, … , 𝑆𝐻);         ℎ = 1, … , 𝐻 .                                     (3) 

The total number of possible model sequences for a mixed-model line is computed using the equation 

given below [19]:  

𝑇𝑆ℎ =
(∑ 𝑑ℎ𝑗

𝑀ℎ
𝑗=1 ) !

∏ (𝑑ℎ𝑗!)
𝑀ℎ
𝑗=1

                                                                (4) 

But, when two mixed-model assembly lines are balanced together (as in here), the number of 

sequences emerging for the system could be computed by multiplying total number of sequences 

belonging to each of the lines (𝑇𝑆1 × 𝑇𝑆2). An exemplification of these calculations will be provided 

with an example in Section 4.  
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2.3. Constraints and assumptions 

The line system considered in this paper operates under the following conditions [36]: 

 Each task for each product model must be assigned to exactly one workstation. 

 Due to some technological or organizational constraints, tasks can be assigned to only a 

predetermined operation side (L or R) or either (E) side. 

 For a task to be assigned, all of its predecessors must have been assigned and completed.  

 To maximize resource utilization, common tasks between models on the same line are forced 

to be assigned to the same workstation. Therefore, a joint precedence diagram is constituted 

for the product models produced on the same line and is used for task assignment.  

 Processing times of tasks may differ between similar models but they are known and 

deterministic (when a task is not required for a product model, its processing time is assumed 

zero). There is no variation in task processing times depending on the resources that they are 

assigned. 

 Total workload time of a workstation must be equal to or lower than the designated cycle 

time. 

 Two or more similar models of a product are assembled on each of the two or more parallel 

two-sided assembly lines. 

 In a planning horizon, demands for different models are known and deterministic. 

 Only one operator can be assigned to a workstation.  

 Operators are multi-skilled and do not have preferences on workstations and operation sides. 

 Lines start new operations as soon as they finish previous operations. 

 Work in process inventory is not allowed, and operator travel times are ignored. 

3. The proposed method 

ACO and GA are well-known and widely applied meta-heuristics in solving combinatorial 

optimization problems, and engineering optimization problems in particular. While ACO mimics the 

foraging behavior of real ant colonies in nature, GA mimics the natural selection and evolution of 

individuals [47,48]. The basic principles of ACO and GA were laid down by Dorigo et al. [49] and 

Holland [50], respectively. Since then, these two meta-heuristics have attracted researchers and been 
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enhanced in terms of solution capacity and efficiency. Agents are program scripts interact with each 

other to solve complex problems that are beyond their individual capabilities and have been utilized 

widely to solve complex manufacturing problems [51,52]. Recent advances could be found from 

Cordon et al. [53], McMullen and Tarasewic [10] and Blum [54] for the ACO technique; Srinivas and 

Patnaik [55] and Li et al. [56] for the GA technique; and Leitato et al. [57] for the agent based 

techniques on manufacturing control. Specifically, Tasan and Tunali [58] reviewed current 

applications of GAs in assembly line balancing domain.  

ACO and GA have been hybridized successfully for a wide range problems, such as in Lee et al. 

[59], Chen and Chien [60], Li et al. [61], and Akpinar et al. [5]. Among these hybridization 

techniques, the method of Akpinar et al. [5] was used to solve MALBP with sequence dependent setup 

times between tasks. The algorithm proposed by Akpinar et al. [5] aims at enhancing the solution 

building procedure of ant colony optimization by incorporating GA as a local search strategy. Based 

on this motivation, GA is integrated to the ABACO/S to enhance the solution capacity of the 

algorithm while decreasing the computational effort. In the following sub-sections, we describe the 

ABACO/S-GA approach developed in this research.  

3.1. Outline 

ABACO/S-GA consists of four-level agents: Planning Agent (PA), Facilitator Agent (FA), 

Sequencing Agent (SA), and Balancing Agent (BA), which interact with each other to solve the 

problem collectively. The algorithm systematically searches for smaller number of workstations and 

shorter line length to solve the MPTALB/S problem for different candidate model sequences 

generated by the integrated GA mechanism in SA. For each candidate model sequence, ACO 

algorithm tries to find the best task assignment. The outline of the developed algorithm is depicted in 

Figure 2. 

The input data (e.g. task times, precedence relationships, model demands, etc.), algorithmic 

parameters (i.e. ACO parameters such as 𝛼, 𝛽, 𝜌, etc.; GA parameters such as population size, 

crossover rate, mutation rate, etc.), and user preferences (such as objective function weights) are read 
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by the FA and the algorithm is initialized. Then, intermediate parameters (i.e. greatest common 

divisors of model demands, least common multiple of cycle times) are calculated and data is processed 

(i.e. task times are normalized, common cycle time is calculated, minimum part sets are determined, 

etc.) to make it ready for use by other program components. Initial population is generated by SA, 

where each chromosome represents a complete model sequence. SA requests fitness evaluation of the 

chromosomes in the population from the BA. BA employs ACO to build balancing solutions for given 

chromosomes and returns fitness values to SA. Genetic operators perform crossover and mutation for 

the selected chromosomes and the fitness values of the newly obtained children and mutants after 

these processes are evaluated by the BA again.  

 

Figure 2. The outline of the proposed ABACO/S-GA approach. 
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The new generation is formed by replacing the worst chromosomes with the best ones among the 

children and mutants (if any). Genetic operators are performed again for the selected individuals in the 

population and the new generation is formed in accordance with their fitness values. This cycle is 

repeated until a pre-determined number of iterations are exceeded. The best solution is updated if a 

better solution is found during this cycle and is shown when the algorithm stops. The procedures of 

the GA (for model sequencing) and ACO (for line balancing) are explained in the following sub-

sections in detail. 

3.2. GA for model sequencing 

The simulation of the employed GA is given in Figure 3. Initial population is generated by building up 

feasible chromosomes randomly, considering the number of chromosomes that the population must 

have (population size).  

 

Figure 3. Simulation of the employed genetic algorithm. 

http://link.springer.com/article/10.1007/s00170-015-7320-y


The International Journal of Advanced Manufacturing Technology 

The final publication is available at: http://link.springer.com/article/10.1007/s00170-015-7320-y  

A chromosome is made up with the ordered model types according to the demand and minimum part 

sets calculated. To build a feasible chromosome, model types that belong to Line I are located to the 

head of the chromosome, while model types for Line II are allocated to the tail of the chromosome. 

Thus, chromosome length equals to the sum of model sequences length produced on the lines and each 

model appears on the chromosome as the number of times it shows up in the model sequence (𝑀𝑆ℎ). 

A chromosome sample for a given model sequence of 𝑀𝑆1 = 𝐴𝐴𝐵𝐶 and 𝑀𝑆2 = 𝐷𝐷𝐸𝐸𝐹 is exhibited 

in Figure 4.  

 

Figure 4. Representation of a real-coded chromosome 

For the evolution of individuals, one-point crossover and two-gene mutation operators are applied on 

randomly selected chromosomes from the population. Figure 5 represents the working procedure of 

crossover procedure used in the algorithm. The place where the models belonging to Line I finishes 

and the models of Line II starts is determined as the cutting point of the chromosomes and the head 

and tail parts of the parent chromosomes are matched crosswise to acquire new off-springs.  

 

Figure 5. Single point crossover procedure 

Mutation procedure is conducted by swapping two randomly selected genes within the same zone. In 

other words, if a gene is selected before (after) the border, it is swapped by a randomly selected gene 

before (after) the border (see Figure 6).  
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Figure 6. Mutation with random two genes exchange within (a): first zone, and (b): second zone. 

3.3. ACO for line balancing 

Fitness values of chromosomes in the population and of new individuals obtained from the genetic 

operators are computed by the BA using ACO algorithm. This algorithm builds line balancing 

solutions for the model sequences using the procedures outlined in Figure 7. Each ant in the colony 

builds a balancing solution (using the procedure given in Figure 8, where 𝑠𝑡(𝑘) and 𝑠𝑡(𝑘) represent 

station time of the current station and its mated station, respectively) and the performance measures 

are evaluated according to the quality of the obtained solution.  

 

Figure 7. Ant colony optimization procedure 

As could be seen from Figure 8, the idea lying behind the balancing solution procedure is to determine 

available tasks for the current situation and to select and assign tasks one-by-one to the current 

workstation. Solution building procedure starts from a randomly selected line and side and forwards 
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by selecting and assigning tasks (by ants) from the available tasks lists to the current position (please 

see Figure 9 for the procedure of determining available tasks for current position). 

 

Figure 8. Building a balancing solution procedure. 

Sometimes there may not be available tasks even all tasks are not assigned yet (see Figure 8). If this is 

due to the incomplete tasks on the other side of the two-sided line (this situation is called interference), 

𝑠𝑡(𝑘) is increased to 𝑠𝑡(𝑘) and assignment process continues on a randomly selected side. If the 

reason is that there is not enough remaining capacity to perform any task from the current line but 

from the adjacent line, then the workstations are merged and a multi-line station is constructed to 

perform tasks from the opposite side of the other line. 
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the edges of the drawn path according to the performance measures. Double amount of pheromone is 
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solutions are made favorable to be selected by following ants. The pheromone update rule is as 

follows: 

𝜏𝑖𝑘 ← (1 − 𝜌)𝜏𝑖𝑘 + ∆𝜏𝑖𝑘  ,                                                                (5) 
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where 𝜌 and 𝜏𝑖𝑘 represent the evaporation rate and the amount of virtual pheromone between task – 

workstation, respectively; ∆𝜏𝑖𝑘 = 𝑄 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒⁄ , and 𝑄 is a user determined parameter 

that effects the amount of pheromone deposited. 

The selection probability of a task is computed as follows [36]: 

𝑝𝑖𝑘 =
[𝜏𝑖𝑘]𝛼[𝜂𝑖]𝛽

∑ [𝜏𝑖𝑦]
𝛼

[𝜂𝑖]𝛽
𝑦𝜖𝑍𝑖

 ,                                                                     (6) 

where 𝑖, 𝑘, and 𝑍𝑖 indicate task, current workstation, and list of candidate tasks when task 𝑖 is 

assigned, respectively. 𝜏𝑖𝑘 and 𝜂𝑖 are the amount of virtual pheromone between task – workstation, 

and the heuristic information of task 𝑖 that comes from the randomly selected heuristic by each ant. To 

provide heuristic information and increase the local search capacity of the algorithm, ten heuristics are 

available to be selected by each ant: Computer Method of Sequencing Operations for Assembly Lines 

- Comsoal [62], Ranked Positional Weight Method – RPWM [63], Reverse Ranked Positional Weight 

Method – RRPWM (produced from RPWM), Longest Processing Time – LPT [64], Shortest 

Processing Time – SPT [65], Smallest Task Number – STN [66], Maximum Number of Predecessors 

– MNP (produced from Baykasoglu [65]), Least Number of Predecessors – LNP, (produced from 

MNP), Maximum Number of Successors – MNS (produced from Tonge [67]), Least Number of 

Successors – LNS (produced from MNS). 

Ants can change their operation sides at any time to increase the possibility of obtaining diversified 

solutions. However, changing line is only possible when the capacities of current mated stations are 

full or there is no available task to assign to the current mated stations. Multi-line stations can be 

utilized between two adjacent lines by assigning tasks from the contrary side of the adjacent line if the 

capacity of the workstation is not full and there is at least one available task to be assigned. 

The procedure of determining available tasks (given in Figure 9) plays a significant role in the overall 

balancing and sequencing system, because the solution that will be obtained at the end of this 

procedure must be feasible in terms of different model sequences, which change at every production 

cycle. Processing time of a candidate task is considered according to the actual model at the launched 

cycle, and processing time of a task for the relevant model must be equal to or less than the remaining 
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capacity to be able to assign it. Furthermore, workloads of workstations and earliest starting times of 

tasks must be watched carefully for each production cycle. This data is used to calculate remaining 

capacity of a workstation when determining whether a task is available or not. 

 

Figure 9. The procedure of determining available tasks. 

3.4. Performance measure 

The total space needed to perform production may become more important than the required number 

of stations (NS) if the manufacturer has certain space constraints. For that reason, line length (LL) is 

also considered as an additional objective to the number of stations in this research. Thus, the decision 
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maker could decide on the significance of the performance measures by simply changing the weighing 

parameters, 𝛾1 and 𝛾2, in the objective function: 

𝑀𝑖𝑛 𝑍 = 𝛾1𝐿𝐿 + 𝛾2𝑁𝑆 .                                                                    (7) 

4. Numerical example 

An example is given in this section to illustrate the model sequencing procedure of the developed 

approach in detail.  

4.1. Problem data 

Problem data is taken from Kucukkoc and Zhang [36] and includes two different precedence 

relationship diagrams, P12 [68] and P16 [69], for two parallel two-sided assembly lines (P12 for Line 

I and P16 for Line II). Each of these diagrams is assumed common among three different models of a 

base product on each line: i.e. models A, B, and C on Line I; and models D, E, and F on Line II. Table 

1(a) gives processing times of tasks with preferred operation directions (where ‘L’ means Left side, 

‘R’ means Right side, and ‘E’ means Either side of the line) and their immediate predecessor tasks. 

When a task is not required to be performed for a specific model, its processing time is shown as ‘0’ in 

the table. For a fixed planning horizon of 480 time units, demands are assumed 𝐷1𝐴 = 8, 𝐷1𝐵 = 8, 

𝐷1𝐶 = 16, 𝐷2𝐷 = 8, 𝐷2𝐸 = 8 and 𝐷2𝐹 = 8. 

4.2. Pre-processing 

Cycle times could be computed as 𝐶1 = 15 and 𝐶2 = 20 time units, for Line I and Line II, 

respectively; and the LCM based approach, proposed by Gökçen et al. [25] and Ozcan et al. [32], is 

used due to the cycle time differences of the lines. 𝐿𝐶𝑀(𝐶1, 𝐶2) = 60 is accepted as the common 

cycle time (𝐶 = 60) for both lines and line divisors (𝑙𝑑ℎ) of the lines are obtained as 𝑙𝑑1 =

𝐿𝐶𝑀(𝐶1, 𝐶2)/𝐶1 = 60/15 = 4 and 𝑙𝑑2 = 𝐿𝐶𝑀(𝐶1, 𝐶2)/𝐶2 = 60/20 = 3. Task times of models on 

Line I and Line II are normalized by being multiplied with 𝑙𝑑1 and 𝑙𝑑2, respectively. Table 1(b) 

provides the problem data with normalized task times that will be used while balancing the lines. 
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Based on the model demands, minimum part sets are 𝑀𝑃𝑆1 = (1, 1, 2) and 𝑀𝑃𝑆2 = (1, 1, 1) for Line 

I and Line II, respectively. According to the minimum part sets on the lines, the number of possible 

model sequences for Line I and Line II are 𝑇𝑆1 = 4! (1! × 1! × 2!)⁄ = 12 and 𝑇𝑆2 =

3! (1! × 1! × 1!)⁄ = 6. This means 12 × 6 = 72 different combinations of model sequences must be 

tried if combinatorial sequencing is decided by the user. Moreover, the number of different production 

cycles subject to consideration for each model sequence combination is 𝐶𝑀(𝑆1,  𝑆2) = 𝐿𝐶𝑀(4, 3) =

12. 

Table 1. Problem data for the given example: (a) before normalization and (b) after normalization. 

(a) Line I (P12)   Line II (P16)  

Task 
Processing Time 

Side 
Immediate 

Predecessor(s) 
 

Processing Time 
Side 

Immediate 

Predecessor(s) A B C D E F 

1 4 2 6 L -  5 7 4 E - 

2 8 10 7 R -  0 4 0 E - 

3 3 5 3 E -  5 10 7 L 1 

4 0 2 4 L 1  4 8 2 E 1 

5 3 1 2 E 2  3 4 8 R 2 

6 1 6 0 L 3  1 2 3 L 3 

7 2 0 2 E 4, 5  7 1 6 E 4, 5 

8 5 6 6 R 5  4 4 5 E 6, 7 

9 4 4 2 E 5, 6  2 2 1 R 7 

10 2 5 0 E 7, 8  3 3 4 R 7 

11 2 9 5 E 9  5 7 4 E 8 

12 3 2 1 R 11  1 6 5 L 9 

13 - - - - -  4 4 6 E 9, 10 

14 - - - - -  5 2 3 E 11 

15 - - - - -  0 4 1 E 11, 12 

16 - - - - -  5 3 5 E 13 

            

(b) Line I (P12)   Line II (P16)  

Task 
Processing Time 

Side 
Immediate 

Predecessor(s) 
 

Processing Time 
Side 

Immediate 

Predecessor(s) A B C D E F 

1 16 8 24 L -  15 21 12 E - 

2 32 40 28 R -  0 12 0 E - 

3 12 20 12 E -  15 30 21 L 1 

4 0 8 16 L 1  12 24 6 E 1 

5 12 4 8 E 2  9 12 24 R 2 

6 4 24 0 L 3  3 6 9 L 3 

7 8 0 8 E 4, 5  21 3 18 E 4, 5 

8 20 24 24 R 5  12 12 15 E 6, 7 

9 16 16 8 E 5, 6  6 6 3 R 7 

10 8 20 0 E 7, 8  9 9 12 R 7 

11 8 36 20 E 9  15 21 12 E 8 

12 12 8 4 R 11  3 18 15 L 9 

13 - - - - -  12 12 18 E 9, 10 

14 - - - - -  15 6 9 E 11 

15 - - - - -  0 12 3 E 11, 12 

16 - - - - -  15 9 15 E 13 
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4.3. Simulation of the solution procedure 

The algorithm was run using the parameters 𝛼 = 0.1, 𝛽 = 0.2, 𝜌 = 0.1, 𝑄 = 50, 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑃ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒 = 10, 𝐶𝑜𝑙𝑜𝑛𝑦 𝑆𝑖𝑧𝑒 = 10, and 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑙𝑜𝑛𝑖𝑒𝑠 = 5 for the ACO; and 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑆𝑖𝑧𝑒 = 10, 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑅𝑎𝑡𝑒 = 0.4, 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 = 0.1, and 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 10 for the GA. Initial population and evolution of the chromosomes for the first and the 

last generations of the population are briefly simulated in Table 2. The importance of line length in 

computing the fitness value is considered as double as of total number of utilized workstations (𝛾1 =

2, 𝛾2 = 1).  

The line balancing solutions are given for chromosomes in the initial population only. However, 

the fitness values of the chromosomes and the ones emerging from the crossover and mutation 

procedures are given for the first and the last iterations. The number of new chromosomes (offspring) 

obtained after crossover and mutation operations may differ from generation to generation as 

duplications are not allowed, and deleted if any. The numbers given in brackets in Table 2 symbolize 

the task assignments for the chromosomes given. Brackets separate tasks into groups for designated 

workstations on the lines. To explain it more, the task assignment configuration of the obtained best 

solution is depicted in Figure 10. Assignment order of tasks is symbolized with arrows. 

Each ant starts assigning tasks from a randomly selected line and side. For this example, ant starts by 

assigning tasks belonging to models produced on Line I (A, B, and C) from side L, and selects task 3 

to assign from the available tasks list of this position. Then, tasks 1, 4, and 6 are assigned one by one 

to this side before ant changes line side. Tasks 2, 5, and 7 are assigned to right side of the Line I and 

ant moves forward to Left side of Line II to assign tasks belonging to the models produced on this line 

(D, E, and F). Available tasks list is updated every time when a new task is assigned and if the 

capacity is full or there is not any available task to assign for the current line, line is changed and tasks 

are assigned to the new workstations on the new line. This process continues until all tasks are 

assigned. 
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Table 2. Initial population and evolution of the chromosomes through generations. 
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Chromosome Obtained Best Line Balance for the Chromosome Fitness 

C A B C E F D [[1, 6, 4], [3, 2], [2, 1], [5, 4, 7], [5, 9, 10], [8, 7, 12], [3, 6, 8], [9, 10, 

13, 16], [], [11, 12], [11, 14, 15], []] 

16 

C A B C F E D [[1, 6, 4], [3, 2], [1, 4, 7], [2, 5, 9], [5, 11], [9, 7, 8], [3, 6, 12], [10, 13, 

16, 8],
[], [10, 12], [11, 15, 14], []] 

16 

C C A B D F E [[3, 1, 6, 4, 7], [2, 5], [2, 3, 6], [1, 4, 5, 7], [], [9, 11, 12], [8, 11, 13], 

[10, 14,
9], [], [8, 10], [16, 12, 15], []] 

15 

C C A B F D E [[1, 4, 3, 6], [2, 5, 7], [1, 4, 7], [2, 5, 10], [9, 11], [8, 10, 12], [3, 6, 8, 

16], [9, 13], [], [], [11, 14, 12, 15], []] 

15 

C A C B F D E [[6, 1, 4], [3, 2], [2, 3, 6], [1, 5, 4, 7], [9, 11], [5, 8, 7, 10, 15], [8, 12, 

16], [10, 9, 11, 13, 14], [], [12], [], []] 

15 

C B C A D E F [[1, 4, 3, 6, 7], [2, 5], [1, 3, 6], [2, 5, 4, 7, 10], [11], [9, 8, 10], [8, 12, 

14, 12],
[9, 11, 15, 13], [], [], [16], []] 

15 

C A B C F D E [[3, 1, 6, 4, 7], [2, 5], [4], [2, 1, 5, 7], [9, 11], [8, 10, 12], [3, 12, 6], [9, 

10, 13, 16], [], [], [8, 11, 15, 14], []] 

15 

C B A C D E F [[3, 6, 1, 4, 7], [2, 5, 9], [1, 3, 6, 7], [2, 4, 5], [11], [8, 10, 12], [8, 11, 

14, 12], [10, 9, 13, 16], [], [], [15], []] 

15 

C A B C E F D [[3, 1, 6, 4], [2, 5, 7], [1, 3, 6], [2, 4, 5, 7], [9, 10], [8, 11], [8, 12, 15, 

16], [9, 10, 11, 13, 14], [], [12], [], []] 

15 

C C A B E D F [[3, 6, 1, 4, 7], [2, 5, 9], [4], [1, 2, 5, 7, 9], [11, 10], [8, 12], [12, 3, 6], 

[10, 13,
16], [], [], [8, 15], [11, 14]] 

16 

 … …  … … 

New Chromosomes after 

Crossover and Mutation 
Fitness 

 Generation 1 After Replacement of 

Worst Chromosomes in the 

Population 
Fitness 

C B A C F E D 15  C C A B D E F   12* 
C A B C D E F 15  C B A C F E D 15 

C C A B D E F 12  C C A B D F E 15 
C B C A F D E 16  C C A B F D E 15 

C A C B E F D 15  C A B C F D E 15 
C A B C F D E 15  C B C A D E F 15 

C C A B F D E 16  C A B C F D E 15 

C A B C D F E 15  C B A C D E F 15 
   C A B C E F D 15 

   C A B C D E F 15 

… …  … … 

New Chromosomes after 

Crossover and Mutation 
Fitness 

 Generation 10 After the Replacement 

of Worst Chromosomes in the 

Population 
Fitness 

C C A B F E D 16  C C A B D E F   12* 
C B A C D E F 15  C B A C F E D 15 

C A B C F E D 16  C C A B D E F 15 
C B A C F E D 15  C C A B D E F 15 

C A B C E F D 15  C A B C F D E 15 
A C B C F E D 15  A B C C D E F 15 

C C A B E D F 16  C A B C F E D 15 

   C B A C F E D 15 
   A C B C E F D 15 

   C A B C D E F 15 

*Best Chromosome: C C A B D E F (Model Sequences - Line I: CCAB, Line II: DEF) 

Best Line Balancing Solution:  

[[3, 1, 4, 6], [2, 5, 7], [1, 3, 6], [2, 5, 4, 7, 9], [9, 11], [8, 10, 12], [12, 11, 15, 14], [8, 10, 13, 16]] 

Best Fitness: 12 (LL=2, NS=8) 
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Convergence of the algorithm for this example is exhibited in Figure 11 by means of objective value, 

line length and total number of required workstations. The algorithm was run for ten iterations and the 

change in the performance measures while generating the initial population was also recorded and 

represented between iterations #0-#1 in the figure. 

 

Figure 10. The task assignment configuration of the obtained best solution. 

The algorithm calculates fitness values of the chromosomes in the initial population while generating 

them in iteration #0 and the best fitness value decreases from 16 to 15 at this stage. Then it converges 

quickly and finds the best solution after crossover and mutation operations in the first iteration. One of 

the offspring (CCABDEF) is designated as the best individual at this stage and this situation remains 

the same until the last iteration. Then the algorithm reaches to the maximum number of iterations at 

iteration #10 and is terminated with the best fitness value of 12. These graphs exhibit the effect of the 

model sequencing on the quality of the obtained line balance, once again. 

5. Computational experiments 

To assess the performance of the proposed approach, computational tests are performed and the results 

are compared with those existing in the literature. A Paired-samples t-Test is also conducted to 

statistically analyze the results obtained by the proposed approach.  

The ABACO/S-GA algorithm is coded in JavaTM SE 7u4 environment and run on a PC with a 3.1 GHz 

Intel CoreTM i5-2400 CPU and 4GB of RAM. The parameters of the algorithm are chosen 

experimentally in accordance with the scale of the test case for a high quality solution and are given in 

Table 3. The values of these parameters may differ from one test problem to another to search the 

exponentially growing search space (with the increasing number of tasks and complexity) effectively. 
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Figure 11. Convergence of the algorithm for the example problem by means of (a) objective value (fitness), 

(b) line length, and (c) total number of utilized workstations. 

Table 3. Parameters of the hybrid ABACO/S-GA approach. 

A
C

O
 

Test Cases 

Stage 1 
𝜶 𝜷 𝝆 𝑸 

Initial 

Pheromone 

Colony 

Size 

Number of 

Colonies 

1-9 0.1 0.2 0.1 50 10 10 5 

10-30 0.1 0.2 0.1 50 15 20 10 

31-45 0.1 0.2 0.1 50 20 30 15 

G
A

 

Test Cases 

Stage 1 
Population Size Crossover Rate Mutation Rate 

1-9 8 0.2 0.1 

10-30 10 0.4 0.2 

31-45 16 0.6 0.3 

 

 
 

 

 

 

(a) 

(b) 

(c) 
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Computational tests are carried out in two stages, namely Stage 1 and Stage 2, and the results are 

presented in the corresponding subsections. In Stage 1, the aim is to measure the efficiency of the 

ABACO/S-GA algorithm in terms of its capability to find the solution with less effort. Therefore, the 

algorithm is terminated when the target objective function value is found. The target objective value of 

a test case is set as the value obtained by ABACO/S [36] for that particular test case. In Stage 2, the 

aim is to measure the quality of the solutions gathered by ABACO/S-GA. In this stage, the algorithm 

is not terminated when a specific target value is achieved, instead it is run for a predetermined number 

of iterations and the solutions obtained by ABACO/S-GA are compared with those obtained by 

ABACO/S [36].  

Test cases solved in this research (for which data are presented in Table 4 along with solution results 

of Stage 1) contain existing test cases in the literature as well as newly generated test cases for the 

current work (to remind, each test case is a combination of two test problems – one on each of the 

lines). So, a total of 20 test cases out of 45 test cases solved in this study are gathered from Kucukkoc 

and Zhang [36]. Kucukkoc and Zhang [35] generated test cases for mixed-model parallel two-sided 

assembly line balancing problem by combining well-known test problems in the literature. Then, 

Kucukkoc and Zhang [36] modified two of these test cases (see #10 and #19 in Table 4). Modified 

versions of these cases are considered and solved using the developed hybrid ABACO/S-GA 

algorithm to evaluate the solution building capacity of the proposed approach. To measure the 

performance of the proposed algorithm more comprehensively, new test problems (namely K20 and 

K36, see Appendices) are also generated and new test cases (see test cases marked with ‘N’ in Table 4) 

are built using the existing and newly generated test problems. As there are no results available in the 

literature for these particular test cases, the new test cases generated within the scope of the current 

study are also solved using the ABACO/S algorithm in the same conditions (e.g. using the same 

parameters) as in Kucukkoc and Zhang [36]. So that, a more comprehensive comparison can be made 

between ABACO/S and ABACO/S-GA procedures. 
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Table 4. Data for test cases and computational results – Stage 1. 

Problem Data  Computational Results 

#Test 

Case 

Problem Cycle Time  Demands L1  Demands L2  ABACO/S  ABACO/S-GA 

Line  

I 

Line 

II 

Line  

I 

Line 

II 
 A B C  D E F  LL NS OBJ 

Best Sequence  

Line I-Line II 
NI  LL NS OBJ 

Best Sequence  

Line I-Line II 
NI 

1 P9 P9 4 7  40 20 10  20 10 10  3 10 16 AABAABC-FDED 15  3 10 16 BAAACBA-DEFD IP + 0 

2 P9 P9 6 5  20 20 10  15 30 15  3 9 15 CAABB-EDFE 15  3 9 15 AABCB-EDEF IP + 0 

3N P9 P9 7 7  10 15 15  20 10 10  2 7 11 ACCBACBB-DDEF 15  2 7 11 ACCBACBB-DDEF IP + 0 

4 P9 P12 5 8  40 20 20  20 20 10  3 8 14 AABC-DEFDE 15  3 8 14 BAAC-EDEDF IP + 0 

5 P9 P12 7 6  15 15 30  20 10 40  2 8 12 BCAC-DFFFFED 15  2 8 12 BACC-FEDFDFF IP + 1 

6N P9 P12 6 7  15 10 10  10 10 10  2 8 12 AABCABC-EFD 15  2 8 12 CBAACBA-DFE IP + 0 

7 P12 P12 4 5  20 10 20  10 20 10  4 12 20 CCAAB-EDEF 15  4 12 20 BCCAA-EFED IP + 1 

8 P12 P12 6 5  20 10 20  30 15 15  3 10 16 ABACC-DFDE 15  3 10 16 CBCAA-EDFD IP + 1 

9N P12 P12 7 8  20 40 20  20 30 20  2 7 11 CBBA-EEFFDDE 15  2 7 11 CBAB-EEFFDED IP + 3 

10* P12 P16 9 12  10 20 10  10 10 10  7 17 31 ACBB-FDE 20  7 17 31 ACBB-FDE IP + 2 

11 P12 P16 10 12  20 20 20  10 20 20  7 17 31 BCA-DEFFE 20  7 17 31 ABC-EFDFE IP + 2 

12N P12 P16 8 16  10 10 10  5 5 5  5 12 22 BAC-DFE 20  5 12 22 BCA-FED IP + 1 

13 P16 P16 12 15  10 20 20  20 10 10  7 23 37 CABCB-EFDD 20  7 23 37 BCCBA-EDDF IP + 2 

14 P16 P16 16 14  10 40 20  40 20 20  7 20 34 CCBBABB-DEFD 20  7 20 34 CCBBABB-DEDF IP + 1 

15N P16 P16 16 20  20 10 20  10 10 20  5 16 26 BAACC-FEDF 20  5 16 26 ACCBA-DFEF IP + 0 

16N P16 K20 16 18  30 30 30  20 20 40  5 16 26 BCA-EFFD 20  5 16 26 BCA-FDEF IP + 0 

17N P16 K20 18 18  10 10 10  5 15 10  4 14 22 CAB-EEDFEF 20  4 14 22 ACB-EEEDFF IP + 2 

18N P16 K20 20 20  15 15 15  15 15 15  4 13 21 ABC-DFE 20  4 13 21 ACB-DEF IP + 1 

19* P16 P24 14 16  40 20 20  40 20 10  6 22 34 ABAC-EFDEDDD 20  7 20 34 CAAB-EDFDDDE IP + 3 

20 P16 P24 16 18  15 45 30  20 40 20  5 17 27 BBCCBA-FEDE 20  5 17 27 CBCBBA-DEFE IP + 2 

21N P16 P24 18 18  5 5 10  5 10 5  4 16 24 ABCC-EDFE 20  4 16 24 CABC-DFEE IP + 3 

22N K20 K20 18 20  20 40 40  30 15 45  4 13 21 CABCB-FDFDEF 20  4 13 21 ABCBC-FDDFFE IP + 2 

23N K20 K20 20 20  10 10 20  20 10 10  4 12 20 ABCC-DFDE 20  4 12 20 CBCA-EDDF IP + 3 

24N K20 K20 22 22  10 5 10  10 10 5  3 12 18 CBAAC-EFEDD 20  3 12 18 CBAAC-EFEDD IP + 1 

25N K20 P24 15 20  10 10 20  10 10 10  5 16 26 BACC-FED 20  5 16 26 BACC-DFE IP + 2 

26N K20 P24 20 20  5 10 5  10 5 5  4 14 22 BABC-EFDD 20  4 14 22 BBCA-DFED IP + 2 
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Table 4. (Continued.) 

Problem Data  Computational Results 

#Test 

Case 

Problem Cycle Time  Demands L1  Demands L2  ABACO/S  ABACO/S-GA 

Line  

I 

Line 

II 

Line  

I 

Line 

II 
 A B C  D E F  LL NS OBJ 

Best Sequence  

Line I-Line II 
NI  LL NS OBJ 

Best Sequence  

Line I-Line II 
NI 

27N K20 P24 25 20  20 10 10  20 20 10  4 13 21 ACAB-FDDEE 20  4 13 21 ACBA-FEDED IP + 3 

28 P24 P24 15 20  20 10 10  10 10 10  5 19 29 ABCA-EFD 20  5 19 29 ABCA-EFD IP + 4 

29 P24 P24 25 20  10 20 10  10 20 20  4 14 22 CABB-EFEFD 20  4 14 22 BCBA-FEDEF IP + 2 

30N P24 P24 18 24  10 10 20  5 10 15  4 15 23 CBCA-DEEFFF 20  4 15 23 CCAB-EFEFDF IP + 1 

31N P24 K36 24 24  15 15 30  20 20 20  4 15 23 CABC-DFE 30  4 15 23 ABCC-DFE IP + 1 

32N P24 K36 24 36  10 10 10  10 5 5  3 12 18 ACB-EDDF 30  3 12 18 ABC-DEDF IP + 2 

33N P24 K36 18 36  5 10 5  4 2 4  4 14 22 CBAB-DEFDF 30  4 14 22 BABC-FEDDF IP + 1 

34N K36 K36 20 30  5 5 20  5 5 10  5 18 28 CBACCC-FFED 30  5 18 28 CACBCC-EDFF IP + 3 

35N K36 K36 36 36  5 5 5  5 5 5  3 12 18 CBA-EDF 30  3 12 18 CBA-FED IP + 3 

36N K36 K36 40 30  10 10 10  20 10 10  4 12 20 BAC-DDFE 30  4 12 20 ABC-DFED IP + 2 

37 A65 A65 300 480  40 20 20  20 10 20  11 38 60 BACA-EFFDD 40  11 38 60 ABCA-DDEFF IP + 2 

38 A65 A65 420 360  15 15 30  20 40 10  10 37 57 CBCA-FDEEDEE 40  10 37 57 BCAC-DDFEEEE IP + 2 

39N A65 A65 480 360  5 5 5  5 10 5  10 35 55 CAB-FEED 40  10 35 55 CBA-DEFE IP + 2 

40 A65 B148 405 810  10 5 5  4 4 2  9 32 50 AABC-EEDFD 40  9 32 50 BACA-EDFDE IP + 3 

41 A65 B148 675 540  20 10 10  10 20 20  9 31 49 ACBA-EFFED 40  9 31 49 BAAC-FFEDE IP + 3 

42N A65 B148 630 720  20 10 10  10 10 15  7 28 42 ABCA-FFDEDFE 40  7 28 42 CABA-DFEFFDE IP + 4 

43 B148 B148 255 510  5 10 5  2 4 4  18 65 101 ABCB-EEFDF 40  18 65 101 ABBC-FEEFD IP + 4 

44 B148 B148 425 340  20 10 10  20 20 10  15 58 88 BACA-DEDEF 40  15 58 88 ABAC-EDEDF IP + 3 

45N B148 B148 350 420  10 10 10  5 10 10  15 58 88 BCA-EFEDF 40  15 58 88 CBA-EFEDF IP + 5 
N: Newly generated test cases; *: Test cases modified by Kucukkoc and Zhang [36]. 
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5.1. Stage 1 

In this stage, the main objective of the computational tests is to investigate in how many iterations the 

proposed approach finds the same solution with Kucukkoc and Zhang [36]. For this aim, the algorithm 

is run for designated parameters and available problem data for each test case, and terminated when 

the same fitness value is found with Kucukkoc and Zhang [36]. Obtained results are reported in 

ABACO/S-GA column in Table 4 and ABACO/S column gives the results from Kucukkoc and Zhang 

[36] for the purpose of comparison. The newly generated test cases are marked with N superscript and 

solved using both ABACO/S and ABACO/S algorithms. The abbreviations LL, NS, and OBJ 

correspond to line length, number of workstations, and objective function value, respectively (where 

the user defined parameters in the objective function are considered as 𝛾1 = 2, and 𝛾2 = 1). NI 

columns exhibit the number of iterations that the ABACO/S and ABACO/S-GA algorithms are run.  

Based on the coding structure of the ABACO/S, the number of sequences that the algorithm tried to 

find the best solution are considered as the number of iterations (in column NI) and are shown in the 

table. For the ABACO/S-GA, the number of iterations that the GA algorithm is run is shown in the NI 

column. In this column, ‘IP + X’ means the best solution is found in the X th iteration after generating 

the initial population. If X equals to zero, then it means that the best solution is found while generating 

the model chromosomes for the initial population. This issue (obtaining the best solution while 

generating the initial population) is observed for the majority of the small scale test cases.  

As could be seen from the table, it is clear that the same objective values are obtained with the 

same LL and NS values except test case #19. In this test case, objective value of 34 is obtained with 

LL=7, and NS=20, different from the solution obtained by ABACO/S. Also, the same objective values 

are obtained with different model sequences except test cases #3, #10, #24 and #28. 

According to the computational results, the proposed algorithm finds the same fitness values with 

the ABACO/S in less number of iterations. For instance, if we consider test case #2, ABACO/S-GA 

finds the objective value 15 in ‘IP + 0’  iteration. In this case, 8 chromosomes are generated for the 

initial population and the same fitness value is found with the ABACO/S at this stage. For test case 
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#14, the proposed approach finds the objective value of 34 in ‘IP + 1’ iterations, which means that 10 

chromosomes are generated for the initial population and the best solution is discovered in the first 

iteration of crossover and mutation operations. One could argue that the total number of evaluated 

chromosomes depends on the number of offspring created after crossover and mutation operations, but 

the number of total chromosome evaluations are most likely less than the number of iterations 

considered by ABACO/S. 

In terms of the performance of the proposed algorithm, the algorithm needs higher number of 

iterations for large-sized test cases compared with the small-sized test cases. However, this is caused 

by the exponentially growing search space with the increasing number of tasks. 

5.2. Stage 2 

In addition to the tests presented in Stage 1, ABACO/S-GA algorithm is run again for the same test 

cases (without the target objective function value) to observe whether the algorithm can find better 

solutions than the ABACO/S. ABACO/S-GA algorithm is run for 15, 20, 25 and 30 iterations for test 

cases #1-#9, #10-#30, #31-#36, and #37-#45, respectively. Among the solutions obtained, the ones 

better than ABACO/S are reported in Table 5 (please note that the same solutions have already been 

reported in Table 4 for the remaining problems).  

Table 5. Computational results – Stage 2. 

#Test Case 

 ABACO/S  ABACO/S-GA 

 LL NS OBJ 
Best Sequence  

Line I-Line II 
 LL NS OBJ 

Best Sequence  

Line I-Line II 

16N  5 16 26 BCA-EFFD  5 15 25 CBA-DEFF 

25N  5 16 26 BACC-FED  5 15 25 CABC-EDF 

35N  3 12 18 CBA-EDF  3 11 17 BCA-FED 

36N  4 12 20 BAC-DDFE  3 12 18 CAB-DDFE 

38  10 37 57 CBCA-FDEEDEE  10 36 56 CABC-EFDDEEE 

39N  10 35 55 CAB-FEED  9 34 52 BAC-EDEF 

42N  7 28 42 ABCA-FFDEDFE  7 27 41 ACAB-FDEEDFF 

43  18 65 101 ABCB-EEFDF  18 64 100 BCBA-EFDFE 

44  15 58 88 BACA-DEDEF  15 57 87 BACA-DEEFD 

45N  15 58 88 BCA-EFEDF  15 56 86 BCA-FEDFE 
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As seen from the table, the results obtained using the proposed ABACO/S-GA algorithm for 10 test 

cases (i.e. #16, #25, #35, #36, #38, #39, #42 – #45) out of 45 test cases are lower than the solutions 

obtained by ABACO/S. The best improvement in the solutions obtained is observed for test case #39 

for which ABACO/S-GA finds a solution with objective value of 52 while ABACO/S finds solution 

with objective value of 55.  

There is no doubt that the solutions found by ABACO/S-GA are better than those obtained by 

ABACO/S for the same test cases. A Paired-samples t-Test is also conducted to prove this statistically. 

The effect of the integrated GA based engine on the objective function values of the obtained solutions 

is analyzed through a Paired-samples t-Test. The null and alternative hypotheses stated at the 𝑎 =

0.05 level (95%) for means of objective function values obtained from ABACO/S (𝜇𝐴𝐵𝐴𝐶𝑂𝑆) and 

ABACO/S-GA (𝜇𝐴𝐵𝐴𝐶𝑂𝑆−𝐺𝐴) are as follows: 

𝐻0: The integrated GA based model sequencing mechanism has no significant positive effect on the 

objective function values of the obtained solutions (𝜇𝐴𝐵𝐴𝐶𝑂𝑆 ≤ 𝜇𝐴𝐵𝐴𝐶𝑂𝑆−𝐺𝐴). 

𝐻1: The integrated GA based model sequencing mechanism helps ABACO/S find solutions with 

better (reduced) objective function values (𝜇𝐴𝐵𝐴𝐶𝑂𝑆 > 𝜇𝐴𝐵𝐴𝐶𝑂𝑆−𝐺𝐴). 

The input data used for the statistical test is given in Table 6 and the results of the test are reported in 

Table 7.  

The test is one-tailed as it can be seen from the hypotheses. The results of the statistical analysis show 

that there is a significant difference between integrating (𝜇𝐴𝐵𝐴𝐶𝑂𝑆−𝐺𝐴 = 30.4222, 𝑆𝐷𝐴𝐵𝐴𝐶𝑂𝑆−𝐺𝐴 =

20.2950) and not integrating (𝜇𝐴𝐵𝐴𝐶𝑂𝑆 = 30.7333, 𝑆𝐷𝐴𝐵𝐴𝐶𝑂𝑆 = 20.6270) the GA based model 

sequencing procedure to the ABACO/S; 𝑡(44) = 3.1234, 𝑝 = 0.0016. The results of the statistical 

test indicate that there is strong evidence to reject the null hypothesis and to argue that the integrated 

GA based procedure helps algorithm find solutions with better objective function values. Therefore, it 

is statistically proven that the integrated GA based procedure has significant effect on the objective 

function value of the obtained solution in a positive direction. In other words, ABACO/S finds better 

solutions for solved test cases of the MPTALB/S problem when a GA based model sequencing engine 

is integrated into it. 
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Table 6. Data used for statistical test 

Test Case ABACO/S ABACO/S-GA   Test Case ABACO/S ABACO/S-GA 

1 16 16   24 18 18 

2 15 15   25 26 25 

3 11 11   26 22 22 

4 14 14   27 21 21 

5 12 12   28 29 29 

6 12 12   29 22 22 

7 20 20   30 23 23 

8 16 16   31 23 23 

9 11 11   32 18 18 

10 31 31   33 22 22 

11 31 31   34 28 28 

12 22 22   35 18 17 

13 37 37   36 20 18 

14 34 34   37 60 60 

15 26 26   38 57 56 

16 26 25   39 55 52 

17 22 22   40 50 50 

18 21 21   41 49 49 

19 34 34   42 42 41 

20 27 27   43 101 100 

21 24 24   44 88 87 

22 21 21   45 88 86 

23 20 20   - - - 

 

Table 7. Paired Two-Sample t-Test for means of objective function values from ABACO/S and ABACO/S-

GA 

  ABACO/S ABACO/S GA  

Mean (𝜇) 30.7333 30.4222  

Standard Deviation (𝑆𝐷) 20.6270 20.2950  

Observations 45 45  

Pearson Correlation 0.9995   

Hypothesized Mean Difference 0   

Degrees of Freedom (df) 44   

𝒕 Stat 3.1234   

𝑷(𝑻 ≤ 𝒕) one-tail 0.0016   

𝒕 Critical one-tail 1.6802   

𝑃(𝑇 ≤ 𝑡) two-tail 0.0032   

𝑡 Critical two-tail 2.0154   

6. Conclusions 

A GA based model sequencing procedure is developed and integrated to the agent based ant colony 

optimization based approach for solving the problem of simultaneous balancing and sequencing of 
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mixed-model parallel two-sided assembly lines effectively. The main aim is to improve the 

competence of model sequencing procedure of the entire algorithm to robustly find better quality 

solutions than the previously developed agent based ACO approach for the same instances. This paper 

contributes to the scientific knowledge in terms of its novel methodology which incorporates GA and 

agent based ACO algorithm to solve one of the recently introduced and rarely studied manufacturing 

engineering problems. Moreover, to the best knowledge of the authors, this is the first hybridization of 

GA and ACO algorithms to balance any type of parallel assembly lines in the literature.  

An example is given to illustrate the running mechanism of the proposed technique and evolution 

of the chromosomes through generations. To assess the performance of the developed technique, test 

cases are solved and the iteration numbers that the best solutions obtained are compared with the 

results available in the literature. When the algorithm is run one more time for the same test cases 

without terminating when the specific objective value is found, better solutions are achieved for 10 of 

the test cases than those existing in the literature. In addition to the test cases available in the literature, 

new test cases are build using newly generated test problems and their combinations with the existing 

test problems, and are used as input to both ABACO/S and ABACO/S-GA algorithms. A Paired-

samples t-Test is conducted to statistically analyze the performance of the newly developed algorithm. 

Test results statistically prove that the developed algorithm has a better solution capacity than the 

existing method available in the literature in terms of solving the provided test cases. 

In the literature, demand fluctuations, resource dependent task times and workforce efficiency have 

been introduced to relatively simple assembly line balancing types, i.e. simple straight one-sided lines 

with no parallelization and/or model variations. Also, model sequencing problem has not been 

considered in such studies. As we are dealing with a new as well as complex problem type, model 

demands are assumed deterministic and operators are considered multi-skilled, i.e. they have 

preferences neither on tasks nor on workstations. Relaxation of some of these assumptions in future 

studies may lead to more interesting as well as complex problem types to cope with. Also, processing 

times of tasks may also depend on the workstations in which they are performed. All of these 

developments are of big research issues which can expand the current study and put it one step 
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forward. Some other new meta-heuristics could also be developed to solve the MPTALB/S problem in 

future studies. New procedures could be hybridized with the agent based ACO algorithm and their 

performances could be compared with the proposed ABACO/S-GA approach presented in this 

research.  

Appendices 

Figure A1: Precedence relationships diagram for test problem K20 

 

Figure A2: Precedence relationships diagram for test problem K36 
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Table A1: Processing times of tasks belonging to K20 and K36 

Task Number 
 K20 

 
K36 

 Model 1 Model 2 Model 3 
 

Model 1 Model 2 Model 3 

1  4 7 3 
 

9 5 4 
2  3 5 9 

 
5 3 9 

3  0 2 3 
 

7 7 9 

4  4 1 3 
 

2 3 0 
5  1 2 2 

 
6 4 5 

6  4 8 1 
 

4 8 9 

7  3 4 9 
 

4 1 4 
8  5 4 5 

 
1 4 1 

9  7 7 6 
 

0 6 2 
10  8 3 0 

 
8 5 3 

11  2 6 3 
 

0 8 0 

12  1 6 5 
 

6 5 0 
13  2 1 9 

 
7 6 7 

14  5 8 9 
 

1 1 1 
15  3 5 3 

 
5 9 1 

16  2 1 4 
 

6 5 7 
17  5 2 5 

 
0 0 0 

18  0 8 6 
 

7 3 1 

19  2 0 1 
 

8 3 5 
20  4 0 9 

 
2 2 3 

21  - - - 
 

8 0 8 
22  - - - 

 
1 3 8 

23  - - - 
 

1 2 0 

24  - - - 
 

7 1 8 
25  - - - 

 
5 1 3 

26  - - - 
 

5 0 6 
27  - - - 

 
9 0 0 

28  - - - 
 

1 3 5 

29  - - - 
 

2 6 8 
30  - - - 

 
5 0 5 

31  - - - 
 

5 1 4 
32  - - - 

 
0 5 1 

33  - - - 
 

7 8 1 
34  - - - 

 
7 4 7 

35  - - - 
 

8 7 3 

36  - - - 
 

8 1 2 

References 

1. Ozdemir RG, Ayag Z (2011) An integrated approach to evaluating assembly-line design alternatives 

with equipment selection. Production Planning & Control 22 (2):194-206. 

2. Battini D, Faccio M, Persona A, Sgarbossa F (2009) Balancing-sequencing procedure for a mixed 

model assembly system in case of finite buffer capacity. International Journal of Advanced 

Manufacturing Technology 44 (3-4):345-359. 

3. Boysen N, Fliedner M, Scholl A (2009) Assembly line balancing: Joint precedence graphs under 

high product variety. Iie Transactions 41 (3):183-193. 

4. Thomopoulos NT (1967) Line Balancing-Sequencing for Mixed-Model Assembly. Management 

Science 14 (2):59-75. 

5. Akpinar S, Bayhan GM, Baykasoglu A (2013) Hybridizing ant colony optimization via genetic 

algorithm for mixed-model assembly line balancing problem with sequence dependent setup 

times between tasks. Applied Soft Computing 13 (1):574-589. 

6. Kucukkoc I, Zhang DZ (2014) Simultaneous balancing and sequencing of mixed-model parallel 

two-sided assembly lines. International Journal of Production Research 52 (12):3665-3687. 

http://link.springer.com/article/10.1007/s00170-015-7320-y


The International Journal of Advanced Manufacturing Technology 

The final publication is available at: http://link.springer.com/article/10.1007/s00170-015-7320-y  

7. Erel E, Gokcen H (1999) Shortest-route formulation of mixed-model assembly line balancing 

problem. European Journal of Operational Research 116 (1):194-204. 

8. Matanachai S, Yano CA (2001) Balancing mixed-model assembly lines to reduce work overload. 

Iie Transactions 33 (1):29-42. 

9. Vilarinho PM, Simaria AS (2002) A two-stage heuristic method for balancing mixed-model 

assembly lines with parallel workstations. International Journal of Production Research 40 

(6):1405-1420. 

10. McMullen PR, Tarasewich P (2003) Using ant techniques to solve the assembly line balancing 

problem. Iie Transactions 35 (7):605-617. 

11. Yagmahan B (2011) Mixed-model assembly line balancing using a multi-objective ant colony 

optimization approach. Expert Systems with Applications 38 (10):12453-12461. 

12. Hamta N, Ghomi SMTF, Jolai F, Shirazi MA (2013) A hybrid PSO algorithm for a multi-objective 

assembly line balancing problem with flexible operation times, sequence-dependent setup times 

and learning effect. International Journal of Production Economics 141 (1):99-111. 

13. Kucukkoc I, Karaoglan AD, Yaman R (2013) Using response surface design to determine the 

optimal parameters of genetic algorithm and a case study. International Journal of Production 

Research 51 (17):5039-5054. 

14. Yano CA, Rachamadugu R (1991) Sequencing to Minimize Work Overload in Assembly Lines 

with Product Options. Management Science 37 (5):572-586. 

15. Kim YK, Hyun CJ, Kim Y (1996) Sequencing in mixed model assembly lines: A genetic 

algorithm approach. Computers & Operations Research 23 (12):1131-1145. 

16. Zheng YQ, Wang YP, Hu B, Wang YS (2011) A sequencing approach of models in mixed-model 

assembly lines. Mechanika 17 (4):418-422. 

17. Bautista J, Cano A (2011) Solving mixed model sequencing problem in assembly lines with serial 

workstations with work overload minimisation and interruption rules. European Journal of 

Operational Research 210 (3):495-513. 

18. Zhu XW, Hu SJ, Koren Y, Huang NJ (2012) A complexity model for sequence planning in mixed-

model assembly lines. Journal of Manufacturing Systems 31 (2):121-130. 

19. Manavizadeh N, Tavakoli L, Rabbani M, Jolai F (2013) A multi-objective mixed-model assembly 

line sequencing problem in order to minimize total costs in a Make-To-Order environment, 

considering order priority. Journal of Manufacturing Systems 32 (1):124-137. 

20. Xu S, Li FM (2013) A Modified Genetic Algorithm for Sequencing Problem in Mixed Model 

Assembly Lines. Advanced Materials Research 655-657 (2013):1675-1681. 

21. Boysen N, Fliedner M, Scholl A (2009) Sequencing mixed-model assembly lines: Survey, 

classification and model critique. European Journal of Operational Research 192 (2):349-373. 

22. Kucukkoc I, Zhang DZ (2015) A Mathematical Model and Genetic Algorithm based Approach for 

Parallel Two-Sided Assembly Line Balancing Problem. Production Planning & Control doi: 

10.1080/09537287.2014.994685. 

23. Bartholdi JJ (1993) Balancing 2-Sided Assembly Lines - a Case-Study. International Journal of 

Production Research 31 (10):2447-2461. 

24. Kim YK, Kim SJ, Kim JY (2000) Balancing and sequencing mixed-model U-lines with a co-

evolutionary algorithm. Production Planning & Control 11 (8):754-764. 

25. Gökçen H, Agpak K, Benzer R (2006) Balancing of parallel assembly lines. International Journal 

of Production Economics 103 (2):600-609. 

26. Ozcan U, Gokcen H, Toklu B (2010) Balancing parallel two-sided assembly lines. International 

Journal of Production Research 48 (16):4767-4784. 

27. Kucukkoc I, Zhang DZ (2013) Balancing Parallel Two-Sided Assembly Lines via a Genetic 

Algorithm Based Approach. Paper presented at the Proceedings of the 43rd International 

Conference on Computers and Industrial Engineering (CIE43), The University of Hong Kong, 

Hong Kong, October 16-18 

http://link.springer.com/article/10.1007/s00170-015-7320-y


The International Journal of Advanced Manufacturing Technology 

The final publication is available at: http://link.springer.com/article/10.1007/s00170-015-7320-y  

28. Kucukkoc I, Zhang DZ (2015) Type-E Parallel Two-Sided Assembly Line Balancing Problem: 

Mathematical Model and Ant Colony Optimisation based Approach with Optimised Parameters. 

Computers & Industrial Engineering doi: 10.1016/j.cie.2014.12.037. 

29. Simaria AS, Vilarinho PM (2009) 2-ANTBAL: An ant colony optimisation algorithm for 

balancing two-sided assembly lines. Computers & Industrial Engineering 56 (2):489-506. 

30. Ozcan U, Toklu B (2009) Balancing of mixed-model two-sided assembly lines. Computers & 

Industrial Engineering 57 (1):217-227. 

31. Chutima P, Chimklai P (2012) Multi-objective two-sided mixed-model assembly line balancing 

using particle swarm optimisation with negative knowledge. Computers & Industrial Engineering 

62 (1):39-55. 

32. Ozcan U, Cercioglu H, Gokcen H, Toklu B (2010) Balancing and sequencing of parallel mixed-

model assembly lines. International Journal of Production Research 48 (17):5089-5113. 

33. Battaïa O, Dolgui A (2013) A taxonomy of line balancing problems and their solution approaches. 

International Journal of Production Economics 142 (2):259-277. 

34. Zhang DZ, Kucukkoc I (2013) Balancing Mixed-Model Parallel Two-Sided Assembly Lines. 

Paper presented at the Proceedings of the International Conference on Industrial Engineering and 

Systems Management (IEEE-IESM’2013), Rabat, Morocco, October 28 - 30 

35. Kucukkoc I, Zhang DZ (2014) An Agent Based Ant Colony Optimisation Approach for Mixed-

Model Parallel Two-Sided Assembly Line Balancing Problem. Paper presented at the Pre-Prints 

of the Eighteenth International Working Seminar on Production Economics, Innsbruck, Austria, 

24-28 February 

36. Kucukkoc I, Zhang DZ (2014) Mathematical Model and Agent Based Solution Approach for the 

Simultaneous Balancing and Sequencing of Mixed-Model Parallel Two-Sided Assembly Lines. 

International Journal of Production Economics 158, :314-333. 

37. Chryssolouris G (2006) Manufacturing Systems: Theory and Practice (2nd Edition). 

SpringerVerlag, New York 

38. Song BL, Wong WK, Fan JT, Chan SF (2006) A recursive operator allocation approach for 

assembly line-balancing optimization problem with the consideration of operator efficiency. 

Computers & Industrial Engineering 51 (4):585-608. 

39. Corominas A, Pastor R, Plans J (2008) Balancing assembly line with skilled and unskilled 

workers. Omega-International Journal of Management Science 36 (6):1126-1132. 

40. Manavizadeh N, Hosseini NS, Rabbani M, Jolai F (2013) A Simulated Annealing algorithm for a 

mixed model assembly U-line balancing type-I problem considering human efficiency and Just-

In-Time approach. Computers & Industrial Engineering 64 (2):669-685. 

41. Koltai T, Tatay V (2013) Formulation of workforce skill constraints in assembly line balancing 

models. Optimization and Engineering 14 (4):529-545. 

42. Fattahi P, Roshani A, Roshani A (2011) A mathematical model and ant colony algorithm for 

multi-manned assembly line balancing problem. International Journal of Advanced 

Manufacturing Technology 53 (1-4):363-378. 

43. Jayaswal S, Agarwal P (2014) Balancing U-shaped assembly lines with resource dependent task 

times: A Simulated Annealing approach. Journal of Manufacturing Systems 33 (4):522-534. 

44. Kara Y, Özgüven C, Yalçın N, Atasagun Y (2011) Balancing straight and U-shaped assembly lines 

with resource dependent task times. International Journal of Production Research 49 (21):6387-

6405. 

45. Gajpal Y, Rajendran C, Ziegler H (2006) An ant colony algorithm for scheduling in flowshops 

with sequence-dependent setup times of jobs. The International Journal of Advanced 

Manufacturing Technology 30:416-424. 

46. Bard JF, Darel E, Shtub A (1992) An Analytic Framework for Sequencing Mixed Model 

Assembly Lines. International Journal of Production Research 30 (1):35-48. 

http://link.springer.com/article/10.1007/s00170-015-7320-y


The International Journal of Advanced Manufacturing Technology 

The final publication is available at: http://link.springer.com/article/10.1007/s00170-015-7320-y  

47. Costa A, Cappadonna FA, Fichera S (2014) Joint optimization of a flow-shop group scheduling 

with sequence dependent set-up times and skilled workforce assignment. International Journal of 

Production Research doi: 10.1080/00207543.2014.883469. 

48. Ugarte BS, Pellerin R, Artiba A (2011) An improved genetic algorithm approach for on-line 

optimisation problems. Production Planning & Control 22 (8):742-753. 

49. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: Optimization by a colony of cooperating 

agents. Ieee Transactions on Systems Man and Cybernetics Part B-Cybernetics 26 (1):29-41. 

50. Holland JH (1975) Adaptation in Natural and Artificial Systems. MIT Press, Cambridge 

51. Anosike AI, Zhang DZ (2009) An agent-based approach for integrating manufacturing operations. 

International Journal of Production Economics 121 (2):333-352. 

52. Liang H, Su H, Wang X, Chen MZQ (2014) Swarm aggregations of heterogeneous multi-agent 

systems. International Journal of Control 87 (12):2594-2603. 

53. Cordon O, Herrera F, Stützle T (2002) A Review on the Ant Colony Optimization Metaheuristic: 

Basis, Models and New Trends Mathware & Soft Computing 9 (3):141-175. 

54. Blum C (2005) Ant colony optimization: Introduction and recent trends. Physics of Life Reviews 2 

(4):353-373. 

55. Srinivas M, Patnaik LM (1994) Genetic Algorithms - a Survey. Computer 27 (6):17-26. 

56. Li YC, Zhao LN, Zhou SJ (2011) Review of Genetic Algorithm. Advanced Materials Research 

179-180:365-367. 

57. Leitao P (2009) Agent-based distributed manufacturing control: A state-of-the-art survey. 

Engineering Applications of Artificial Intelligence 22 (7):979-991. 

58. Tasan SO, Tunali S (2008) A review of the current applications of genetic algorithms in assembly 

line balancing. Journal of Intelligent Manufacturing 19 (1):49-69. 

59. Lee ZJ, Su SF, Chuang CC, Liu KH (2008) Genetic algorithm with ant colony optimization (GA-

ACO) for multiple sequence alignment. Applied Soft Computing 8 (1):55-78. 

60. Chen SM, Chien CY (2011) Parallelized genetic ant colony systems for solving the traveling 

salesman problem. Expert Systems with Applications 38 (4):3873-3883. 

61. Li N, Wang S, Li Y (2011) A Hybrid Approach of GA and ACO for VRP. Journal of 

Computational Information Systems 7 (13):4939-4946. 

62. Arcus A (1966) COMSOAL, A Computer Method of Sequencing Operations for Assembly Lines. 

The International Journal of Production Research 4 (4):259-277. 

63. Helgeson WB, Birnie DP (1961) Assembly Line Balancing Using the Ranked Positional Weight 

Technique. The Journal of Industrial Engineering 12 (6):394-398. 

64. Talbot FB, Patterson JH (1984) An Integer Programming Algorithm with Network Cuts for 

Solving the Assembly Line Balancing Problem. Management Science 30 (1):85-99. 

65. Baykasoglu A (2006) Multi-rule multi-objective simulated annealing algorithm for straight and U 

type assembly line balancing problems. Journal of Intelligent Manufacturing 17 (2):217-232. 

66. Arcus AL (1963) An analysis of a computer method of sequencing assembly line operations. Ph.D. 

Dissertation, University of California, Berkeley, USA,  

67. Tonge FM (1960) Summary of a Heuristic Line Balancing Procedure. Management Science 7 

(1):21-42. 

68. Kim YK, Kim YH, Kim YJ (2000) Two-sided assembly line balancing: a genetic algorithm 

approach. Production Planning & Control 11 (1):44-53. 

69. Lee TO, Kim Y, Kim YK (2001) Two-sided assembly line balancing to maximize work 

relatedness and slackness. Computers & Industrial Engineering 40 (3):273-292. 
 

http://link.springer.com/article/10.1007/s00170-015-7320-y

